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Abstract

Recent Semantic Space Models (SSMs) are now integrating
perceptual information with linguistic statistics into a unified
mental space, offering a solution to the criticism that SSMs
are disembodied. However, these new models introduce the
problem of illusory feature migrations. When the word dog is
perceived, its perceptual features should migrate to hyena, so
the system can infer the perceptual features for a non-
perceived word (hyenas have fur). In doing so, however, the
models are unable to avoid migrating the features for dog to
syntagmatically related words, such as bone. As a result, the
models incorrectly infer that bones have fur. We argue that
the problems of perceptual grounding and word order are not
independent—a model of word order information is needed to
correctly infer how features should migrate in mental space.
We introduce a multiplicative binding framework that allows
all information sources to be stored in a composite mental
space, but features will only migrate to words that share
sufficient order information with directly perceived words.

Keywords: semantic space models, symbol grounding
problem, perceptual integration, embodied cognition.

Introduction

Semantic Space Models (SSMs) have seen remarkable
success in recent years as models of how humans learn the
meanings of words from repeated episodic experience, and
for how lexical semantics are represented in mental space.
Many types of SSMs now exist, with several modifications
to better approximate human semantic cognition.' In
general, these models all create semantic representations
from statistical regularities in large linguistic corpora,
building on Harris® (1970) distributional hypothesis of
lexical semantics: the more similar the contexts in which
words are experienced, the more similar their meanings.
SSMs have successfully accounted for a wide variety of
human semantic data, ranging from semantic priming and
free association, up to high-level discourse processing by
applying compositional algorithms to SSM representations.
Despite their successes, SSMs have been heavily
criticized as implausible psychological models on a number
of grounds. Firstly, most of these models have been
criticized as “bag-of-words” models, in that they simply
consider the context in which the word occurs, but ignore
the statistical information inherent in word transitions.
Recent solutions to the word-order problem use binding
operations to learn a blended semantic space in which a
word’s representations reflects its history of co-occurrence

' For recent advances in SSMs, see the upcoming issue of
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with, and position relative to, other words (e.g., Jones &
Mewhort, 2007). Further, these models are able to retrieve
plausible n-gram information (coarse grammaticality)
directly from the blended space, without the need for
explicit rules of grammaticality. The integration of word
order information has been shown to give a much better fit
to human data in a variety of semantic tasks.

Secondly, SSMs have been criticized as “disembodied” in
that they learn from only linguistic information but are not
grounded in perception and action (see de Vega, Graesser,
& Glenberg, 2008 for a workshop on the issue). The lack of
grounding in SSMs is in direct contrast to the recent
literature on embodied cognition, demonstrating that a
word’s meaning is grounded in sensorimotor experience.
Sensorimotor information is an inherent part of the semantic
organization of the human lexicon, but much of this
information cannot be learned from statistics in a text
corpus—it must be learned from multisensory experience
(but see Riordan & Jones, in press). In addition, current
models have a symbol-reference problem: there is no way to
link a word’s internal representation back to its referent in
the real world.

We are now seeing the emergence of the first perceptually
grounded SSMs. As a proxy for sensorimotor experience,
these models use norms of human-generated features (such
as the norms of McRae et al., 2005). These norms represent
aggregate human productions of the physical properties,
appearance, sounds, smells, functional properties, etc. for
concrete nouns and event verbs based on multisensory
experience. For example, the feature <has 4 legs> will
have a high probability for dog and cow, but a low
probability for centipede, and a zero probability for
strawberry. However <is_red> is a highly salient feature of
strawberry and not for dog.

Most of the new grounded SSMs simultaneously consider
the distribution of words across contexts in a text corpus and
the distribution of words across perceptual features,
allowing them to extract joint information between the two
data sources. This allows the models to make implicit
inferences across the two information sources: if the model
learns from perceptual experience that sparrows have beaks,
and from linguistic experience that sparrows and
mockingbirds are used in a similar distributional fashion, it
naturally makes the inference that mockingbirds have beaks.
The inference chain works in the opposite direction as well.
Most impressive, given a novel word most of these models
can retrieve an accurate representation of the perceptual
features of the novel word’s referent. Simulations have



demonstrated that the blended linguistic/perceptual mental
space may yield a superior approximation of human data.

However, a major issue common to all of these new
grounded models is that they have no way to discriminate
between syntagmatic relationships (e.g., the relationship
between bee and honey) and category-based paradigmatic
relationships (e.g., bee and wasp). The linguistic abstraction
phase of these models will learn to position the vectors for
car, automobile, and road close in semantic space. This
produces the problem that the model cannot distinguish
which regions of space may adopt features that migrate from
a perceptually grounded word during the feature inference
phase. The result is that the model correctly infers that
automobile <has wheels>, but it also incorrectly infers that
road <has wheels>. We refer to these errors as illusory
feature migrations, and argue that errors of migration are
much more common in semantic space than are correct
migrations, which can severely pollute the resulting
semantic space relative to a human representation that
would not contain this type of error.

One reason these models fail to discriminate between
context-based syntagmatic vs. category-based paradigmatic
relationships is that they ignore word order information,
which is a powerful cue for category membership (Jones &
Mewhort, 2007). That is, words that are flanked by similar
n-grams tend to belong to the same conceptual categories.
Extensive study in the field of category-based inference has
investigated the ways in which category structure constrains
feature generalization (for reviews, see Heit, 2000; Rips,
2001). To ignore word information is to ignore a very
salient cue to category membership at an SSM’s disposal.

To be clear at the outset, we strongly commend the
authors of these perceptually grounded models for taking a
huge step in the right direction towards our understanding of
human semantic representation. However, a plausible model
must also be able to filter components of this representation
so that perceptual information may generalize to
paradigmatically but not syntagmatically similar words (i.e.,
from car to automobile but not road). Here we explore the
utility of a formal binding framework based on ideas from
signal processing and Jones and Mewhort’s (2007)
BEAGLE model that has these desiderata.

Grounding Semantics in Perception and Action

Recent attempts to ground SSMs in perception and action
can be placed into one of two classes: post-hoc inference
models, and ad-hoc inference models. Both types can be
trained on the same text corpus and feature representations
(e.g., TASA and McRae et al., 2005).

Post-hoc inference models begin with the abstraction of a
text corpus into a reduced vector space (a traditional SSM),
and then attempt to bind these linguistic vector
representations to the feature norms. For example, Durda,
Buchanan, and Caron (2009) train a feedforward neural
network to associate linguistic vectors with their
corresponding activation of features. Given the linguistic
representation for dog, the output feature <has_ fur> should
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be activated but the output feature for <made of metal>
should be inhibited. After iterative training with backprop,
the model can infer the correct pattern of perceptual
properties for words that did not have a perceptual feature
vector. At its core, this technique simply maps similar
linguistic vectors to similar output vectors, as with other
pattern generalization applications of feedforward networks.

Ad-hoc inference models typically begin with a raw word-
by-document matrix of a text corpus and a word-by-feature
matrix of a feature database. During learning, the model
attempts to learn a word’s representation by simultaneously
considering inference across documents and features. An
excellent example of an ad-hoc model is presented in
Andrews, Vigliocco, and Vinson (2009). Andrews et al., use
a Bayesian framework to infer the joint distributional
information for a word between linguistic and perceptual
data. It is important to note that their technique is joint
inference: it squeezes more information out of the data than
simply adding perception to linguistic experience. Andrews
et al. convincingly demonstrate that their joint model gives
better fits to word association data than a model that
considers only one data source, or the simple addition of the
two sources.

Illusory Feature Migrations

A major problem with both post-hoc and ad-hoc inference
models is that they must exhibit illusory feature migrations
as a consequence of their architecture. An illusory feature
migration occurs when a non-perceived word adopts
erroneous features from a linguistically related word simply
because they are proximal in semantic space. This is a
common issue in the aforementioned models because they
do not have order information to discern between
syntagmatic and paradigmatic word relations. If the models
are optimized on free-association data (which is strongly
dominated by syntagmatic productions), then they must
position syntagmatically related words like bee and honey
close in space, as well as paradigmatically related words
like bee and wasp. As a result, the inference mechanism
simply sees both honey and wasp as similar patterns to bee,
and naturally makes the inference that honey can fly and has
wings.

Note that the “migration” described need not be a
dichotomous on/off feature. It is simply the case that the
inferred distribution over possible features for honey has
some correlation with that of bee simply because their
distributional structure in language has overlap. This
overlap introduces error in the labeling of novel referents
(e.g., a novel object that looks like an insect will activate
words like honey as potential labels). Furthermore, this
inference error will introduce noise to the overall semantic
organization, which will lead to a poorer account of human
semantic data compared to a human who will not make
these inference errors. The aforementioned models
demonstrated examples of correct feature generalizations in
their papers; what was not illustrated is the larger number of
incorrect feature generalizations.



Presumably, humans use word-order information to
constrain the inference of features in mental space. This
information allows a model to distinguish what types of
words may adopt features given a perceived target word.
Rather than making this a terse rule-based model, we choose
to adopt a graded feature migration framework—words
adopt the aggregate features of proximal words that have
features, weighted by their similarity in order space.
However, it is also important to keep the sources (context,
order, perception) blended to account for the wide range of
embodied semantic data. This requires a model that can
create a blended semantic representation, but that can know
what part of the semantic signal to use in computing
similarity for feature migration. We next describe a simple
framework towards this type of integrated model, test its
behavior on an artificial language paradigm, and then scale
it up to a real language corpus to see how the properties are
maintained at a large scale.

A Feature-Binding Framework

Our goal was to build an SSM with two key properties.
First, context, order, and feature information should be
represented as patterns in high-dimensional vectors. Even
though these three sources of information should be blended
within a single vector, it should be possible to determine the
degree of similarity between two words in context space,
order space, or feature space alone. Because context, order,
and feature information is distributed, computing a vector
cosine between two vectors reflects their similarity when all
three sources of information are taken into account.

Second, feature migration should occur, but features
should only migrate to words with which they share order
information (i.e., words that are commonly flanked by
similar n-grams). For example, food and table will share
primarily context information, whereas table and countertop
will share primarily order information; therefore, features
should migrate from table to countertop, but not from table
to food.

Encoding. Our model is similar to other SSMss that represent
both context and order information with fixed-length high-
dimensional vectors (Jones & Mewhort, 2007; Sahlgren et
al., 2008). When a word w is encountered in the input text
for the first time, it is assigned an initial “environmental”
vector e,—a random vector whose elements are randomly
selected from a Gaussian distribution of mean 0 and
variance 1. Environmental vectors are intended to represent
the static properties of a word’s surface form, such as its
orthography and phonology, and are not updated during
processing. The new word is also assigned an initially
empty memory vector m,, to represent its semantics. When
the model encounters a new sentence in the input corpus, m,,
is modified according to the update rule:

m,, = m,, + (C; Ocontext) + (O;Oorder) + (F/Ofeatures,,)

where the circumpunct “©” denotes elementwise vector
multiplication, one of a class of multiplication-like operators
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that vector symbolic architectures employ to combine
vectors in a neurally plausible manner (Levy & Gayler,
2009; Kanerva, 2009). C;, Oy, and F; are indicator vectors—
unchanging vectors that are bound with vectors representing
context, order, and feature information, respectively. They
serve to “tag” the source of the information signal (context,
order, or perception). They may be initialized either as
random vectors, or as binary vectors of ones and zeros
sharing little or no overlap with each other.

As in Jones & Mewhort (2007) and Sahlgren et al. (2008),
the context vector represents co-occurrence information: it is
the sum of all environmental vectors of words occurring in
the same sentence as w. The order vector is the sum of all n-
grams surrounding w up to some fixed window size, where
an n-gram is represented by binding the environmental
vectors of all the words comprising the n-gram via
elementwise multiplication. In the experiments presented
here, only bigrams directly to the left and right of w are
considered. As in Sahlgren et al. (2008), words to the right
and left are distinguished by rotating the environmental
vectors by one unit in a positive or negative direction,
respectively. Finally, the features vector represents
information about sensorimotor features of words. Each of
2,526 features taken from the feature norms of McRae, et al.
(2005) was assigned a unique random vector. If w is the
word for one of the 541 concepts for which feature norms
were collected, features,, is the sum of the five vectors that
correspond to the five features that were attributed to w by
the greatest number of participants. If w is not among the
concepts in the McRae et al. feature norms, features,, is
initialized as a vector of zeroes (and only acquires nonzero
values during training, when vectors are added to m,, via the
update rule). The fact that features,, has a w subscript while
context and order do not reflects the fact that features,, is
derived from information about w in the feature norms,
while context and order represent information about the
sentence currently being processed.

Retrieval. After training, the cosine between every pair of
memory vectors is calculated to determine the model’s
estimate of the semantic similarity between words. These
similarity scores can be thought of as distances between
points in a high-dimensional space, which we refer to as the
composite space. In addition to having a lower
computational complexity than circular convolution, one
benefit of using elementwise vector multiplication for
binding the information source tag is that the operation
serves as its own approximate inverse when vector elements
are sampled from a z-distribution, hence:

X=(XOYOY (1)

This allows vectors to be elementwise multiplied with the
aforementioned context indicator vector C; before
calculating their cosines. The operation serves to ‘unbind’
the C; * context binding, yielding a context space in which
two words’ distance from each other reflects the amount of
context information they share (but is not heavily influenced



by shared order or feature information).  Similarly,
unbinding via elementwise multiplication with O; yields an
order space in which cosine similarity reflects the amount
of shared order information; unbinding with F; yields a
feature space where feature information is paramount.

Experiment 1

The objective of Experiment 1 was to determine whether the
binding model we outlined does in fact possess the desired
property of representing context, order, and feature
information in a separable fashion, and whether it behaves
appropriately with respect to feature migration.
Demonstrating this required training the model on a corpus
in which the amount of context, order, and feature
information that words share is known, which is best
accomplished using a corpus of an artificial language.
Strictly controlling the input allows us to determine
conclusively whether the model at least exhibits the desired
properties in the simplest case and lets us more clearly
observe how the inclusion or exclusion of different types of
information affects the similarity space.

Method

Input corpus. The model was trained on a corpus of 1,000
sentences from a simple artificial language. This language
was designed such that it would contain some word pairs
that shared context information but not order information,
some pairs that shared order information but not context
information, and some words that shared context as well as
order information. The language used is described by the
following context-free grammar (symbols in bold are
terminal symbols):

S — A Aux B Num Cs | D Aux E Num Fs
Aux — can | should | would | could | does
Num — two | three | four | five | six

Sentences of the corpus were generated randomly, with
each possible transition of equal probability. Thus, it
consisted of sentences such as “A can B three Cs”, “A
would B four Cs”, “D should E three Fs”, and so forth. In
this corpus, 4, B, and Cs each share context information, as
they always co-occur, but they do not share order
information. If this were a real language, one could think of
A, B, and Cs as fillers for three different grammatical roles.
Similarly, D, E, and Fs share context, but not order,
information. In contrast, the members of pairs {A, D}, {B,
E}, and {Cs, Fs} each share order information, but
significantly less context information. The auxiliary verbs
{can, should, would, could, does} and numbers {two, three,
four, five, six} share significant amounts of order
information with each other. They also share context
information: even though the grammar allows auxiliaries
and numbers to co-occur with any of 4, B, Cs, D, E, or Fs,
each auxiliary always co-occurs with some number.

Procedure. Two simulations were conducted. In Simulation
1, no feature information was included. In Simulation 2, we

retrained the model with the full update rule m,, = m,, + (C;
© context) + (0O; © order) + (F; © features,,), adding five
vectors corresponding to five features for the word
“strawberry” from the McRae et al. norms to the concept for
the word 4 (a_fruit, grows on_plants, grows_in_fields,
grows_on_bushes, and has _green_leaves). We compared
the model under three conditions: context, composite, and
order. In each condition, feature migration proceeded by
unbinding m,, & Fj to retrieve an approximation features!,
of features,, and adding this approximation to every other
memory vector m; in proportion to the strength of their
similarity in the relevant space (context space, composite
space, or order space, depending on condition). That is,
features tend to be more likely to migrate in the order
condition between two words that share a large amount of
order information than between two words that do not.
Because we are interested in migrating features not merely
to words that are “close” to the perceived word but rather to
words that are similar to w in terms of their relationships to
other words, the similarity between words w; and w, is
obtained by correlating a vector of w;’s cosine with each
word in the lexicon with a vector of w,’s cosine with each
word in the lexicon. However, using just the cosine of w;
and w; yields largely similar results.

Simulation 1.1. Tables 1 and 2 illustrate the most similar
words to 4, B, Cs, D, E, Fs, can, and two in context and
order space, respectively, after training using the update rule
m,, = m, + (C; © context) + (O; © order), no feature
information was included in this simulation. In the absence
of feature information, context and order information are
separable in this model, despite the fact that both
information sources are fully distributed across vector
elements. Appropriately, the members of {A, B, Cs} cluster
together in context space, as do the members of {D, E, Fs}.
Additionally, pairs {A, D}, {B, E}, and {Cs, Fs} cluster
together in order space. Although they do not appear in the
tables, auxiliaries and numbers also cluster together.

Table 1. Z-scores of cosines of the most similar words to A4,
B, Cs, and D in context space, Simulation 1.

A B Cs D
A 3.6 B 3.6 Cs 3.6 D 3.6
B .20 Cs .20 B 21 E .18
Cs .16 A .16 A 13 Fs .15
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Table 2. Z-scores of cosines of the most similar words to A4,
B, Cs, and D in order space, Simulation 1.

A

B

Cs

35
1.2

3.7
.32

Cs
Fs

35
11

35
1.2




Simulation 1.2. Table 3 illustrates the standardized
correlations of vector cosines of the four most similar words
to A under each migration condition. Because the migration
rule transfers feature information in direct proportion to
these values, the higher the value of a word, the more
feature information that word receives from A. The
important pattern in Table 3 is the reversal of B and D: in
context space, the syntagmatic relation between A and B is
much more salient, but in the order space the paradigmatic
relation between A and D is emphasized. In the overall
composite space, these relations are mixed (our desired
blending in full lexical space), but the information required
for correct feature migration is still implicitly represented.

Table 3. Standardized correlations of vector cosines of the
four most similar words to 4 under the context, composite
and order conditions, Simulation 2.

context composite order
A 35 A 3.2 A 34
B .63 B .06 D 1.2
Cs .55 D .04 B .05
does -.17 Cs .00 Cs -.03

Thus, it appears that only the order condition minimizes
opportunity for illusory feature migrations while preserving
the appropriate migration to D, which is paradigmatically
similar to A in this corpus. Furthermore, when feature
information is added, the separability between context and
order space is maintained, (allowing features to
appropriately migrate from A to D) and individual features
can be successfully retrieved.

Experiment 2

The objective of Experiment 2 was to explore whether the
proposed binding framework continues to yield distributions
that inhibit illusory feature migrations (i.e., migrations to
syntagmatically similar words) while facilitating appropriate
feature migrations to paradigmatically similar words when
scaled up to a corpus of natural language. We therefore
designed a version of Experiment 1 trained on a real corpus,
the TASA corpus of high-school level English text. Two
simulations were conducted: The first to examine the
similarity of the decoded context and order spaces to
paradigmatic and syntagmatic relations, and the second to
demonstrate feature migrations to category co-ordinates vs.
non-categorical associates of a target word. Both
simulations were identical to Experiment 1’s Simulation 2
in terms of the update rule, the conditions (context, order
and composite), and the feature migration rule.

Simulation 2.1. For each word, its feature vector features,,
was generated by summing the five vectors corresponding
to the five features from the McRae et al. norms attributed
to w by the greatest number of participants. As test items,
we extracted 1075 word pairs from the word association
norms of Nelson, McEvoy, & Schreiber (1998) for which
both the first word of the pair (the cue) and the second word
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of the pair (the target) were members of the McRae et al.
feature norms”. For each pair, we determined the category
membership of each word, using the categories employed by
Cree & McRae (2003, Appendix B): weapons, vehicles,
foods, and so forth. Cree & McRae explicitly list which
normed words belong in which categories, allowing us to
code whether the cue was a member of the same conceptual
category as the target. The 690 pairs in which both words
shared a category were interpreted as being paradigmatically
related (e.g., apple-pear), while the 385 paired words not
sharing a category were interpreted as being syntagmatically
related (e.g., apple-crab). The fact that two words are
associates and do not appear in the same category does not
guarantee syntagmatic similarity nor does it preclude
phrasal association, however, informal observation suggests
that many word pairs in the latter condition tend to appear in
collocations or other classic syntagmatic relationships for
which feature migration would be inappropriate. Indeed, the
cosine similarity scores from the McRae et al. (2005)
feature vectors for the word pairs were significantly higher
for our paradigmatically related words than for
syntagmatically related ones, #(1073) = 24.66, p < .001.

Motivated by the results of Experiment 1, we predicted
that words sharing paradigmatic relationships would be
closer in order space than in context space. This pattern of
results would suggest that attending to order information
facilitates more feature migrations among paradigmatically
related words than among syntagmatically related ones,
while attending to context information does just the
opposite. For paradigmatically related words, the model’s
cosine similarities were significantly higher in order space
than in context space, #(689) = 2.96, p < .01. That is, words
in paradigmatically related pairs were gauged to be more
similar to each other in order space than in context space. In
contrast, for syntagmatically related pairs, the model’s
cosine similarities were significantly higher in context space
than in order space, #384) =4.371, p <.001.

Simulation 2.2. To briefly demonstrate how illusory feature
migrations may be corrected by incorporating order
information, we selected 25 “triples” from Simulation 1,
each consisting of a target T that existed in the McRae et al.
norms, a category coordinate CC of T, and a
syntagmatically related word R that had an associative
relationship with T but was not a member of the same
category. An example triple is <T:freezer, CC: refrigerator,
R:ice>. Freezer and refrigerator each share a common class
(kitchen appliances); freezer and ice are certainly related as
well, but not by virtue of a category relationship. Intuitively,
one would like features to migrate more strongly from T to
CC than from T to R, given that categories for concrete
words are defined at least partly on the basis of feature
overlap. For example, the most popular features of freezer
are used for storage, and has_an_inside, features that are

2 We excluded the 24 concept words that the McRae et al. norms
explicitly identify as having ambiguous meanings, such as
“mouse_(animal)” and “mouse_(computer).”



much more applicable to kitchen appliances than they are to
related non-category members (ice, frozen waffles, etc.). If
a particular feature migrated more strongly from T to R than
from T to CC, this was coded as an illusory feature
migration. Otherwise, it was coded as an appropriate feature
migration.

The (incorrect) migration of feature information from T to
R was much stronger in the context condition than the order
condition, and the (correct) migration of feature information
from T to CC was stronger in the order condition than the
context condition. By our coding scheme, 56% of the triples
exhibited at least one illusory feature migration in the
context condition (recall that this means the migration was
stronger from T to R than it was from T to CC). In contrast,
only 40% of the triples exhibited at least one illusory feature
migration in the order condition. Most notable is that all
illusory feature migrations that took place in the order
condition also took place in the composite condition, and a/l
illusory feature migrations taking place in the composite
condition also took place in the context condition. In other
words, some illusory feature migrations that took place in
the context and composite conditions were avoided in the
order space. Hence, emphasizing order information by
unbinding with O; (order space) yielded equal or better
results for every triple when compared with emphasizing
context information by unbinding with C; (context space) or
not unbinding at all (composite space). Table 4 presents four
triples that differed by condition as to whether CC or R was
deemed a better candidate for feature migration from T by
the model. In each case, a feature migration error was
committed in the context condition, but was avoided in the
order condition.

Table 4. Example feature migration errors in context space
that were corrected in the order space. Cases in which the
related word was the stronger attractor were considered
illusory feature migrations. Target word is bold.

Features most strongly Competitor that

Triple attributed to target by features,’ Migrated More
participants in McRae Strongly To, By Condition
et al. (2005) context comp  order
used_for_holding_things
bottle made_of _glass
CC: jar used_for_holding_liquids fill jar jar
R: fill made_of_plastic
has_a_lid
has_fur
cat an_animal
CC: mouse a_pet tom tom  mouse
R: tom eats
has_whiskers
used_by riding
horse is_large
CC: cow an_animal saddle cow cow
R: saddle has_a_mane
has_legs
has_wheels
motorcycle has_2_wheels
CC: car is_dangerous wheels car car
R: wheels has_an_engine

is_fast
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General Discussion

Integration of sensorimotor information is an important next
step in the development of SSMs. While human-generated
feature norms are admittedly an intermediary step, it is
important to understand the cognitive mechanisms that
humans might use to integrate perception/action and
linguistic structure to organize meaning in memory for
when perceptual models (e.g., computer vision) are
sophisticated enough to directly represent environmental
information to integrate with linguistic distributional
structure (see Roy, 2008 for a discussion).

While early attempts at integrating perception and
language in SSMs have shown much promise, our work
here indicates that a model must have a mechanism to
encode temporal linguistic information to know how
perceptual information may be generalized in the mental
space. The binding framework presented here shows the
basic property of storing all information sources in a
blended composite space (as is suggested by the literature in
embodied cognition). However, the model is able to identify
which components of the composite signal perceptual
information should be allowed to migrate to. While this
scheme needs more testing at a large scale, we believe it has
promise for accounting for a wide range of semantic and
embodied data, and is a step toward addressing criticisms of
SSMs being ungrounded.
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