
You Can’t Wear a Coat Rack: A Binding Framework to Avoid Illusory Feature 
Migrations in Perceptually Grounded Semantic Models 

 
Michael N. Jones (jonesmn@indiana.edu) 
Department of Psychological and Brain Sciences  
Indiana University, Bloomington, Indiana USA 

Gabriel Recchia (grecchia@indiana.edu) 
Cognitive Science Program, 1910 E 10th St. 

Indiana University, Bloomington, Indiana USA 
 

 
Abstract 

Recent Semantic Space Models (SSMs) are now integrating 
perceptual information with linguistic statistics into a unified 
mental space, offering a solution to the criticism that SSMs 
are disembodied. However, these new models introduce the 
problem of illusory feature migrations. When the word dog is 
perceived, its perceptual features should migrate to hyena, so 
the system can infer the perceptual features for a non-
perceived word (hyenas have fur). In doing so, however, the 
models are unable to avoid migrating the features for dog to 
syntagmatically related words, such as bone. As a result, the 
models incorrectly infer that bones have fur. We argue that 
the problems of perceptual grounding and word order are not 
independent—a model of word order information is needed to 
correctly infer how features should migrate in mental space. 
We introduce a multiplicative binding framework that allows 
all information sources to be stored in a composite mental 
space, but features will only migrate to words that share 
sufficient order information with directly perceived words.  

Keywords: semantic space models, symbol grounding 
problem, perceptual integration, embodied cognition.  

Introduction 
Semantic Space Models (SSMs) have seen remarkable 
success in recent years as models of how humans learn the 
meanings of words from repeated episodic experience, and 
for how lexical semantics are represented in mental space. 
Many types of SSMs now exist, with several modifications 
to better approximate human semantic cognition.1 In 
general, these models all create semantic representations 
from statistical regularities in large linguistic corpora, 
building on Harris’ (1970) distributional hypothesis of 
lexical semantics: the more similar the contexts in which 
words are experienced, the more similar their meanings. 
SSMs have successfully accounted for a wide variety of 
human semantic data, ranging from semantic priming and 
free association, up to high-level discourse processing by 
applying compositional algorithms to SSM representations.  

Despite their successes, SSMs have been heavily 
criticized as implausible psychological models on a number 
of grounds. Firstly, most of these models have been 
criticized as “bag-of-words” models, in that they simply 
consider the context in which the word occurs, but ignore 
the statistical information inherent in word transitions. 
Recent solutions to the word-order problem use binding 
operations to learn a blended semantic space in which a 
word’s representations reflects its history of co-occurrence 

                                                             
1 For recent advances in SSMs, see the upcoming issue of 

Topics in Cognitive Science edited by Danielle McNamara.  

with, and position relative to, other words (e.g., Jones & 
Mewhort, 2007). Further, these models are able to retrieve 
plausible n-gram information (coarse grammaticality) 
directly from the blended space, without the need for 
explicit rules of grammaticality. The integration of word 
order information has been shown to give a much better fit 
to human data in a variety of semantic tasks.  

Secondly, SSMs have been criticized as “disembodied” in 
that they learn from only linguistic information but are not 
grounded in perception and action (see de Vega, Graesser, 
& Glenberg, 2008 for a workshop on the issue). The lack of 
grounding in SSMs is in direct contrast to the recent 
literature on embodied cognition, demonstrating that a 
word’s meaning is grounded in sensorimotor experience. 
Sensorimotor information is an inherent part of the semantic 
organization of the human lexicon, but much of this 
information cannot be learned from statistics in a text 
corpus—it must be learned from multisensory experience 
(but see Riordan & Jones, in press). In addition, current 
models have a symbol-reference problem: there is no way to 
link a word’s internal representation back to its referent in 
the real world.  

We are now seeing the emergence of the first perceptually 
grounded SSMs. As a proxy for sensorimotor experience, 
these models use norms of human-generated features (such 
as the norms of McRae et al., 2005). These norms represent 
aggregate human productions of the physical properties, 
appearance, sounds, smells, functional properties, etc. for 
concrete nouns and event verbs based on multisensory 
experience. For example, the feature <has_4_legs> will 
have a high probability for dog and cow, but a low 
probability for centipede, and a zero probability for 
strawberry. However <is_red> is a highly salient feature of 
strawberry and not for dog.  

Most of the new grounded SSMs simultaneously consider 
the distribution of words across contexts in a text corpus and 
the distribution of words across perceptual features, 
allowing them to extract joint information between the two 
data sources. This allows the models to make implicit 
inferences across the two information sources: if the model 
learns from perceptual experience that sparrows have beaks, 
and from linguistic experience that sparrows and 
mockingbirds are used in a similar distributional fashion, it 
naturally makes the inference that mockingbirds have beaks. 
The inference chain works in the opposite direction as well. 
Most impressive, given a novel word most of these models 
can retrieve an accurate representation of the perceptual 
features of the novel word’s referent. Simulations have 
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demonstrated that the blended linguistic/perceptual mental 
space may yield a superior approximation of human data.  

However, a major issue common to all of these new 
grounded models is that they have no way to discriminate 
between syntagmatic relationships (e.g., the relationship 
between bee and honey) and category-based paradigmatic 
relationships (e.g., bee and wasp). The linguistic abstraction 
phase of these models will learn to position the vectors for 
car, automobile, and road close in semantic space. This 
produces the problem that the model cannot distinguish 
which regions of space may adopt features that migrate from 
a perceptually grounded word during the feature inference 
phase. The result is that the model correctly infers that 
automobile <has_wheels>, but it also incorrectly infers that 
road <has_wheels>.  We refer to these errors as illusory 
feature migrations, and argue that errors of migration are 
much more common in semantic space than are correct 
migrations, which can severely pollute the resulting 
semantic space relative to a human representation that 
would not contain this type of error. 

One reason these models fail to discriminate between 
context-based syntagmatic vs. category-based paradigmatic 
relationships is that they ignore word order information, 
which is a powerful cue for category membership (Jones & 
Mewhort, 2007). That is, words that are flanked by similar 
n-grams tend to belong to the same conceptual categories. 
Extensive study in the field of category-based inference has 
investigated the ways in which category structure constrains 
feature generalization (for reviews, see Heit, 2000; Rips, 
2001). To ignore word information is to ignore a very 
salient cue to category membership at an SSM’s disposal. 

To be clear at the outset, we strongly commend the 
authors of these perceptually grounded models for taking a 
huge step in the right direction towards our understanding of 
human semantic representation. However, a plausible model 
must also be able to filter components of this representation 
so that perceptual information may generalize to 
paradigmatically but not syntagmatically similar words (i.e., 
from car to automobile but not road). Here we explore the 
utility of a formal binding framework based on ideas from 
signal processing and Jones and Mewhort’s (2007) 
BEAGLE model that has these desiderata. 

Grounding Semantics in Perception and Action 
Recent attempts to ground SSMs in perception and action 
can be placed into one of two classes: post-hoc inference 
models, and ad-hoc inference models. Both types can be 
trained on the same text corpus and feature representations 
(e.g., TASA and McRae et al., 2005).  

Post-hoc inference models begin with the abstraction of a 
text corpus into a reduced vector space (a traditional SSM), 
and then attempt to bind these linguistic vector 
representations to the feature norms. For example, Durda, 
Buchanan, and Caron (2009) train a feedforward neural 
network to associate linguistic vectors with their 
corresponding activation of features. Given the linguistic 
representation for dog, the output feature <has_fur> should 

be activated but the output feature for <made_of_metal> 
should be inhibited. After iterative training with backprop, 
the model can infer the correct pattern of perceptual 
properties for words that did not have a perceptual feature 
vector. At its core, this technique simply maps similar 
linguistic vectors to similar output vectors, as with other 
pattern generalization applications of feedforward networks.  

Ad-hoc inference models typically begin with a raw word-
by-document matrix of a text corpus and a word-by-feature 
matrix of a feature database. During learning, the model 
attempts to learn a word’s representation by simultaneously 
considering inference across documents and features. An 
excellent example of an ad-hoc model is presented in 
Andrews, Vigliocco, and Vinson (2009). Andrews et al., use 
a Bayesian framework to infer the joint distributional 
information for a word between linguistic and perceptual 
data. It is important to note that their technique is joint 
inference: it squeezes more information out of the data than 
simply adding perception to linguistic experience. Andrews 
et al. convincingly demonstrate that their joint model gives 
better fits to word association data than a model that 
considers only one data source, or the simple addition of the 
two sources.  
 
Illusory Feature Migrations 
A major problem with both post-hoc and ad-hoc inference 
models is that they must exhibit illusory feature migrations 
as a consequence of their architecture. An illusory feature 
migration occurs when a non-perceived word adopts 
erroneous features from a linguistically related word simply 
because they are proximal in semantic space. This is a 
common issue in the aforementioned models because they 
do not have order information to discern between 
syntagmatic and paradigmatic word relations. If the models 
are optimized on free-association data (which is strongly 
dominated by syntagmatic productions), then they must 
position syntagmatically related words like bee and honey 
close in space, as well as paradigmatically related words 
like bee and wasp. As a result, the inference mechanism 
simply sees both honey and wasp as similar patterns to bee, 
and naturally makes the inference that honey can fly and has 
wings.  

Note that the “migration” described need not be a 
dichotomous on/off feature. It is simply the case that the 
inferred distribution over possible features for honey has 
some correlation with that of bee simply because their 
distributional structure in language has overlap. This 
overlap introduces error in the labeling of novel referents 
(e.g., a novel object that looks like an insect will activate 
words like honey as potential labels). Furthermore, this 
inference error will introduce noise to the overall semantic 
organization, which will lead to a poorer account of human 
semantic data compared to a human who will not make 
these inference errors. The aforementioned models 
demonstrated examples of correct feature generalizations in 
their papers; what was not illustrated is the larger number of 
incorrect feature generalizations.  
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Presumably, humans use word-order information to 
constrain the inference of features in mental space. This 
information allows a model to distinguish what types of 
words may adopt features given a perceived target word. 
Rather than making this a terse rule-based model, we choose 
to adopt a graded feature migration framework—words 
adopt the aggregate features of proximal words that have 
features, weighted by their similarity in order space. 
However, it is also important to keep the sources (context, 
order, perception) blended to account for the wide range of 
embodied semantic data. This requires a model that can 
create a blended semantic representation, but that can know 
what part of the semantic signal to use in computing 
similarity for feature migration. We next describe a simple 
framework towards this type of integrated model, test its 
behavior on an artificial language paradigm, and then scale 
it up to a real language corpus to see how the properties are 
maintained at a large scale.  

A Feature-Binding Framework 
Our goal was to build an SSM with two key properties. 
First, context, order, and feature information should be 
represented as patterns in high-dimensional vectors. Even 
though these three sources of information should be blended 
within a single vector, it should be possible to determine the 
degree of similarity between two words in context space, 
order space, or feature space alone. Because context, order, 
and feature information is distributed, computing a vector 
cosine between two vectors reflects their similarity when all 
three sources of information are taken into account. 

Second, feature migration should occur, but features 
should only migrate to words with which they share order 
information (i.e., words that are commonly flanked by 
similar n-grams). For example, food and table will share 
primarily context information, whereas table and countertop 
will share primarily order information; therefore, features 
should migrate from table to countertop, but not from table 
to food. 

Encoding. Our model is similar to other SSMs that represent 
both context and order information with fixed-length high-
dimensional vectors (Jones & Mewhort, 2007; Sahlgren et 
al., 2008). When a word w is encountered in the input text 
for the first time, it is assigned an initial “environmental” 
vector ew—a random vector whose elements are randomly 
selected from a Gaussian distribution of mean 0 and 
variance 1. Environmental vectors are intended to represent 
the static properties of a word’s surface form, such as its 
orthography and phonology, and are not updated during 
processing. The new word is also assigned an initially 
empty memory vector mw to represent its semantics. When 
the model encounters a new sentence in the input corpus, mw 
is modified according to the update rule: 
 

mw = mw + (CI ⊙context) + (OI⊙order) + (FI⊙featuresw) 
 

where the circumpunct “⊙” denotes elementwise vector 
multiplication, one of a class of multiplication-like operators 

that vector symbolic architectures employ to combine 
vectors in a neurally plausible manner (Levy & Gayler, 
2009; Kanerva, 2009). CI, OI, and FI are indicator vectors—
unchanging vectors that are bound with vectors representing 
context, order, and feature information, respectively. They 
serve to “tag” the source of the information signal (context, 
order, or perception). They may be initialized either as 
random vectors, or as binary vectors of ones and zeros 
sharing little or no overlap with each other. 

As in Jones & Mewhort (2007) and Sahlgren et al. (2008), 
the context vector represents co-occurrence information: it is 
the sum of all environmental vectors of words occurring in 
the same sentence as w. The order vector is the sum of all n-
grams surrounding w up to some fixed window size, where 
an n-gram is represented by binding the environmental 
vectors of all the words comprising the n-gram via 
elementwise multiplication. In the experiments presented 
here, only bigrams directly to the left and right of w are 
considered. As in Sahlgren et al. (2008), words to the right 
and left are distinguished by rotating the environmental 
vectors by one unit in a positive or negative direction, 
respectively. Finally, the features vector represents 
information about sensorimotor features of words. Each of 
2,526 features taken from the feature norms of McRae, et al. 
(2005) was assigned a unique random vector. If w is the 
word for one of the 541 concepts for which feature norms 
were collected, featuresw is the sum of the five vectors that 
correspond to the five features that were attributed to w by 
the greatest number of participants. If w is not among the 
concepts in the McRae et al. feature norms, featuresw is 
initialized as a vector of zeroes (and only acquires nonzero 
values during training, when vectors are added to mw via the 
update rule). The fact that featuresw has a w subscript while 
context and order do not reflects the fact that featuresw is 
derived from information about w in the feature norms, 
while context and order represent information about the 
sentence currently being processed. 
 
Retrieval. After training, the cosine between every pair of 
memory vectors is calculated to determine the model’s 
estimate of the semantic similarity between words. These 
similarity scores can be thought of as distances between 
points in a high-dimensional space, which we refer to as the 
composite space. In addition to having a lower 
computational complexity than circular convolution, one 
benefit of using elementwise vector multiplication for 
binding the information source tag is that the operation 
serves as its own approximate inverse when vector elements 
are sampled from a z-distribution, hence:  
 

X ≈ (X ⊙ Y) ⊙ Y (1) 
 

This allows vectors to be elementwise multiplied with the 
aforementioned context indicator vector CI before 
calculating their cosines. The operation serves to ‘unbind’ 
the CI * context binding, yielding a context space in which 
two words’ distance from each other reflects the amount of 
context information they share (but is not heavily influenced 
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by shared order or feature information).  Similarly, 
unbinding via elementwise multiplication with OI yields an 
order space in which cosine similarity reflects the amount 
of shared order information; unbinding with FI yields a 
feature space where feature information is paramount. 

Experiment 1 
The objective of Experiment 1 was to determine whether the 
binding model we outlined does in fact possess the desired 
property of representing context, order, and feature 
information in a separable fashion, and whether it behaves 
appropriately with respect to feature migration. 
Demonstrating this required training the model on a corpus 
in which the amount of context, order, and feature 
information that words share is known, which is best 
accomplished using a corpus of an artificial language. 
Strictly controlling the input allows us to determine 
conclusively whether the model at least exhibits the desired 
properties in the simplest case and lets us more clearly 
observe how the inclusion or exclusion of different types of 
information affects the similarity space.  

Method 
Input corpus. The model was trained on a corpus of 1,000 
sentences from a simple artificial language. This language 
was designed such that it would contain some word pairs 
that shared context information but not order information, 
some pairs that shared order information but not context 
information, and some words that shared context as well as 
order information. The language used is described by the 
following context-free grammar (symbols in bold are 
terminal symbols): 
 

S → A Aux B Num Cs   |  D Aux E Num Fs 
Aux → can  |  should  |  would  |  could  |  does 
Num → two  |  three  |  four  |  five  |  six 

 

   Sentences of the corpus were generated randomly, with 
each possible transition of equal probability. Thus, it 
consisted of sentences such as “A can B three Cs”, “A 
would B four Cs”, “D should E three Fs”, and so forth. In 
this corpus, A, B, and Cs each share context information, as 
they always co-occur, but they do not share order 
information. If this were a real language, one could think of 
A, B, and Cs as fillers for three different grammatical roles. 
Similarly, D, E, and Fs share context, but not order, 
information. In contrast, the members of pairs {A, D}, {B, 
E}, and {Cs, Fs} each share order information, but 
significantly less context information. The auxiliary verbs 
{can, should, would, could, does} and numbers {two, three, 
four, five, six} share significant amounts of order 
information with each other. They also share context 
information: even though the grammar allows auxiliaries 
and numbers to co-occur with any of A, B, Cs, D, E, or Fs, 
each auxiliary always co-occurs with some number. 
  
Procedure. Two simulations were conducted. In Simulation 
1, no feature information was included. In Simulation 2, we 

retrained the model with the full update rule mw = mw + (CI 
⊙ context) + (OI ⊙ order) + (FI ⊙ featuresw), adding five 
vectors corresponding to five features for the word 
“strawberry” from the McRae et al. norms to the concept for 
the word A (a_fruit, grows_on_plants, grows_in_fields, 
grows_on_bushes, and has_green_leaves). We compared 
the model under three conditions: context, composite, and 
order. In each condition, feature migration proceeded by 
unbinding mw ⊙ FI to retrieve an approximation   

€ 

feature ′ s w 
of featuresw, and adding this approximation to every other 
memory vector mi in proportion to the strength of their 
similarity in the relevant space (context space, composite 
space, or order space, depending on condition). That is, 
features tend to be more likely to migrate in the order 
condition between two words that share a large amount of 
order information than between two words that do not. 
Because we are interested in migrating features not merely 
to words that are “close” to the perceived word but rather to 
words that are similar to w in terms of their relationships to 
other words, the similarity between words w1 and w2 is 
obtained by correlating a vector of w1’s cosine with each 
word in the lexicon with a vector of w2’s cosine with each 
word in the lexicon. However, using just the cosine of w1 
and w2 yields largely similar results. 
 
Simulation 1.1. Tables 1 and 2 illustrate the most similar 
words to A, B, Cs, D, E, Fs, can, and two in context and 
order space, respectively, after training using the update rule 
mw = mw + (CI ⊙ context) + (OI ⊙ order); no feature 
information was included in this simulation. In the absence 
of feature information, context and order information are 
separable in this model, despite the fact that both 
information sources are fully distributed across vector 
elements. Appropriately, the members of {A, B, Cs} cluster 
together in context space, as do the members of {D, E, Fs}. 
Additionally, pairs {A, D}, {B, E}, and {Cs, Fs} cluster 
together in order space. Although they do not appear in the 
tables, auxiliaries and numbers also cluster together. 
 
Table 1. Z-scores of cosines of the most similar words to A, 
B, Cs, and D in context space, Simulation 1.  
 

A  B  Cs  D 
A  3.6  B  3.6  Cs  3.6  D  3.6 
B  .20  Cs  .20  B  .21  E  .18 
Cs  .16  A  .16  A  .13  Fs  .15 
five  ‐.08  two  .01  two  ‐.07  three  ‐.06 
two  ‐.09  five  ‐.01  five  ‐.09  could  ‐.09 
               

 
Table 2. Z-scores of cosines of the most similar words to A, 
B, Cs, and D in order space, Simulation 1.  
 

A  B  Cs  D 
A  3.5  B  3.7  Cs  3.5  D  3.5 
D  1.2  E  .32  Fs  1.1  A  1.2 
B  ‐.10  A  ‐.03  B  ‐.15  Fs  ‐.14 
Cs  ‐.13  Cs  ‐.04  A  ‐.17  E  ‐.17 
can  ‐.24  can  ‐.22  can  ‐.24  can  ‐.30 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Simulation 1.2. Table 3 illustrates the standardized 
correlations of vector cosines of the four most similar words 
to A under each migration condition. Because the migration 
rule transfers feature information in direct proportion to 
these values, the higher the value of a word, the more 
feature information that word receives from A. The 
important pattern in Table 3 is the reversal of B and D: in 
context space, the syntagmatic relation between A and B is 
much more salient, but in the order space the paradigmatic 
relation between A and D is emphasized. In the overall 
composite space, these relations are mixed (our desired 
blending in full lexical space), but the information required 
for correct feature migration is still implicitly represented.  
 
Table 3. Standardized correlations of vector cosines of the 
four most similar words to A under the context, composite 
and order conditions, Simulation 2. 
 

context  composite  order 
A  3.5  A  3.2  A  3.4 
B  .63  B  .06  D  1.2 
Cs  .55  D  .04  B  .05 
does  ‐.17  Cs  .00  Cs  ‐.03 

  
    Thus, it appears that only the order condition minimizes 
opportunity for illusory feature migrations while preserving 
the appropriate migration to D, which is paradigmatically 
similar to A in this corpus. Furthermore, when feature 
information is added, the separability between context and 
order space is maintained, (allowing features to 
appropriately migrate from A to D) and individual features 
can be successfully retrieved.  

Experiment 2 
The objective of Experiment 2 was to explore whether the 
proposed binding framework continues to yield distributions 
that inhibit illusory feature migrations (i.e., migrations to 
syntagmatically similar words) while facilitating appropriate 
feature migrations to paradigmatically similar words when 
scaled up to a corpus of natural language. We therefore 
designed a version of Experiment 1 trained on a real corpus, 
the TASA corpus of high-school level English text. Two 
simulations were conducted: The first to examine the 
similarity of the decoded context and order spaces to 
paradigmatic and syntagmatic relations, and the second to 
demonstrate feature migrations to category co-ordinates vs. 
non-categorical associates of a target word. Both 
simulations were identical to Experiment 1’s Simulation 2 
in terms of the update rule, the conditions (context, order 
and composite), and the feature migration rule. 
 
Simulation 2.1. For each word, its feature vector featuresw 
was generated by summing the five vectors corresponding 
to the five features from the McRae et al. norms attributed 
to w by the greatest number of participants. As test items, 
we extracted 1075 word pairs from the word association 
norms of Nelson, McEvoy, & Schreiber (1998) for which 
both the first word of the pair (the cue) and the second word 

of the pair (the target) were members of the McRae et al. 
feature norms2. For each pair, we determined the category 
membership of each word, using the categories employed by 
Cree & McRae (2003, Appendix B): weapons, vehicles, 
foods, and so forth. Cree & McRae explicitly list which 
normed words belong in which categories, allowing us to 
code whether the cue was a member of the same conceptual 
category as the target. The 690 pairs in which both words 
shared a category were interpreted as being paradigmatically 
related (e.g., apple-pear), while the 385 paired words not 
sharing a category were interpreted as being syntagmatically 
related (e.g., apple-crab). The fact that two words are 
associates and do not appear in the same category does not 
guarantee syntagmatic similarity nor does it preclude 
phrasal association, however, informal observation suggests 
that many word pairs in the latter condition tend to appear in 
collocations or other classic syntagmatic relationships for 
which feature migration would be inappropriate. Indeed, the 
cosine similarity scores from the McRae et al. (2005) 
feature vectors for the word pairs were significantly higher 
for our paradigmatically related words than for 
syntagmatically related ones, t(1073) = 24.66, p < .001.  

Motivated by the results of Experiment 1, we predicted 
that words sharing paradigmatic relationships would be 
closer in order space than in context space. This pattern of 
results would suggest that attending to order information 
facilitates more feature migrations among paradigmatically 
related words than among syntagmatically related ones, 
while attending to context information does just the 
opposite. For paradigmatically related words, the model’s 
cosine similarities were significantly higher in order space 
than in context space, t(689) = 2.96, p < .01. That is, words 
in paradigmatically related pairs were gauged to be more 
similar to each other in order space than in context space. In 
contrast, for syntagmatically related pairs, the model’s 
cosine similarities were significantly higher in context space 
than in order space, t(384) = 4.371, p < .001. 
 
Simulation 2.2. To briefly demonstrate how illusory feature 
migrations may be corrected by incorporating order 
information, we selected 25 “triples” from Simulation 1, 
each consisting of a target T that existed in the McRae et al. 
norms, a category coordinate CC of T, and a 
syntagmatically related word R that had an associative 
relationship with T but was not a member of the same 
category. An example triple is <T:freezer, CC: refrigerator, 
R:ice>. Freezer and refrigerator each share a common class 
(kitchen appliances); freezer and ice are certainly related as 
well, but not by virtue of a category relationship. Intuitively, 
one would like features to migrate more strongly from T to 
CC than from T to R, given that categories for concrete 
words are defined at least partly on the basis of feature 
overlap. For example, the most popular features of freezer 
are used_for_storage, and has_an_inside, features that are 

                                                             
2 We excluded the 24 concept words that the McRae et al. norms 

explicitly identify as having ambiguous meanings, such as 
“mouse_(animal)” and “mouse_(computer).” 
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much more applicable to kitchen appliances than they are to 
related non-category members (ice, frozen waffles, etc.).  If 
a particular feature migrated more strongly from T to R than 
from T to CC, this was coded as an illusory feature 
migration. Otherwise, it was coded as an appropriate feature 
migration.  

The (incorrect) migration of feature information from T to 
R was much stronger in the context condition than the order 
condition, and the (correct) migration of feature information 
from T to CC was stronger in the order condition than the 
context condition. By our coding scheme, 56% of the triples 
exhibited at least one illusory feature migration in the 
context condition (recall that this means the migration was 
stronger from T to R than it was from T to CC). In contrast, 
only 40% of the triples exhibited at least one illusory feature 
migration in the order condition. Most notable is that all 
illusory feature migrations that took place in the order 
condition also took place in the composite condition, and all 
illusory feature migrations taking place in the composite 
condition also took place in the context condition. In other 
words, some illusory feature migrations that took place in 
the context and composite conditions were avoided in the 
order space. Hence, emphasizing order information by 
unbinding with OI (order space) yielded equal or better 
results for every triple when compared with emphasizing 
context information by unbinding with CI  (context space) or 
not unbinding at all (composite space). Table 4 presents four 
triples that differed by condition as to whether CC or R was 
deemed a better candidate for feature migration from T by 
the model. In each case, a feature migration error was 
committed in the context condition, but was avoided in the 
order condition.  
 
Table 4. Example feature migration errors in context space 
that were corrected in the order space. Cases in which the 
related word was the stronger attractor were considered 
illusory feature migrations. Target word is bold. 
 

Competitor that 
featuresw’ Migrated More 
Strongly To, By Condition 

 
Triple 

 

Features most strongly 
attributed to target by 
participants in McRae  

et al. (2005) context comp order 
 

bottle 
CC: jar 
R: fill 

 

used_for_holding_things 
made_of_glass 

used_for_holding_liquids 
made_of_plastic 

has_a_lid 

 
 

fill 

 
 

jar 

 
 

jar 

 
cat 

CC: mouse 
R: tom 

has_fur 
an_animal 

a_pet 
eats 

has_whiskers 

 
 

tom 

 
 

tom 

 
 

mouse 

 
horse 

CC: cow 
R: saddle 

 

used_by_riding 
is_large 

an_animal 
has_a_mane 

has_legs 

 
 

saddle 

 
 

cow 

 
 

cow 

 
motorcycle 

CC: car 
R: wheels 

 

has_wheels 
has_2_wheels 
is_dangerous 

has_an_engine 
is_fast 

 
 

wheels 

 
 

car 

 
 

car 

General Discussion 
Integration of sensorimotor information is an important next 
step in the development of SSMs. While human-generated 
feature norms are admittedly an intermediary step, it is 
important to understand the cognitive mechanisms that 
humans might use to integrate perception/action and 
linguistic structure to organize meaning in memory for 
when perceptual models (e.g., computer vision) are 
sophisticated enough to directly represent environmental 
information to integrate with linguistic distributional 
structure (see Roy, 2008 for a discussion). 

While early attempts at integrating perception and 
language in SSMs have shown much promise, our work 
here indicates that a model must have a mechanism to 
encode temporal linguistic information to know how 
perceptual information may be generalized in the mental 
space. The binding framework presented here shows the 
basic property of storing all information sources in a 
blended composite space (as is suggested by the literature in 
embodied cognition). However, the model is able to identify 
which components of the composite signal perceptual 
information should be allowed to migrate to. While this 
scheme needs more testing at a large scale, we believe it has 
promise for accounting for a wide range of semantic and 
embodied data, and is a step toward addressing criticisms of 
SSMs being ungrounded.  

Acknowledgements 
This research was supported in part by grants from Google 
Inc. and IBM to MNJ.  

References 
Andrews, M., Vigliocco, G., & Vinson, D. P. (2009). Integrating 

experiential and distributional data to learn semantic representations. 
Psychological Review, 116(3), 463-498. 

Cree, G. S. & McRae, K. (2003). Analyzing the factors underlying the 
structure and computation of the meaning of chipmunk, cherry, chisel, 
cheese, and cello (and many other such concrete nouns). Journal of 
Experimental Psychology: General, 132(2), 163-201. 

de Vega, M., Graesser, A., & Glenberg, A. (2008). Symbols and 
Embodiment: Debates on Meaning and Cognition. New York: Oxford.  

Durda, K., Buchanan, L., & Caron, R. (2009). Grounding co-occurrence: 
Identifying features in a lexical co-occurrence model of semantic 
memory. Behavior Research Methods, 41, 1210-1223. 

Heit, E. (2000). Properties of inductive reasoning. Psychonomic Bulletin & 
Review, 7, 569-592. 

Jones, M. N. & Mewhort, D. J. K. (2007). Representing word meaning and 
order information in a composite holographic lexicon. Psychological 
Review, 114, 1-37. 

Kanerva, P. (2009). Hyperdimensional computing: An introduction to 
computing in distributed representations with high-dimensional random 
vectors. Cognitive Computation, 1, 139-159. 

Levy, S. D., & Gayler, R. W. (2009). A distributed basis for analogical 
mapping. In B. Kokinov, K. Holyoak, & D. Gentner (Eds.), New 
frontiers in analogy research. New Bulgarian University Press. 

McRae, K., Cree, G., Seidenberg, M. S., & McNorgan, C. (2005). Semantic 
feature production norms for a large set of living and nonliving things. 
Behavior Research Methods, 37, 547-559. 

Riordan, B., & Jones, M. N. (in press). Redundancy in perceptual and 
linguistic experience: Comparing feature-based and distributional 
models of semantic representation. Topics in Cognitive Science.  

Roy, D. (2008). A mechanistic model of three facets of meaning. In de 
Vega, Glenberg, and Graesser (Eds.) Symbols and Embodiment.  

Sahlgren, M., Holst, A., & Kanerva, P. (2008). Permutations as a means to 
encode order in word space. Proceedings of Cognitive Science Society. 

882


