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Abstract

What is the role of an individual’s past experience in guiding
gaze in familiar environments? Contemporary models of
search guidance suggest high level scene context is a strong
predictor of where observers search in realistic scenes.
Specific associations also develop between particular places
and object locations. Together, scene context and place-
specific associations bias attention to informative spatial
locations. At the level of eye fixations, it is not known
whether a person’s specific search experience influences
attentional selection. Eye movements are notoriously variable:
people often foveate different places when searching for the
same target in the same scene. Do individual differences in
fixation locations influence how a scene is subsequently
examined? We introduce a method, comparative map
analysis, for analyzing spatial patterns in eye movement data.
Using this method, we quantified the consistency of fixated
locations within the same observer and between observers
during search of real world scenes. Results indicated a
remarkable consistency in the locations fixated by the same
observer across multiple searches of a given scene. This
observer-specific guidance was shown to be distinct from
general scene context information or familiarity with the
scene. Accordingly, this is considered evidence for a uniquely
informative role of an individual’s search experience on
attentional guidance in a familiar scene.
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Introduction

An important feature of ecological visual search is that
there are few truly novel, unfamiliar places in which a
person is likely to search. Many tasks involve examining the
same place repeatedly, such as the various times spent
searching for a specific utensil in one’s own kitchen.
Locating the target in question benefits from both category
based information (e.g. utensils are on countertops) and
place specific information (e.g. in this kitchen, utensils hang
over the stove). For any observer, there will be many
sources of information that guide which scene regions are
inspected during search. What influence does a person’s
own search experience (i.e. fixation locations) have in
guiding where they are likely to look in familiar scenes?

A growing body of evidence suggests that observers use
high level information, such as learned target features and
global scene context, to guide their gaze when searching for
an object in real world environments (Ehinger, Hidalgo-
Sotelo, Torralba, & Oliva, 2009; Hwang, Higgins, Pomplun,
2009). At this level of categorical representation,
knowledge of the basic-level scene category and target

820

features directs gaze to expectation-based scene regions
(Eckstein, Drescher & Shimozaki, 2006; Henderson, 2003;
Torralba, Oliva, Castelhano, & Henderson, 2006). At the
level of scene exemplar representations, spatial context can
also be used to allocate attention preferentially to regions
that have become associated with the target. In contextual
cueing, for example, observers implicitly learn patterns in
repeated displays that help them find a target faster in
repeated configurations (Chun & Jiang, 1998). It is not well
understood, however, whether a scene exemplar
representation can systematically bias individual fixations.

How can “experience based” influences be distinguished
from the myriad of sources that guide attention to relevant
scene regions? One challenge is that attention is strongly
guided by information that does not depend on specific
experience. Figure 1 illustrates regularities in eye fixations
across and within observers. In Figure 1A, fixations from 9
observers searching for a book are shown; the high fixation
density along countertop surfaces illustrates how spatial
layout and context guide where observers look. Systematic
biases unrelated to the scene’s content also influence gaze
location. In Figure 1B, fixations sampled from random
scenes have been projected onto the kitchen scene. Center
bias in the fixation distribution is driven by oculomotor
tendencies (Tatler, 2007; Tatler & Vincent, 2009) and
photographer bias. A second challenge, of the opposing
nature, lies in the significant variability in fixation locations
across individuals. As a result, two independent observers
may fixate different scene regions, even when looking for
the same object in the same scene (Figure 1C). It is possible
that individuals are biased by experience, but that the effects
are masked by pooling over experienced observers. Given
initial differences in search patterns, could systematic
differences arise when an observer repeats her search of the
scene? To reasonably estimate the influence of past
experience, the search patterns of observers who have never
viewed the scene must be contrasted with different
observers who have previously searched the scene.

In this paper, eye movement data from a visual search
study was analyzed using approach we have termed
comparative map analysis. This analysis was used to
evaluate how different sources of information contribute to
attentional guidance during visual search of familiar scenes.
In our experiment, observers’ eyes were tracked while they
looked for a book in pictures of real world scenes. On some
trials, observers searched a scene that had been presented
previously. Importantly, the target object and location
remained unchanged in each presentation of the scene. The



main question was whether a person’s past experience (as
measured by fixated locations) biases attentional selection
when searching a familiar scene. Using comparative map
analysis, we show that visual attention is sensitive to the
influence of a person’s past experience of searching in
familiar scenes.

Figure 1: Regularities in eye movements while searching for
books. (A) Fixations from 9 observers searching for a book
in this kitchen (green dots). Context and spatial layout
constraints guide search (e.g. high density along countertop
surfaces in the foreground and background. (B) Fixations
sampled from random scenes and projected onto this scene
(pink dots). Oculomotor and photographer bias contribute to
a roughly central fixation distribution with sparse fixations
in the image periphery. (C) Fixations from 2 observers who
repeatedly searched this kitchen. Each row shows fixations
from: the observer’s first search (Left, red dots), and the
next 7 search trials (Right, blue dots). Individual differences
in fixation patterns are evident, before and after learning.

Comparative Map Analysis

The approach we describe here as comparative map analysis
is used to evaluate how well different distributions of
fixations predict where observers will look in a scene.
Critically, each fixation distribution is sampled from a
different, strategically chosen, population of fixations. The
resulting distributions are evaluated in regards to how well
they distinguish between fixated and unfixated locations. In
the present paper, this analysis was used to determine
whether an observer’s experience plays a significant role in
attentional selection during search.
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Logic of the approach. Given the challenges outlined in the
introduction, how can we isolate the bias resulting from an
individual’s experience searching a specific scene? The
solution lies in strategically identifying fixation populations
relevant to the question of interest. One population, for
example, includes the locations fixated by novel searchers in
a given scene. A second population includes the locations
fixated by a single observer when the same scene was
repeatedly searched. While the first population represents
the influence of (general) scene context on search, the
second population reflects the specific influence of the
observer’s own examination of the scene. Fixation maps
were created for each population and used to predict fixation
locations from a separate trial. If the two populations are
equally informative, then there will be no significant
difference in the accuracy between the predictions. The
logic is analogous to established methods for determining
whether fixated and control locations can be discriminated
(e.g. Parkhurst & Niebur, 2003; Tatler, Baddeley, and
Gilchrist, 2005). In those studies, the two distributions
represent measurements of a dependent variable (e.g. visual
feature content) at fixated versus unfixated locations. If the
dependent variable successfully discriminates between these
locations, then it is considered to inform fixation selection.
Control distributions, it should be noted, can be constructed
in several ways. Recent studies of attentional guidance have
constructed control distributions by randomly sampling
fixations from other populations (e.g. Ehinger et al, 2009;
Tatler et al, 2005; Tatler & Vincent, 2009). Comparative
map analysis extends this rationale by defining several
control populations that vary with respect to the degree of
“person,” “place,” and “past” information represented.

Broadly, we consider three scene dependent populations
representing scene regions empirically fixated by observers
when searching that specific scene: (1) Fixations made by a
single observer’s repeated searches, (2) Fixations of other
observers who searched the scene repeatedly; (3) Fixations
of novel observers (i.e. searched the scene once).
Importantly, these populations represent slightly different
sources of information: self-consistency, scene familiarity
and general scene context, respectively.

Control populations are crucial to assess the relative
informativeness of other regularities (e.g. oculomotor
biases) in predicting the same eye movements. These scene
independent populations provide controls for different
sources of information: (4) Fixations from the same
observer on random scenes, (5) Fixations from different
observers on random scenes. These populations reflect
spatial biases in oculomotor behavior that manifest across
the set of scenes (intra-observer and inter-observer biases
respectively). Two simple model-based populations (as
opposed to sampling from empirical fixations) serve as
controls to evaluate the extent to which a central gaussian
distribution (6) and uniform distribution (7) predicted
observers’ fixations. The uniform distribution serves as the
true measure of chance, while the widely recognized central
fixation bias in human eye movements (Tatler, 2007)



suggest that a central gaussian distribution may predict
fixations above chance level.

Building fixation maps. Fixation maps were created for
each of the above populations using the following
procedure, shown schematically in Figure 2. First, we
collected a list of the locations fixated by one observer in all
repeated searches of a scene; trials in which the eye was lost
or the observer failed to find the target object were not
included. For each repeated search trial R, a self-consistency
fixation map (1) was built by excluding fixations from one
search trial and using the remaining N fixations to define a
prediction map. Next, the other fixation maps were created
by sampling N times from the appropriate population of
empirical fixations (2-5) or statistical model (6-7). This
process was iterated for R repeated search trials, and the
resulting fixation maps were used to predict the excluded
trial’s fixations (probe fixations).
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Figure 2: Schematic of comparative map analysis. This
illustrates the source of fixation populations (1-5) and how
they are sampled to create fixation maps that represent
several influences on eye guidance. The following steps are
performed iteratively for each of R trials: select one search
trial (i.e. first 3 fixations of one trial) from Fg ; use the
remaining N fixations to create a prediction map for intra-
observer similarity. Fixation maps for populations (2-5) are
created by sampling N times from the corresponding
distributions. Red (familiar observers) and blue (novel)
outlines represent scene dependent populations. Dashed
outlines indicate non-self fixation populations.

In the present analysis, the first 3 search fixations in each
search trial were used to build the fixation maps. Search
fixations are defined as fixations made during active
exploration of the scene, thus excluding fixations landing on
the target and the initial central fixation. The maps were
compared in terms of how well they predicted the first 3
search fixations of the excluded trial. Given past findings
that the consistency of fixation locations across observers
decreases over time (Mannan, Ruddock, Wooding, 1997;
Yarbus, 1967), we used the first 3 search fixations because
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it represented a time window appropriate for capturing the
highest consistency across novel and repeated conditions.

Evaluating fixation maps. We used the Receiver Operator
Characteristic to evaluate how well fixated and unfixated
locations could be discriminated. The ROC curve is a
common signal detection technique that represents the
proportion of real fixations falling within a fixation map
(detection rate) in relation to the proportion of the image
area selected (false alarm rate) (e.g. Ehinger et al, 2009;
Renninger, Verghese, & Coughlan 2007; Tatler et al, 2005).
The area under the curve or AUC area (Green & Swets,
1966) was used to compare differences in prediction maps.

Search Experiment

In this experiment, observers searched for a book in indoor
scenes (e.g. kitchens, bedrooms) while their eye movements
were recorded. The original goal of this study was to
investigate how time influenced the retrieval and use of
scene specific associations to guide search in realistic
scenes. We examined this by introducing a variable stimulus
onset asynchrony (SOA) between the scene onset (observers
fixating centrally) and the initial search fixation on the
scene. We predicted that there would be an interaction
between scene familiarity and SOA, such that longer delays
would predict shorter search times on familiar, but not
novel, scenes. For the present analysis, the eye movements
collected from this study were collapsed across the retrieval-
time manipulation since this variable was tested using a
within-subject design.

Participants. Eighteen observers, ages 18-34, with normal
acuity gave informed consent, passed an eyetracking
calibration test, and were paid $15/hr for their participation.
Materials. Eye movements were collected using an ISCAN
RK-464 video-based eyetracker with a sampling rate of 240
Hz. The stimuli were high resolution color photographs of
indoor scenes presented on a 15” LCD monitor with a
resolution of 1280 x 1024 px and refresh rate of 60 Hz. The
original images were cropped and resized to be presented at
a resolution of 1024 x 768 px, subtending 30 x 20 deg of
visual angle. Presentation of the stimuli was controlled with
Matlab and Psychophysics Toolbox (Brainard, 1997; Pelli,
1997). The target prevalence in the stimuli set was 100%: all
scenes contained a target and, importantly, the target
location never changed in a particular scene. To make the
task challenging, book targets were small (from 1 to 2°) and
spatially distributed across the image periphery.

Procedure. The experiment consisted of a learning phase
followed by a probe phase. In the learning phase, observers
learned associations between specific scenes and a book’s
location in each scene. In the probe phase, observers
searched following a variable SOA (200, 400, 800, or 1600
ms) on a novel or familiar scene. In both phases, observers
freely explored the scene with their eyes. Each phase was
comprised of 4 search blocks: 24 repeated search trials and
8 novel search trials presented randomly in each block.
Scenes were counterbalanced across observers with respect



to the novel or repeated conditions. The trial sequence,
similar in learning and probe phases, is as follows.
Observers fixated a central fixation cross for 500 ms to
begin the trial (gaze contingent). First, a scene was
presented with a fixation cross superimposed over the scene;
observers fixated the central cross for the duration of this
interval without saccading away otherwise the trial ended.
In the test phase, this was followed by a variable SOA on a
gray screen. Finally, the same scene was presented again
and observers actively explored the scene to find the book.
Observers had a maximum of 8 s to respond via key press
(learning phase) or by fixating the target for 750 ms (probe
phase). Feedback was given after each trial (reaction time
displayed for 750 ms) to encourage observers to search
speedily throughout the experiment. The entire experiment
lasted approximately 50 min.

Eyetracker calibration was critical for the gaze contingent
aspects of the procedure, as well as to ensure accurate
dependent measures (fixation locations). For this reason,
calibration was checked at 9 locations evenly distributed
across the screen after each search block; fixation position
had to be within 0.75° of visual angle for all points, the
experiment halted and the observer was recalibrated.

Eye movement analysis. Fixations were identified on
smoothed eye position data, averaging the raw data over a
moving window of eight data points (33 ms). Beginning and
end positions of saccades were detected using an algorithm
implementing an acceleration criterion (Araujo, Kowler, &
Pavel, 2001). Specifically, the velocity was calculated for
two overlapping 17 ms intervals; the onset of the second
interval was 4.17 ms after the first. The acceleration
threshold was a velocity change of 6 deg/s between the two
intervals. Saccade onset was defined as the time when
acceleration exceeded threshold and the saccade terminated
when acceleration dropped below threshold. Fixations were
defined as the periods between saccades. Saccades within 50
ms of each other were considered continuous.

Comparative map analysis. Forty eight scenes were
searched by equal numbers of participants in the novel and
repeated conditions. Search trials in the learning and probe
phases, excluding block 1, were combined to yield a
maximum of 7 repeated trials for each observer. The
following experiment conditions correspond to each
population: (1) One observer’s repeated searches of a
familiar scene, (2) Other observers’ repeated searches of the
same familiar scene. (3) Different observers’ novel search of
the same scene. (4) Any scene searched by the same
observer. (5) Any scene searched by other novel observers.

Results

The results of comparative map analysis are shown in
Figure 3. Our main finding is the evidence of experience
based influences on attentional selection, specifically during
the first 3 search fixations in a scene. An identical pattern of
results was found when using only the first search fixation.
We first report the results from the populations based on
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scene dependent information (Feit, Faroups Frover), followed
by the scene independent control populations.

Role of the person

The role of a person’s own search experience was evaluated
by using the locations of their own fixations (F) to predict
empirical fixations from the same observer on a separate
search of the same image. We found that this population
provided the most accurate predictions (mean AUC=0.907)
relative to the other scene dependent populations Foy,
(1(94)=5.41, p < 0.001) and F,q. (#(94)=6.57, p < 0.001),
and was significantly higher than control populations.
Interestingly, observer’s own population of fixations
resulted in the most consistently accurate predictions across
the set of images, as evident in the boxplot of figure 3.
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Figure 3: Results of comparative map analysis on eye
movement data from the book search experiment.
Distributions shown in the boxplot show the median (red
line), upper and lower quartile values (box), and outliers.

Is this influence in fact due to a person’s specific search
experience? Perhaps the experience of the individual is not
unique from the experience of the group. This is a
reasonable hypothesis, given that all observers have the
same opportunity to learn the association between the
scene’s identity and the location of a book. To examine this
hypothesis, we compare Fyr and Froyp.



Role of the past

The role of past experience was evaluated using the fixation
locations from other observers who searched the same scene
repeatedly (Fgoup). Interestingly, there was no significant
difference between the prediction accuracy of this group
and a group of novel observers (mean AUCs of 0.859 and
0.827, respectively; #(94)=1.97). This suggests that sampling
from many individuals with past experience is not
significantly more informative than sampling from the
population of novel observers.

Role of the place

The role of the place is perhaps the most intuitive source of
information: it represents how scene context drives
consistency in fixation locations across different novel
observers. We found that F,,, provided a significant source
of guidance relative to the random scene control Fgeee
(#(94)=11.7, p < 0.001). Our finding confirms previous
reports of overall high inter-observer consistency in search
tasks (Ehinger et al, 2009; Torralba et al, 2006).

Scene Independent Control Populations

Two control populations were based on empirical fixations
sampled from different scenes: Fp,, (same observer as Fy)
and Fy., (different observers). These populations predicted
fixations well above chance with mean AUCs of 0.669 and
0.666 respectively and were not significantly different from
one another (#(94)=0.11). The overlap in these distributions
is not surprising given that these populations reflect
systematic oculomotor tendencies and regularities in the
stimuli set (e.g. photographer bias). The two model
distributions, central gaussian and uniform, were used to
compare with the other populations and confirm intuitions
about the results of comparative map analysis. Indeed, the
central gaussian model was a better predictor of fixations
than the uniform distribution (#94)=2.7, p < 0.05).

Discussion

We have shown that the past repeats itself: a person’s
experience, as indexed by fixated scene locations, influences
how they search familiar scenes. Although the notion of
idiosyncratic gaze patterns has been previously presented
(Noton & Stark, 1971), to the best of our knowledge, this is
the first time observer-specific experience has been shown
to influence gaze patterns in a naturalistic search task. What
is the nature of the information that underlies this self-
consistency effect? Is it behaviorally relevant or an
incidental consequence of scene exposure? Is the encoded
information object-based or spatially-based? How does self-
consistency interact with other well characterized forms of
search guidance (e.g. saliency)?

In order to refine our understanding of why intra-observer
consistency occurs, it would be helpful to examine patterns
across observers and scenes. Are certain scenes searched
more consistently than others? This question can be
approached in two ways. From the perspective of general
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scene context constraints, scenes vary in the distribution of
target-probable surfaces they contain. Looking for books in
a library, for example, may present a significantly less
constrained search than searching a bathroom. Still, the
boxplot in figure 3 suggests the scenes are variable with
respect to how consistently similar regions are selected by
different viewers. From the perspective of person specific
constraints, what is the relation between inter-observer and
intra-observer consistency? One possibility is that scenes
searched consistently by novel observers also promote self-
consistency among a large proportion of familiar observers.
Alternatively, high variability in intra-observer consistency
(i.e. high Fself variance) may negatively correlate with inter-
observer consistency. Identifying properties of the scene and
task that promote self-consistency across searches remains
an open question.

In the ecological psychology tradition (e.g. Gibson,
1979), our findings also raise questions about the behavioral
significance of self-consistency. Are some observers more
self-consistent than others? If so, what are the implications
for the search task? One hypothesis is that high self-
consistency may be associated with good search
performance (e.g. fast overall reaction time). Indeed, a
widely recognized feature of human memory relates to the
benefit of reinstating the encoding context in retrieval
(Jacoby & Craik, 1979; Tulving & Thomson, 1973).
Furthermore, embodied cognition accounts suggest that a
person’s own movements may play a role in perceptual and
cognitive performance (e.g. Knoblich & Flach, 2001). When
imagining a previously viewed stimulus, for example,
observers tend to make reenact patterns of eye movements
from the initial viewing (Brandt & Stark, 1997; Laeng &
Teodorescu, 2002; Spivey et al, 2001).

It is important to note the role of our task in driving
similar patterns of viewing across observers. A number of
recent studies have sought to predict where observers will
look in naturalistic scenes. Many of these studies, however,
deliberately employ free viewing (e.g. Bruce & Tsotsos,
2006; Itti & Koch, 2000) or a memory task (e.g. Foulsham
& Underwood, 2008) so as to reduce the influence of having
a common goal. Theories of visual search guidance (e.g.
Wolfe, 1994) describe observers’ deployment of attention as
resulting from a combination of stimulus and goal driven
factors. Seeing how the magnitude of self-similarity varies
across tasks can serve as another approach to assessing the
behavioral significance of intra-observer consistency.
Recognition memory tasks, in particular, provide an
opportunity to investigate the causal role of re-fixations in
scene recognition. Holm & Mantyla (2007) used a
remember/know paradigm to evaluate whether successful
recognition was associated with similarity between an
observer’s fixations during study and test phases. Indeed,
they found evidence that recollection (“remember”
responses) were related to a high degree of study-test
consistency. Recently, Underwood and colleagues (2009)
investigated the roles of domain knowledge and visual
saliency on fixation consistency in scene recognition. Their



findings again support the idea that observers look at scene
locations that have been previously fixated and,
interestingly, that the effect is stronger for individuals who
were experts in the domain related to the picture.

Our experiment shows that observers have access to
perceptual and memory based information that helps them
locate the book in a familiar scene. What is the nature of this
information? Two possibilities are that observers encoded
the oculomotor movements to spatial locations (e.g. left
side of the screen) or the objects (e.g. empty bookshelf) that
were attended on the way to finding the target. One way to
distinguish these possibilities would be compare the
resulting search patterns when an observer initiates search
from a familiar (e.g. center of the scene) or an unfamiliar
location and comparing whether similar objects or locations
were still fixated. Moreover, the speed of human eye
movements (roughly 3-4 per second) suggests an automatic
component to self-consistency that may not be available to
conscious awareness. Although our experiment cannot
speak to this issue directly, we found the same pattern of
results shown in figure 3 using only observer’s first fixation
on the scene. This suggests that the information underlying
self-consistency is rapidly available to bias eye movements.

Conclusion

Comparative map analysis, a novel approach for analyzing
patterns in eye movement data, was used to evaluate the role
of various sources of search guidance. We found evidence
from a search study showing a uniquely informative role of
an individual’s experience on attentional guidance in a
familiar scene
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