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Abstract 

The effects of orthographic neighborhood density and word 
frequency in visual word recognition were investigated using 
distributional analyses of response latencies in visual lexical 
decision. Main effects of density and frequency were 
observed in mean latencies. Distributional analyses, in 
addition, revealed a density x frequency interaction: for low-
frequency words, density effects were mediated 
predominantly by distributional shifting whereas for high-
frequency words, density effects were absent except at the 
slower RTs, implicating distributional skewing. The present 
findings suggest that density effects in low-frequency words 
reflect processes involved in early lexical access, while the 
effects observed in high-frequency words reflect late 
postlexical checking processes. 

Keywords: Orthographic neighborhood density; word 
frequency; visual lexical decision; distributional analyses 

Introduction 

Word frequency and orthographic neighborhood density 

effects are among the most influential findings in the visual 

word recognition literature. Researchers study word 

recognition using the lexical decision task (LDT) that 

requires lexicality discrimination and decision where 

subjects would classify stimuli as either words or nonwords, 

and the speeded pronunciation (word naming) task that 

involves lexical access but excludes the word/nonword 
discrimination and decision components of the LDT. During 

word naming, subjects would typically be tested 

individually and read the stimuli into a microphone (see 

Andrews, 1997). 

Word frequency effects, where latencies for common 

words are faster than those that are relatively less common, 

have been observed in many LDT studies (see Balota & 

Chumbley, 1990 for a review). In visual word recognition, 

frequency effects have been attributed to changes in 

activation thresholds or baselines. The logogen-style 

activation framework was inaugurated by Morton (1969), 
which assumes that information extracted from the sensory 

representation of the word leads to parallel activation of all 

word units that match that information. When sufficient 

activation has accumulated in a particular word unit, it 

reaches threshold and lexical access occurs. Morton’s 

(1969) initial model was later specified in greater detail by 

McClelland and Rumelhart (1981). Their model, which they 

called the interactive activation model, suggests that 

activation occurs at three levels. Activation of featural units 

feeds to units corresponding to letters, which in turn activate 

the units for words containing these letters. Activity also 

feeds back from the word to the letter level, causing 

reverberating patterns of activity to occur between these 

levels. To ensure that only one word unit eventually obtains 

threshold, McClelland and Rumelhart (1981) also assume 
that inhibition occurs between word units, so that the 

activity level of competing word units is reduced relative to 

the maximally active node. Within the activation 

framework, word frequency is assumed to be reflected in the 

threshold (Morton, 1969) or resting activation level 

(McClelland & Rumelhart, 1981) associated with a 

particular word unit. The critical interpretation is that less 

evidence is required to enable recognition of a high-, than a 

low-, frequency word. 

The findings for orthographic neighborhood density 

effects (N), on the other hand, appear to be more mixed. The 
N metric has been defined by Coltheart, Davelaar, Jonasson, 

and Besner (1977) as the number of close neighbors a word 

has and refers to the number of words that can be created by 

changing a single letter of this target word. For instance, tell 

has many neighbors such as well, yell, sell, teal and tall, 

while once has no neighbors. Neighborhood effects can help 

specify the mechanisms underlying lexical access. The 

implication of the overlap in the features constituting 

different words is that any subset of the features constituting 

a particular word is unlikely to uniquely specify its 

corresponding lexical representation. Neighbors are items 

that are highly confusable with the target word, in the sense 
that they share a large number of their features with the 

target. Thus, it seems inevitable that some or all of the 

neighbors of a target word will be selected by the access 

mechanisms as eligible target candidates. 

Effects of N can be accommodated within activation-

based models of lexical access, and appear to provide 

substantive support for an activation mechanism. If 

presenting a word leads to an activation of all lexical items 

that sufficiently match features of the target word, the 

density of the word’s neighborhood should influence access 

time. Unfortunately, this class of models does not make 
precise predictions about the nature of the effect of 

neighborhood density. McClelland and Rumelhart’s (1981) 

interactive activation model, for instance, assumes 

excitatory links between levels which can account for 

facilitatory effects of neighborhood size. Activated 

neighbors will feed back to their constituent letters which in 

turn lead to heightened activation of word units containing 

these letters. According to McClelland and Rumelhart 
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(1981), such facilitatory effects of N are likely to be greater 

for low- than high-frequency words. The reason is that high-

frequency words have higher base activation levels and are 

therefore likely to reach threshold before allowing 

reverberating letter-level activation from neighboring word 

units to become influential. 
Yet, the same model can also predict inhibitory effects of 

neighborhood size because of its assumption of lateral 

inhibition between word nodes. Active nodes send 

inhibition to other active nodes to an extent that is 

proportional to their current activation. If the unit 

corresponding to the target word becomes activated before 

other units, this inhibitory mechanism would decrease 

background activation and make the target more salient. On 

the other hand, if nodes corresponding to neighbors obtained 

activation before the target word, these activated 

competitors would inhibit activation of the target and delay 

threshold activation. The more neighbors a word has, the 
greater the likelihood that the target unit would fall prey to 

this inhibitory mechanism, resulting in interfering effects of 

large neighborhoods. Thus, depending on the relative 

contribution to performance of excitatory activation 

between letter and word levels, as well as inhibitory 

activation within the lexical level, the interactive activation 

model can explain facilitatory, inhibitory, or null effects of 

neighborhood size.  

Using the visual LDT paradigm, Coltheart et al. (1977) 

first observed that low-N nonwords were classified more 

quickly than high-N nonwords, but that N did not influence 
performance for English words. The researchers interpreted 

their data using Morton’s (1969) logogen-style activation 

framework, in which the strength of activation in individual 

logogens is determined by sensory input and is insensitive 

to activity in other logogens. The researchers then attributed 

N effects on nonword classification to a decision 

mechanism that is sensitive to the overall lexical activation. 

Subsequently, Andrews (1989) reported that N actually 

influenced responses to English words in the LDT when the 

words were selected to orthogonally manipulate N and word 

frequency. Specifically, it was reported that high N 

facilitated performance for words, but only for the 4-letter 
low-frequency words. These facilitatory effects of N, which 

are not incompatible with McClelland and Rumelhart’s 

(1981) interactive activation model, were later replicated in 

several other experiments (e.g., Sears, Hino, & Lupker, 

1995; Michie, Coltheart, Langdon, & Haller, 1994; 

Andrews, 1992). However, Grainger, O’Regan, Jacobs, and 

Segui (1989) concurrently found no systematic relationship 

to exist between N and performance in the LDT; lexical 

decision latencies were not affected by the number of 

neighbors per se. 

Traditionally, visual lexical decision studies that 
examined neighborhood effects have used mean RT 

differences among the experimental conditions to make 

inferences about the mechanisms underlying the recognition 

process. The implicit assumption that the researchers would 

have made is that RT distributions across conditions are 

symmetrical, where the mean constitutes a reasonably good 

estimate of the central tendency of these distributions. But 

RT distributions are in fact rarely symmetrical around a 

mean. They typically assume a positively skewed unimodal 

shape which contains information that cannot be derived 

from the mean and variance of the distributions. For 
instance, mean RT differences, or the lack thereof, between 

conditions can be due to changes in the shape (skew) of the 

distribution in itself or in addition to a shift in the modal 

portion of the distribution. By relying on a traditional RT 

analysis that uses mean RTs as the dependent variable (DV) 

to interpret LDT performance, one can, in some instances, 

fail to recognize the tradeoff between the effects of shifting 

and skewing, and be misled to incorrectly infer null results 

(Heathcote, Popiel, & Mewhort, 1991). Recognizing the 

problems concerned with the traditional RT analysis 

approach, several researchers have argued that the nature of 

the RT distributions ought to be scrutinized more closely 
(e.g., Balota, Yap, Cortese, & Watson, 2008; Heathcote et 

al., 1991). 

Two distributional analyses techniques were used in the 

present study, namely the ex-Gaussian and Vincentile 

analyses. Shifting and skewing in the RT distributions were 

investigated using the ex-Gaussian function. The procedure 

was to fit an empirical RT distribution to this theoretical 

function that captures important aspects of typical RT 

distributions. The ex-Gaussian function conceptualizes RT 

distributions as the convolution of two underlying 

distributions: a Gaussian distribution and an exponential 
distribution. The mean and standard deviation of the 

Gaussian component are captured by the mu and tau 

parameters, while the exponential function is captured by 

the sigma parameter that reflects its mean and standard 

deviation. An important property of the ex-Gaussian 

function is that the mean of the RT distribution is 

constrained to be the algebraic sum of the mu and tau 

parameters obtained by fitting that distribution. This 

constraint allows one to partition mean differences into 

individual components due to distributional shifting (mu) 

and skewing (tau), and then make inferences from these 

components to determine the nature of the effect of an 
independent variable (IV) (see Balota et al., 2008). 

Parameter estimates from the ex-Gaussian function were 

supplemented by analyses of Vincentiles to enable a 

graphical, non-parametric estimate of the variable’s effect. 

In these analyses, the RTs are ordered, from fastest to 

slowest, within each condition, and the average of the first 

10%, that of the second 10%, and so forth, are plotted. The 

mean of the Vincentiles across participants can then be 

plotted to obtain a description of how the RT distribution is 

changing across conditions. Importantly, differences 

between two levels of an IV across Vincentiles can be 
graphically represented to reveal how the effect of an IV 

may change across different portions in the RT distribution. 

This study had two goals. The first was to replicate the N 

effects in the visual LDT in the light of the initial 

contradictory reports (see Grainger et al., 1989; Andrews, 
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1992, 1989; Coltheart et al., 1977). The present hypothesis 

was that facilitatory effects of density would be observed, 

but only for low-frequency words (see Sears et al., 1995; 

Michie et al., 1994, Andrews, 1992, 1989). The second, and 

more important, was to extend the ex-Gaussian and 

Vincentile analyses techniques to the orthographic 
neighborhood density and word frequency effects found in 

the extant visual lexical decision studies, and to explore the 

extent to which these two effects are driven by distributional 

shifting and skewing. 

Method 

Participants 

Fifty-seven introductory psychology undergraduates with no 

reported history of speech or hearing impairment 

participated for course credit. Their mean vocabulary age of 

the Shipley Test was 18.09 (SD = 1.06).  

Design and Materials 

A 2 (Neighborhood Density: low, high) x 2 (Word 

Frequency: low, high) within-subjects design was used. 

Forty 4-letter English words were selected for each of the 

four conditions, and their properties are summarized in 
Table 1. Two-way analyses of variances (ANOVAs) 

showed a main effect of frequency, F(1, 156) = 19826.68, 

MSe = 0.67, p < .001, for the log-frequency values (M = 

6.58, SD = 0.53 for low-frequency words and M = 11.67, SD 

= 1.02 for high-frequency words), and a main effect of 

density, F(1, 156) = 1827.88, MSe = 2.10, p < .001 for the 

density values (M = 3.35, SD = 1.38 for low-density words 

and M = 13.14, SD = 1.50 for high-density words). No other 

effects were significant, Fs < 1. The 160 legal non-words 

used were obtained from the ARC non-word database 

(Rastle, Harrington, & Coltheart, 2002) and were matched 

against the 160 words in terms of length and density. 

Procedure 

Participants were tested on individual PCs in groups of 

seven or fewer. E-prime 1.2 and the PST Serial Response 

Box (Schneider, Eschman, & Zuccolotto, 2002) were used 

for stimuli presentation and data collection. Participants 

were instructed to indicate as quickly and as accurately as 

possible whether the visual token presented on each trial 

was a real English word (or a non-word). The left- and 

right-most buttons of the button-box were labeled No and 
Yes respectively. On each trial, a fixation cross appeared and 

remained on the screen for 500ms, and terminated for 

200ms before the target word appeared. RT was measured 

from the onset of the target stimulus to the button-press. 

Accuracy feedback was provided for each trial. A practice 

set of 20 trials for task familiarization was given, using 

stimuli unrelated to the experiment. The 320 experimental 

trials were then presented in a random order for each 

participant, with a short self-paced break after every set of 

80 trials was completed. 

 

Conditions 

Density Log-frequency 

M SD M SD 

Low-frequency     

Low-density 3.33 1.33 6.61 0.54 

High-density 13.05 1.95 6.56 0.52 

High-frequency     

Low-density 3.38 1.44 11.67 1.23 

High-density 13.23 0.86 11.67 0.78 

Results 

Errors and latencies faster than 200 ms or slower than 3000 

ms were first excluded, and the overall word and non-word 

means and SDs for each participant were computed across 

all conditions. Following which, latencies exceeding 2.5 

SDs from the participant mean, as well as items where 

proportion of correct responses was not at least 0.5, were 

removed. Table 2 summarizes the results obtained from 

mean latencies, accuracy, and the ex-Gaussian parameters. 

Two way ANOVAs by participants and items were 

Table 1: Mean Density and Log-frequency of the Words 

in the Neighborhood Density and Word Frequency 
Conditions. 

 

Conditions Latency Accuracy Mu Sigma Tau 

Low-frequency      
Low-density 679 (123) 87 (11) 535 (79) 59 (38) 147 (89) 

High-density 662 (127) 88 (8) 509 (74) 54 (37) 157 (84) 

Density effect 17 -1 26 5 -10 

High-frequency      

Low-density 554 (90) 98 (2) 444 (45) 35 (14) 112 (62) 

High-density 546 (83) 99 (1) 442 (47) 38 (16) 105 (54) 

Density effect 8 -1 2 -3 7 

Interaction 9 0 24 8 -17 

Non-words 692 (144) 94 (4) 542 (68) 58 (23) 152 (90) 

 

 

Table 2: Mean Latency, Accuracy, and Ex-Gaussian Parameter Estimates Across Neighborhood Density and 

Word Frequency 
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performed for latencies and accuracy, and by participants 

for the ex-Gaussian parameters. 

Latency 

For latency, reliable main effects of density, Fp(1, 54) = 

11.51, MSe = 790.68, p < .01, and frequency, Fp(1, 54) = 

222.87, MSe = 3600.78, p < .001, were obtained for the 
analyses by participants. Participants were faster in 

responding to high-density words (M = 604, SD = 102) than 

to low-density words (M = 617, SD = 104); they were also 

faster in responding to high-frequency words (M = 550, SD 

= 83) than to low-frequency words (M = 671, SD = 123). 

For the analyses by items, a reliable main effect of 

frequency was obtained, Fi(1, 153) = 299.53, MSe = 

1981.84, p < .001. High-frequency words yielded a shorter 

response time (M = 551, SD = 30) as compared to low-

frequency words (M = 674, SD = 56). No other effects were 

significant, Fs < 2.01, MSes < 1982.84, ps > .1. 

Accuracy 
For accuracy, there was a reliable main effect of 

frequency, Fp(1, 54) = 90.97, MSe = 0.007, p < .001 for the 

analyses by participants; the main effect of density was 

marginally significant, Fp(1, 54) = 3.53, MSe = 0.001, p = 

.066. Participants were more accurate with high-frequency 

words (M = 98, SD = 0.01) than with low-frequency words 

(M = 88, SD = 0.09); they also tended to be more accurate 

with high-density words (M = 93, SD = 0.04) than with low-

density words (M = 92, SD = 0.06). For the analyses by 

items, a reliable main effect of frequency was obtained, Fi 

(1, 153) = 55.86, MSe = 0.008, p < .001. High-frequency 
words yielded a higher accuracy rate (M = 98, SD = 4) as 

compared to low-frequency words (M = 88, SD = 12). No 

other effects were significant, Fs < 1.16, MSes < .008, ps > 

.1. 

Mu 

Turning to the ex-Gaussian parameters, for mu, there 

were reliable main effects of density, F(1, 54) = 18.61, MSe 

= 589.63, p < .001, and frequency, F(1, 53) = 160.02, MSe = 

2151.95, p < .001. These main effects were qualified by the 

significant interaction, F(1, 53) = 12.00, MSe = 726.81, p < 

.01. Simple main effects analyses at each level of the 

frequency factor revealed that for low-frequency words, mu 
was larger for low-density words compared to high-density 

words, F(1, 54) = 16.56, MSe = 1185.71, p < .001, but there 

was no density difference for high-frequency words, F < 1. 

This finding implicates a shift in the modal portion of the 

RT distribution as a function of density, but only for low-

frequency words.   

Sigma 

For sigma, a significant main effect of frequency was 

obtained, F(1, 54) = 25.75, MSe = 890.57, p < .001. Sigma 

was larger for low-frequency (M = 57, SD = 29) than high-

frequency (M = 36, SD = 13) words. No other effects were 
significant, Fs < 1.32, MSes < 645.75, ps > .1. 

Tau 

For tau, a significant main effect was obtained for 

frequency, F(1, 54) = 37.25, MSe = 2834.02, p < .001, but 

not for density, F < 1. The main effect of frequency appears 

to be qualified by the marginally significant interaction, F(1, 

54) = 3.21, MSe = 1417.98, p = .079. Follow-up analyses 

indicated that tau tends to be smaller for low-density words 

compared to high-density words for low-frequency words, 

but it tends to be larger for low-density words compared to 
high-density words for high-frequency words. More 

important, a cross examination of the tau data, with the mu 

data, revealed that the small density effect observed for the 

high-frequency word condition appears to be attributable to 

distributional skewing, rather than distributional shifting.  

Recall that one important constraint of the ex-Gaussian 

analyses is that the mean of the RT distribution is the 

algebraic sum of mu and tau. In the traditional mean latency 

analyses, only reliable main effects of frequency and density 

were obtained; there was no reliable frequency x density 

interaction. Analyses of the ex-Gaussian parameters provide 

important observations that constitute a more faithful 
account of the apparent lack of interaction between the 

factors; the tradeoff between the mu and tau parameters 

accounts for why the mean interaction effect was very small 

(see Table 2). First, analyses of the mu parameter as a 

function of density suggest that there is distributional 

shifting only for the low-frequency words but not for the 

high-frequency words. This finding strongly suggests that 

the density effect observed for low-frequency words in the 

traditional mean latency analyses is predominantly mediated 

by distributional shifting. Second, analyses of the tau 

parameter, in conjunction with the mu parameter, strongly 
suggest that the small density effect observed for high-

frequency words in the traditional mean latency analyses is, 

on the other hand, largely mediated by distributional 

skewing.  

To corroborate this interpretation, vincentile analyses 

were performed on the RT data. Figure 1 shows the mean 

vincentiles across the different experimental conditions. The 

lines represent the estimated vincentiles of the best-fitting 

ex-Gaussian distribution. This graphical representation 

allows a visual assessment of the goodness-of-fit between 

the empirical and estimated vincentiles. 

From the top panel, it is clear that the density effect is 
observed for the low-frequency words across all vincentiles. 

The high-density means are always below the low-density 

means in each of the vincentiles. In the middle panel, the 

density effect is only apparent at the later vincentiles. The 

differential density effects can be seen more clearly in the 

bottom panel, which plots the difference scores between the 

low- and high-density means for each of the low- and high-

frequency conditions. It can be observed that the density 

effect generally remains stable across vincentiles for the 

low-frequency words, indicating that the difference between 

low- and high-density words remains fairly constant as RT 
increases. This trend implicates distributional shifting per 

se. However, for high-frequency words, the density effect 

increases only in the slower RTs. This trend implicates 

distributional skewing per se. 
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Discussion 

RT distributional analyses of orthographic neighborhood 

density and word frequency effects in visual lexical decision 

have not been done in previous studies examining 

neighborhood effects, which relied on mean RTs as the 
primary DV. The findings in the present study can be 

summarized as follows. 

First, facilitatory effects of frequency, where high-

frequency words elicited faster RTs than low-frequency 

words did, and of density, where words from high-density 

neighborhoods elicited faster RTs than words from low-

density neighborhoods did, were obtained. 

Second, and more important, the distributional analyses 
revealed a density x frequency interaction which was 

primarily attributable to differential shifting and skewing of 

the latency distribution between low- and high-density 

words as a function of frequency. For low-frequency words, 

the density effect obtained, replicating Andrews’ (1992, 

1989) finding, and the effect was predominantly mediated 

by distributional shifting; for high-frequency words, the 

small density effect observed was primarily mediated by 

distributional skewing. 

A shift in the RT distribution as a function of density for 

low-frequency words is compatible with existing accounts 

which assume that lexical access relies upon an activation 
mechanism. Such an activation mechanism, which 

postulates top-down feedback from word to letter nodes, 

characterizes McClelland and Rumelhart’s (1981) 

interactive activation model1 which assumes parallel 

activation of both lexical units and units that correspond to 

sublexical components, such as letters. First, the assumption 

must hold that excitatory activation between lexical and 

sublexical units is not cancelled out by lateral inhibition at 

the lexical level. Then, the partial activation of neighbors 

can increase the activation of sublexical components of the 

target, and consequently accelerate access to the target 
representation. 

To explain the present data within such an activation 

mechanism framework, one must specify why the 

neighborhood effects arising from such sublexical/lexical 

interactions would affect only responses to low-frequency 

words. Frequency effects have mainly been attributed to 

differences in the resting activation level of lexical units 

within the original logogen (Morton, 1969) as well as the 

interactive activation (McClelland & Rumelhart, 1981) 

accounts. A functionally equivalent assumption appears to 

characterize distributed memory models (McClelland & 

Rumelhart, 1985) that assume that frequency determines 
how rapidly a lexical unit reaches a threshold level of 

activation. The present interaction between frequency and 

neighborhood size implicates that sublexical units play a 

greater role in the recognition of low-, rather than high-, 

frequency words; high-frequency words obtain threshold 

sufficiently quickly through direct activation of lexical 

                                                
1 Although activation models, such as McClelland and Rumelhart’s 
(1981), can accommodate the present data, one must recall that 
whether the net effect of neighborhood size is facilitatory or 
inhibitory depends, within this framework, on the relative values of 
the parameters governing letter-word excitation, word-word 
inhibition, and the base activation level associated with word 

frequency. In a sense, rather than regarding the present data as 
supporting the model per se, it might be more appropriate to regard 
the data as providing evidence that constrains the future 
specification of activation models. 

Figure 1: Vincentiles of lexical decision performance. 

The participants’ mean vincentiles are represented 

across different conditions. The lines represent the 

estimated vincentiles of the best-fitting ex-Gaussian 

distribution. The top and middle panels show 

performance as a function of density in the low- and 

high-frequency conditions respectively, while the 

bottom panel shows the density effect. 
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units, such that they are not influenced by the reverberating 

sublexical activation arising from active neighbors. 

The increase in response time as a function of density for 

low-frequency words observed in the present study appears 

to be additive in nature, reflected by the distributional shift. 

Such a shift effect has been argued by Balota and Spieler 
(1999) to indicate early automatic processes, rather than 

later analytical or more attention-demanding processing. 

That density effects for low-frequency words are 

predominantly mediated by distributional shifting reflect 

processes involved in early lexical access, and not late 

postlexical processes which may also be involved in the 

LDT. 

On the other hand, for high-frequency words, it appears 

that density effects are absent except at the slower end of the 

distribution, which are reflected in slightly greater skewing 

for low-density words. Recall that under the activation 

framework (e.g., McClelland & Rumelhart, 1985), high-
frequency words obtain threshold sufficiently quickly 

through direct activation of lexical units, such that lexical 

access need not be facilitated by the reverberating 

sublexical activation arising from activated neighbors. The 

tau parameter revealed, for high-frequency words, some 

difference in RTs comparing low- with high-N words. It 

appears that high-frequency words with small 

neighborhoods would have received little facilitation from 

their active neighbors to aid lexicality decision of the target, 

as compared to those with big neighborhoods. Where 

facilitatory effects of N were lacking, compensatory 
postlexical checks could tend to be adopted, resulting in 

slightly longer RTs for low-N words. The emergence of 

density effects at the tail end of the distribution may 

therefore reflect, particularly for the low-N words, late 

postlexical checking processes that are specific to the lexical 

decision task (see Balota & Chumbley, 1984), rather than 

early lexical access processes. 

Conclusion 

The present study extends previous work on distributional 

analyses and underscores the contribution of these 

techniques in illuminating the interaction between 
orthographic neighborhood density and word frequency 

effects in a visual LDT. The new understanding is that the 

effects of density as a function of frequency are represented 

differentially in the shift and skew of the underlying RT 

distributions. 
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