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Abstract

We present a connectionist model of concept learning that
integrates prototype and exemplar effects and reconciles
apparently conflicting findings on the development of these
effects. Using sibling-descendant  cascade-correlation
networks, we found that prototype effects were more
prominent at the beginning of training and decreased with
further training. In contrast, exemplar effects steadily
increased with learning. Both kinds of effects were also
influenced by category structure.  Well-differentiated
categories encouraged prototype abstraction while poorly
structured categories promoted example memorization.

Keywords: exemplar memorization; prototype abstraction;
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I ntroduction

One of the most fundamental ahilities is learning to group
things into categories. This faculty allows us to classify new
examples and make useful predictions concerning their
properties. Two general classes of models have been
proposed to account for phenomena in concept learning:
prototype and exemplar models. Prototype models claim
that experience with items that belong to a given category
results in the formation of a summary representation of al
the items observed (Posner & Keele, 1968; Reed, 1972).
Subsequent categorization of a new item is then based on a
comparison between the prototype and the new item. Thus,
the more similar a particular instance is to the abstracted
prototype, the more likely it is to be classified as a category
member (Homa & Cultice, 1984; Homa, Sterling, & Trepel,
1981). In contrast, exemplar models claim that all the
observed items are remembered and that the categorization
of a new item involves a comparison with items that are
stored in memory (Hintzman, 1986).

There is ample evidence in favor of both prototype
(Homa, et al., 1981; Posner & Keele, 1968) and exemplar
models (Medin & Schaffer, 1978; Pameri & Nosofsky,
2001), suggesting that both processes are used during
category learning. What is more, the relative contribution of
each mechanism to categorization might vary across
development, as well as during training on a novel task.
Early in development, categorization seems to be based on
prototype representations while exemplar representations
seem to increase with age (Hayes & Taplin, 1993; Mervis &
Pani, 1980). There is also evidence that people are more
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likely to rely on prototypes at the beginning of a
categorization task, and as training progresses they rely
more on memorized exemplars (Horst, Oakes, & Madole,
2005; Minda & Smith, 2001; Smith & Minda, 1998). These
studies are consistent with a shift from early prototype use
to later exemplar memorization.

In addition to the amount of experience with a
categorization task, category structure also influences which
type of information is most used. Better-structured
categories can be represented as separate clusters in
psychological space, whereas poorly structured categories
overlap with each other (Figure 1). Smith and Minda found
that better structured categories encourage the early
prototype formation, while poorly structured categories
discourage it, and may even strongly disadvantage the use
of prototypes (Smith & Minda, 1998). Their findings are
consistent with a number of other studies (Homa, et al.,
1981; Horst, et al., 2005; Reed, 1978).
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Figure 1: Hypothetical representations of three concepts. P1,
P2 and P3 represent three prototypes and the circles
represent examples of each concept. A: prototypes are
relatively far from each other and examples are tightly
clustered around their respective prototype, yielding
concepts that are easy to distinguish. B: prototypes are close
to each other and examples are more widely dispersed
around their respective prototype, resulting in overlapping
concepts that are difficult to distinguish.

The aim of this paper is to present a unified model able to
simulate prototype and exemplar processes during concept
learning. This unified model captures prototype and



exemplar effects with the same mechanism, as opposed to
implementing two separate processes. We intend to
demonstrate that it is possible for a unified mechanism to
capture prototype and exemplar processes to different
degrees depending on category structure and amount of
training. We present here simulations with sibling-
descendant cascade-correlation (SDCC) networks (Baluja &
Fahlman, 1994), which offer several demonstrated
advantages including automatic network construction, rapid
and strong learning, and psychological and neurological
plausibility (Shultz, 2003, 2006; Shultz, Mysore, & Quartz,
2007; Shultz, Thivierge, & Laurin, 2008). At the start,
SDCC networks are composed of only input and output
units. During training, examples were presented to the
networks as specific activation patterns in the input layer. In
encoder fashion, the networks gradualy learned to
reproduce this pattern on the output layer by changing the
strength of the connections between the units and by
recruiting and organizing new hidden units as needed.

In such networks, a relatively small number of units can
store a large number of representations, with each
representation being a specific pattern of activation across
the units. These representations are relatively distributed, as
opposed to being localized in single units. Because of its
distributed nature, a network is likely to represent similar
items as similar patterns of activations on the hidden units.
The connection weights between the units reflect all trained
items; thus, they represent something similar to a prototype,
or an average of the trained concepts. Even if the networks
are never presented with the category prototype, they are
likely to falsely recognize it because it is so similar to many
of the trained items. In addition, because the networks retain
some specific information about the trained items, they
show a familiarity effect when presented with old items,
which istypical of exemplar models (Shultz, et al., 2008).

The networks exhibit a prototype effect if they perform
better when presented with examples that are similar to the
hypothetical prototype (typical examples) than when they
are presented with examples that are less similar to the
prototype (atypical examples). We also tested whether the
networks memorized some of the features of the trained
examples. If our networks become more familiar with the
trained examples and perform better when presented with
old rather than new examples, regardless of distance from
the prototype, then they reveal an exemplar effect.

We studied the impact of category structure and amount
of training on prototype and exemplar effects. We
manipulated category structure by changing the similarity
between the prototypes of the trained categories and the
similarity between each example and its prototype. Better-
structured categories have more dissimilar prototypes and
examples that are more similar to the prototype of their
category (in other words, examples that are more tightly
clustered around their prototype). To study the impact of
training experience, networks were presented with varying
numbers of training trials.
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Method

As in past work (Shultz, et al., 2008), we trained SDCC
networks in encoder mode. Encoder networks learn to
encode the input signal onto the hidden units, and then
decode that hidden unit signal back onto the output units.
Because error is computed as the sum-squared difference
between input and output activations, this can be construed
as self-supervised learning, without an externally-provided
category name as target output. This type of learning occurs
when people are not given information about category
membership; hence, they can freely create concepts based
on their observation of the examples (Homa & Cultice,
1984). In contrast, learning with category labels is much
simpler and quicker. In typical encoder fashion, there were
no input-output connections in our networks because such
connections would have made the learning too simple.

Also as in Shultz et al. (2008), we trained the networks
with examples belonging to four concepts. Each example
varied on ten binary dimensions. A prototype was first
constructed by randomly assigning values of 0.5 or -0.5 to
each dimension. We refer to it as the prototype of the loner
concept because it was relatively isolated from the other
three concepts. Another 10-dimensional vector orthogonal
to the first one was randomly selected (the normalized inner
product between these two vectors was zero). From this
orthogonal vector, three prototypes were created by
randomly flipping one, two or four values. Flipping a value
means reversing its sign. These three prototypes were much
closer to each other in the 10-dimensional space than to the
loner vector. We refer to them as the trio.

Nineteen examples were created from each prototype by
flipping one or several values depending on the condition.
Fifteen of these examples were used for training the
networks, while four were used only during the test. Out of
the fifteen trained examples, ten were closer to the prototype
than the other five, i.e. they were created by flipping fewer
values. We refer to the examples that were created through
fewer flips as the close examples, and to the other ones as
the far examples.

For each of the four concept prototypes, we manufactured
examples by flipping 1, 2, 4, or 8 values of the prototype,
randomly selected without replacement, depending on
condition and subject to three additional constraints: (a)
each example had a unique combination of features to flip,
ensuring example uniqueness, (b) each feature was flipped
in at least one example, and (c) no feature was flipped in
every example. This last constraint ensured that no defining
features were inadvertently created.

Out of the four examples that were used only during the
test, two were close and two were far from the prototype.
The networks were also tested on four of the trained
examples, two that were randomly selected from the close
examples, and the other two, from the far examples. Thus,
testing consisted of presenting the networks with eight
examples: two close trained examples, two far trained
examples, two close test examples, and two far test
examples. An exemplar effect is established if the networks



perform better on the trained examples than on the new test
examples. Superior performance on the close examples
versus the far ones demonstrates a prototype effect.

We manipulated the structure of the categories, which
was determined by two factors. First, the number of flips
that were applied to the vector orthogonal to the loner to
create the trio was varied. Applying fewer flips means that
the three concepts are closer to each other, while performing
more flips means that the concepts are more distinct from
one another. Second, we varied the number of flips applied
to the loner and the trio to create examples. Fewer flips
indicate that the examples are more tightly clustered around
their prototype, while more flips imply a more dispersed
distribution of the examples. These two manipulations affect
the overall distinctiveness of the concepts. The concepts are
more separate from one another with more prototype flips
and fewer example flips.

Three levels of category structure were defined. The
number of flips applied to the vector orthogonal to the loner
to create the trio was 4 (Condition Easy), 2 (Condition
Intermediate), or 1 (Condition Difficult). The number of
flips applied to each prototype to create the close examples
was 1 (Condition Easy), 2 (Condition Intermediate), or 4
(Condition Difficult). Finally, the number of flips applied to
each prototype to create the far examples was 2 (Condition
Easy), 4 (Condition Intermediate), or 8 (Condition
Difficult).

The three conditions may be conceptualized as three
levels of difficulty of a categorization task. Condition Easy
was the easiest task because the examples were tightly
distributed around their prototype and the concepts were
well-differentiated. Condition Difficult was the hardest task
because the examples were widely dispersed around their
prototype and the concepts overlapped. Condition
Intermediate was an easier task than Condition Difficult, but
harder than Condition Easy. The concepts overlapped less
than in Condition Difficult, but they were not as well
differentiated asin Condition Easy.

To study the influence of training experience, the
networks were trained for different numbers of epochs,
varying from 5 to 700. An epoch is a training period during
which a network is exposed to al trained examples once in
random order. The networks were trained for 5, 10, 25, 50,
75, 100, 200, 300, 400 or 700 epochs. Twenty networks
were trained for each number of epochs in each of the three
conditions, for atotal of 600 networks.

Results

We reserve a detailed discussion of all our findings for a
longer paper and we describe here only some of the most
important results. We chose network error as the dependent
measure, error being defined as the sum of the squared
differences between inputs and outputs. Because network
error is the difference between the input and output patterns,
it reflects familiarization with the examples — how well the
networks recognize the examples. Thus, lower network error
indicates a higher level of familiarization with the examples.
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As training progressed, the mean network error decreased
in al three conditions, reflecting the networks increased
familiarity with the examples. At the end of training, the
mean error for the trained examples approached zero. The
mean error for the new test examples was higher than the
error for the trained examples, athough it had decreased
considerably during training. This indicates that the
networks learned the trained examples very well, and at the
same time generalized their acquired knowledge to the test
examples never seen in training..

The most central findings of the simulations areillustrated
in Figures 2 and 3. The figures show the prototype and
exemplar effects in each condition as a function of the
number of epochs.

Figure 2 shows the prototype effect calculated separately
for the trained and for the new test examples. We calculated
the prototype effect for each network by subtracting the
mean error for the close examples from the mean error of
the far examples. Thus, the prototype effect on the trained
examples is the difference between the error for the far-train
examples and the close-train examples. The prototype effect
on the test examples is the error difference between the far-
test and the closetest examples. A positive difference
indicates a prototype effect, that is, smaller error for the
examples that are more similar to the prototype.

Figure 3 illustrates the exemplar effect calculated
separately for the far and the close examples. We calculated
the exemplar effect by subtracting the mean error for the
train examples from the mean error of the test examples.
The exemplar effect on the close examples is the error
difference between the closetest and the close-train
examples. The exemplar effect on the far examples is the
error difference between the far-test and the far-train
examples. A positive difference indicates an exemplar
memorization effect, which means that the error is smaller
for the trained examples than for the test ones; or, in other
words, that the networks are more familiar with examples
that have already been encountered than with novel
examples.

We performed an ANOV A on the error differences shown
in Figure 2 with the within-network factor Train vs. Test
Examples and the between-network factors Number of
Epochs and Condition. We performed a similar ANOVA on
the error differences shown in Figure 3. All main effects and
interactions were reliable in both analyses, minimum F(9,
570) = 4.54, p < .001. We analyzed these effects separately
for each condition, and found that all main effects and
interactions were significant, minimum F(9, 190) = 2.49, p
= .010, except the main effect of Epoch in Condition
Difficult in Figure 2, F < 1. Hence, we describe the results
without referring to more detailed statistical tests because all
the effects we discuss are licensed by these significant main
and interactive effects.

Category Structure

The difficulty of the task had a sizeable impact on the
prototype effect (Figure 2). The prototype effect was quite



large in Condition Easy and somewhat smaller in Condition
Intermediate. This effect was reversed in Condition Difficult
as demonstrated by the negative difference scores;
networks error was higher for the close examples than for
the far ones. The close examples in Condition Difficult
shared a high degree of similarity, causing the networks to
easily confuse them with each other. Thus, examples that

Condition Easy

Condition Intermediate

shared a high degree of similarity with their prototype no
longer had an advantage over ones that did not. This finding
is consistent with Smith and Minda’'s (1998) psychological
results. They found a reversed prototype effect with poorly
structured categories. Thus, the prototype effect diminished
and even reversed as the difficulty of the task increased.
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Figure 2: Prototype effect on the trained and the new test examples.
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Figure 3: Exemplar effect on the examples that were close and those that were far from the prototype.

In contrast, the exemplar effect increased with the
difficulty of the task (Figure 3), which is also consistent
with psychological data (Minda & Smith, 2001; Smith &
Minda, 1998). The networks relied more on exemplar
memorization as the task became increasingly difficult and
the prototype representation no longer provided useful
information for discriminating the categories.

Amount of Training

The exemplar effect increased with the number of epochsin
every condition (Figure 3), simulating Smith and Minda's
psychological results (Minda & Smith, 2001; Smith &
Minda, 1998). The prototype effect on the trained examples,
on the other hand, decreased with the number of epochs in
Conditions Easy and Intermediate, but was less affected by
the number of training epochs in Condition Difficult. The
decreasing prototype effect for the trained examples is
consistent with Smith and Minda results with trained
examples. They did not test new examples in their
experiments. Our networks make another novel prediction,
namely that the prototype effect should increase with
training for new test examples, especialy if the
categorization task is easy (left panel of Figure 2).
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Networks became increasingly familiar with trained
examples because they could memorize them. As training
progressed, networks' recognition of trained examples relied
more on individual memories, and less on their similarity to
the prototype (just as with Smith and Minda). In contrast,
novel examples had not been memorized. Hence,
recognition of novel examples relied solely on their
similarity to the prototype, and this prototype effect
increased during training presumably because the prototype
representation became increasingly well-defined.

I nteraction Between Exemplar and Prototype
Effects

The prototype effect was greater for new test examples than
for old, trained ones (Figure 2). This finding seems realistic
because only the trained examples could be memorized.
Furthermore, the exemplar effect was stronger on the far
examples than on the close examples in Conditions Easy
and Intermediate (Figure 3, left and middle panels). Features
of atypical instances were better remembered than those of
typical instances. This presumably occurred because there
was less interference between the memories of the atypical
examples than between the similar memories of the typical
examples. This is consistent with Light, Kayra-Stuart and



Hollander’s (1979) finding that adults' recognition memory
is better for atypical rather than typical faces. Similar results
were found by Going and Read (1974) and Cohen and Carr
(1975).

In Condition Difficult (right panel of Figure 3), however,
the exemplar effect was larger on the close examples than
on the far ones. The close examples were disadvantaged by
their similarity to their prototype (because of the overlap
between the categories); hence, these examples may have
been the ones that benefited most from exemplar
memorization. Reitman and Bower (1973) reported asimilar
effect with adult participants who were trained on an easy or
a difficult categorization task. Following training,
participants were given arecognition test. The results for the
easy task were similar to Light et al.’s (1979) psychological
results and our simulations in Conditions Easy and
Intermediate: recognition performance was better for
atypical examples. In contrast, their results for the difficult
task were reversed: recognition performance was better for
typica examples, matching our simulations in Condition
Difficult.

Thus, prototype and exemplar effects seem to
complement each other, each process having a stronger
influence on the exampl es that are not favored by the other.

Discussion
We demonstrated that a unified model can capture both
prototype and exemplar effects. The networks abstracted
concept prototypes and at the same time remembered some
features of the trained examples.

Networks also successfully simulated the prototype-to-
exemplar trend as the learning task increased in difficulty
(Minda & Smith, 2001; Smith & Minda, 1998). Our
networks also showed an increase in the size of the
exemplar effect from Condition Easy to Condition Difficult,
as the concepts became more poorly structured. At the same
time, the prototype effect substantially decreased and even
reversed as difficulty level increased. For better-structured
concepts (Conditions Easy and Intermediate), the exemplar
effect was greater farther away from the prototype; for
poorly structured concepts (Condition Difficult), the
exemplar effect was greater closer to the prototype. As we
mentioned earlier, this is consistent with a number of
psychological studies.

The networks also exhibited a shift from prototype use to
exemplar memorization during training. We observed an
increase in the exemplar effect and a decrease in the
prototype effect on the trained examples. Better
memorization with more training makes perfect sense, as
memorization depends on the amount of experience. A
possible reason for the decrease in the use of prototype
information for the trained examples is that it is less needed
as the examples are better remembered. This is consistent
with psychological studies reviewed earlier (Hayes &
Taplin, 1993; Horgt, et al., 2005; Mervis & Pani, 1980;
Minda & Smith, 2001; Smith & Minda, 1998).
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Other studies, however, reported that exemplar
information is used earlier in development, and the ability to
abstract a prototype emerges later (Fisher & Sloutsky, 2005;
Sloutsky & Fisher, 2004; Tighe, Tighe, & Schechter, 1975).
Fisher and Sloutsky (2005), for instance, found that younger
children’s memory for trained items was significantly better
than that of older children and adults, suggesting that the
latter relied more on an average prototype representation.

It is important to note a key difference with these studies.
The studies finding an exemplar-to-prototype shift used
concepts with defining features, while those that found a
prototype-to-exemplar shift did not (and neither did our
simulations). Defining features are present in all examples
that belong to a category, and only in those, allowing perfect
categorization performance. For example, Tighe et al.
(1975) used a word classification task in which names of
animals belonged to one category, while body parts
belonged to another. Following this classification task,
adults were less likely to correctly recognize a previously
encountered example than children. Tighe et al. proposed
that adult participants used the defining feature as an
encoding device and learned less about the other features of
the words. In contrast, children are less likely to use
defining features (Keil & Batterman, 1984), which may
result in better memorization of the probabilistic features.

Interestingly, Shultz et al. (2008) successfully simulated
this shift from probabilistic feature learning to the use of
defining features using the same kind of networks presented
here. To test the hypothesis that defining features affect
exemplar memorization in the present work, we repeated the
simulations for Condition Intermediate, but added two
defining features to each example. Although exemplar
memorization did not decrease with training (on the
contrary, it increased), overall network error was higher in
the simulations with defining features. These networks were
less familiar with the trained examples than if they had been
trained without defining features. This is consistent with
Tighe et al.’s (1975) finding that adults, who use defining
features more readily than children, exhibit poorer
recognition performance. This explainswhy Tighe et al. and
other researchers who also used defining features (Fisher &
Sloutsky, 2005; Sloutsky & Fisher, 2004) found better
memorization of exemplarsin children than in adults.

To conclude, our simulations further decrease the gap
between the numerous incongruent studies reported in the
literature regarding the development of exemplar and
prototype effects during category learning. Indeed,
considering factors such as the structure of the categories
and the presence of defining features, there is considerable,
unexpected coherence in these mixed results. Most
importantly, we have demonstrated that it is possible for a
single mechanism to capture a gradual shift in concept
processing depending on task difficulty and the amount of
experience.
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