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Abstract

The effects of orthographic neighborhood density and word
frequency in visual word recognition were investigated using
distributional analyses of response latencies in visual lexical
decision. Main effects of density and frequency were
observed in mean latencies. Distributional analyses, in
addition, revealed a density x frequency interaction: for low-
frequency words, density effects were mediated
predominantly by distributional shifting whereas for high-
frequency words, density effects were absent except at the
slower RTs, implicating distributional skewing. The present
findings suggest that density effects in low-frequency words
reflect processes involved in early lexical access, while the
effects observed in high-frequency words reflect late
postlexical checking processes.
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Introduction

Word frequency and orthographic neighborhood density
effects are among the most influential findings in the visual
word recognition literature. Researchers study word
recognition using the lexical decision task (LDT) that
requires lexicality discrimination and decision where
subjects would classify stimuli as either words or nonwords,
and the speeded pronunciation (word naming) task that
involves lexical access but excludes the word/nonword
discrimination and decision components of the LDT. During
word naming, subjects would typically be tested
individually and read the stimuli into a microphone (see
Andrews, 1997).

Word frequency effects, where latencies for common
words are faster than those that are relatively less common,
have been observed in many LDT studies (see Balota &
Chumbley, 1990 for a review). In visual word recognition,
frequency effects have been attributed to changes in
activation thresholds or baselines. The logogen-style
activation framework was inaugurated by Morton (1969),
which assumes that information extracted from the sensory
representation of the word leads to parallel activation of all
word units that match that information. When sufficient
activation has accumulated in a particular word unit, it
reaches threshold and lexical access occurs. Morton’s
(1969) initial model was later specified in greater detail by
McClelland and Rumelhart (1981). Their model, which they
called the interactive activation model, suggests that
activation occurs at three levels. Activation of featural units
feeds to units corresponding to letters, which in turn activate
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the units for words containing these letters. Activity also
feeds back from the word to the letter level, causing
reverberating patterns of activity to occur between these
levels. To ensure that only one word unit eventually obtains
threshold, McClelland and Rumelhart (1981) also assume
that inhibition occurs between word units, so that the
activity level of competing word units is reduced relative to
the maximally active node. Within the activation
framework, word frequency is assumed to be reflected in the
threshold (Morton, 1969) or resting activation level
(McClelland & Rumelhart, 1981) associated with a
particular word unit. The critical interpretation is that less
evidence is required to enable recognition of a high-, than a
low-, frequency word.

The findings for orthographic neighborhood density
effects (N), on the other hand, appear to be more mixed. The
N metric has been defined by Coltheart, Davelaar, Jonasson,
and Besner (1977) as the number of close neighbors a word
has and refers to the number of words that can be created by
changing a single letter of this target word. For instance, tell
has many neighbors such as well, yell, sell, teal and tall,
while once has no neighbors. Neighborhood effects can help
specify the mechanisms underlying lexical access. The
implication of the overlap in the features constituting
different words is that any subset of the features constituting
a particular word is unlikely to uniquely specify its
corresponding lexical representation. Neighbors are items
that are highly confusable with the target word, in the sense
that they share a large number of their features with the
target. Thus, it seems inevitable that some or all of the
neighbors of a target word will be selected by the access
mechanisms as eligible target candidates.

Effects of N can be accommodated within activation-
based models of lexical access, and appear to provide
substantive support for an activation mechanism. If
presenting a word leads to an activation of all lexical items
that sufficiently match features of the target word, the
density of the word’s neighborhood should influence access
time. Unfortunately, this class of models does not make
precise predictions about the nature of the effect of
neighborhood density. McClelland and Rumelhart’s (1981)
interactive activation model, for instance, assumes
excitatory links between levels which can account for
facilitatory effects of neighborhood size. Activated
neighbors will feed back to their constituent letters which in
turn lead to heightened activation of word units containing
these letters. According to McClelland and Rumelhart



(1981), such facilitatory effects of N are likely to be greater
for low- than high-frequency words. The reason is that high-
frequency words have higher base activation levels and are
therefore likely to reach threshold before allowing
reverberating letter-level activation from neighboring word
units to become influential.

Yet, the same model can also predict inhibitory effects of
neighborhood size because of its assumption of lateral
inhibition between word nodes. Active nodes send
inhibition to other active nodes to an extent that is
proportional to their current activation. If the unit
corresponding to the target word becomes activated before
other units, this inhibitory mechanism would decrease
background activation and make the target more salient. On
the other hand, if nodes corresponding to neighbors obtained
activation before the target word, these activated
competitors would inhibit activation of the target and delay
threshold activation. The more neighbors a word has, the
greater the likelihood that the target unit would fall prey to
this inhibitory mechanism, resulting in interfering effects of
large neighborhoods. Thus, depending on the relative
contribution to performance of excitatory activation
between letter and word levels, as well as inhibitory
activation within the lexical level, the interactive activation
model can explain facilitatory, inhibitory, or null effects of
neighborhood size.

Using the visual LDT paradigm, Coltheart et al. (1977)
first observed that low-N nonwords were classified more
quickly than high-N nonwords, but that N did not influence
performance for English words. The researchers interpreted
their data using Morton’s (1969) logogen-style activation
framework, in which the strength of activation in individual
logogens is determined by sensory input and is insensitive
to activity in other logogens. The researchers then attributed
N effects on nonword classification to a decision
mechanism that is sensitive to the overall lexical activation.
Subsequently, Andrews (1989) reported that N actually
influenced responses to English words in the LDT when the
words were selected to orthogonally manipulate N and word
frequency. Specifically, it was reported that high N
facilitated performance for words, but only for the 4-letter
low-frequency words. These facilitatory effects of N, which
are not incompatible with McClelland and Rumelhart’s
(1981) interactive activation model, were later replicated in
several other experiments (e.g., Sears, Hino, & Lupker,
1995; Michie, Coltheart, Langdon, & Haller, 1994;
Andrews, 1992). However, Grainger, O’Regan, Jacobs, and
Segui (1989) concurrently found no systematic relationship
to exist between N and performance in the LDT; lexical
decision latencies were not affected by the number of
neighbors per se.

Traditionally, visual lexical decision studies that
examined neighborhood effects have used mean RT
differences among the experimental conditions to make
inferences about the mechanisms underlying the recognition
process. The implicit assumption that the researchers would
have made is that RT distributions across conditions are
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symmetrical, where the mean constitutes a reasonably good
estimate of the central tendency of these distributions. But
RT distributions are in fact rarely symmetrical around a
mean. They typically assume a positively skewed unimodal
shape which contains information that cannot be derived
from the mean and variance of the distributions. For
instance, mean RT differences, or the lack thereof, between
conditions can be due to changes in the shape (skew) of the
distribution in itself or in addition to a shift in the modal
portion of the distribution. By relying on a traditional RT
analysis that uses mean RTs as the dependent variable (DV)
to interpret LDT performance, one can, in some instances,
fail to recognize the tradeoff between the effects of shifting
and skewing, and be misled to incorrectly infer null results
(Heathcote, Popiel, & Mewhort, 1991). Recognizing the
problems concerned with the traditional RT analysis
approach, several researchers have argued that the nature of
the RT distributions ought to be scrutinized more closely
(e.g., Balota, Yap, Cortese, & Watson, 2008; Heathcote et
al., 1991).

Two distributional analyses techniques were used in the
present study, namely the ex-Gaussian and Vincentile
analyses. Shifting and skewing in the RT distributions were
investigated using the ex-Gaussian function. The procedure
was to fit an empirical RT distribution to this theoretical
function that captures important aspects of typical RT
distributions. The ex-Gaussian function conceptualizes RT
distributions as the convolution of two underlying
distributions: a Gaussian distribution and an exponential
distribution. The mean and standard deviation of the
Gaussian component are captured by the mu and tau
parameters, while the exponential function is captured by
the sigma parameter that reflects its mean and standard
deviation. An important property of the ex-Gaussian
function is that the mean of the RT distribution is
constrained to be the algebraic sum of the mu and tau
parameters obtained by fitting that distribution. This
constraint allows one to partition mean differences into
individual components due to distributional shifting (mu)
and skewing (tau), and then make inferences from these
components to determine the nature of the effect of an
independent variable (1V) (see Balota et al., 2008).

Parameter estimates from the ex-Gaussian function were
supplemented by analyses of Vincentiles to enable a
graphical, non-parametric estimate of the variable’s effect.
In these analyses, the RTs are ordered, from fastest to
slowest, within each condition, and the average of the first
10%, that of the second 10%, and so forth, are plotted. The
mean of the Vincentiles across participants can then be
plotted to obtain a description of how the RT distribution is
changing across conditions. Importantly, differences
between two levels of an IV across Vincentiles can be
graphically represented to reveal how the effect of an IV
may change across different portions in the RT distribution.

This study had two goals. The first was to replicate the N
effects in the visual LDT in the light of the initial
contradictory reports (see Grainger et al., 1989; Andrews,



1992, 1989; Coltheart et al., 1977). The present hypothesis
was that facilitatory effects of density would be observed,
but only for low-frequency words (see Sears et al., 1995;
Michie et al., 1994, Andrews, 1992, 1989). The second, and
more important, was to extend the ex-Gaussian and
Vincentile analyses techniques to the orthographic
neighborhood density and word frequency effects found in
the extant visual lexical decision studies, and to explore the
extent to which these two effects are driven by distributional
shifting and skewing.

Method

Participants

Fifty-seven introductory psychology undergraduates with no
reported history of speech or hearing impairment
participated for course credit. Their mean vocabulary age of
the Shipley Test was 18.09 (SD = 1.06).

Design and Materials

A 2 (Neighborhood Density: low, high) x 2 (Word
Frequency: low, high) within-subjects design was used.
Forty 4-letter English words were selected for each of the
four conditions, and their properties are summarized in
Table 1. Two-way analyses of variances (ANOVAS)
showed a main effect of frequency, F(1, 156) = 19826.68,
MSe = 0.67, p < .001, for the log-frequency values (M =
6.58, SD = 0.53 for low-frequency words and M = 11.67, SD
= 1.02 for high-frequency words), and a main effect of
density, F(1, 156) = 1827.88, MSe = 2.10, p < .001 for the
density values (M = 3.35, SD = 1.38 for low-density words
and M = 13.14, SD = 1.50 for high-density words). No other
effects were significant, Fs < 1. The 160 legal non-words
used were obtained from the ARC non-word database
(Rastle, Harrington, & Coltheart, 2002) and were matched
against the 160 words in terms of length and density.

Procedure

Participants were tested on individual PCs in groups of
seven or fewer. E-prime 1.2 and the PST Serial Response

Box (Schneider, Eschman, & Zuccolotto, 2002) were used
for stimuli presentation and data collection. Participants
were instructed to indicate as quickly and as accurately as
possible whether the visual token presented on each trial
was a real English word (or a non-word). The left- and
right-most buttons of the button-box were labeled No and
Yes respectively. On each trial, a fixation cross appeared and
remained on the screen for 500ms, and terminated for
200ms before the target word appeared. RT was measured
from the onset of the target stimulus to the button-press.
Accuracy feedback was provided for each trial. A practice
set of 20 trials for task familiarization was given, using
stimuli unrelated to the experiment. The 320 experimental
trials were then presented in a random order for each
participant, with a short self-paced break after every set of
80 trials was completed.

Table 1: Mean Density and Log-frequency of the Words
in the Neighborhood Density and Word Frequency
Conditions.

Density Log-frequency
Conditions M SD M SD
Low-frequency
Low-density 3.33 1.33 6.61 0.54
High-density 13.05 1.95 6.56 0.52
High-frequency
Low-density 3.38 1.44 11.67 1.23
High-density 13.23 0.86 11.67 0.78
Results

Errors and latencies faster than 200 ms or slower than 3000
ms were first excluded, and the overall word and non-word
means and SDs for each participant were computed across
all conditions. Following which, latencies exceeding 2.5
SDs from the participant mean, as well as items where
proportion of correct responses was not at least 0.5, were
removed. Table 2 summarizes the results obtained from
mean latencies, accuracy, and the ex-Gaussian parameters.
Two way ANOVAs by participants and items were

Table 2: Mean Latency, Accuracy, and Ex-Gaussian Parameter Estimates Across Neighborhood Density and

Word Frequency

Conditions Latency Accuracy Mu Sigma Tau
Low-frequency
Low-density 679 (123) 87 (11) 535 (79) 59 (38) 147 (89)
High-density 662 (127) 88 (8) 509 (74) 54 (37) 157 (84)
Density effect 17 -1 26 5 -10
High-frequency
Low-density 554 (90) 98 (2) 444 (45) 35 (14) 112 (62)
High-density 546 (83) 99 (1) 442 (47) 38 (16) 105 (54)
Density effect 8 -1 2 -3 7
Interaction 9 0 24 8 -17
Non-words 692 (144) 94 (4) 542 (68) 58 (23) 152 (90)
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performed for latencies and accuracy, and by participants
for the ex-Gaussian parameters.
Latency

For latency, reliable main effects of density, Fy(1, 54) =
11.51, MSe = 790.68, p < .01, and frequency, Fy(1, 54) =
222.87, MSe = 3600.78, p < .001, were obtained for the
analyses by participants. Participants were faster in
responding to high-density words (M = 604, SD = 102) than
to low-density words (M = 617, SD = 104); they were also
faster in responding to high-frequency words (M = 550, SD
= 83) than to low-frequency words (M = 671, SD = 123).
For the analyses by items, a reliable main effect of
frequency was obtained, Fi(1, 153) = 299.53, MSe
1981.84, p < .001. High-frequency words yielded a shorter
response time (M = 551, SD = 30) as compared to low-
frequency words (M = 674, SD = 56). No other effects were
significant, Fs < 2.01, MSes < 1982.84, ps > .1.
Accuracy

For accuracy, there was a reliable main effect of
frequency, Fy(1, 54) = 90.97, MSe = 0.007, p < .001 for the
analyses by participants; the main effect of density was
marginally significant, Fy(1, 54) = 3.53, MSe = 0.001, p =
.066. Participants were more accurate with high-frequency
words (M = 98, SD = 0.01) than with low-frequency words
(M = 88, SD = 0.09); they also tended to be more accurate
with high-density words (M = 93, SD = 0.04) than with low-
density words (M = 92, SD = 0.06). For the analyses by
items, a reliable main effect of frequency was obtained, F;
(1, 153) = 55.86, MSe = 0.008, p < .001. High-frequency
words yielded a higher accuracy rate (M = 98, SD = 4) as
compared to low-frequency words (M = 88, SD = 12). No
other effects were significant, Fs < 1.16, MSes < .008, ps >
1.
Mu

Turning to the ex-Gaussian parameters, for mu, there
were reliable main effects of density, F(1, 54) = 18.61, MSe
=589.63, p <.001, and frequency, F(1, 53) = 160.02, MSe =
2151.95, p <.001. These main effects were qualified by the
significant interaction, F(1, 53) = 12.00, MSe = 726.81, p <
.01. Simple main effects analyses at each level of the
frequency factor revealed that for low-frequency words, mu
was larger for low-density words compared to high-density
words, F(1, 54) = 16.56, MSe = 1185.71, p <.001, but there
was no density difference for high-frequency words, F < 1.
This finding implicates a shift in the modal portion of the
RT distribution as a function of density, but only for low-
frequency words.
Sigma

For sigma, a significant main effect of frequency was
obtained, F(1, 54) = 25.75, MSe = 890.57, p < .001. Sigma
was larger for low-frequency (M =57, SD = 29) than high-
frequency (M = 36, SD = 13) words. No other effects were
significant, Fs < 1.32, MSes < 645.75, ps > .1.
Tau

For tau, a significant main effect was obtained for
frequency, F(1, 54) = 37.25, MSe = 2834.02, p < .001, but
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not for density, F < 1. The main effect of frequency appears
to be qualified by the marginally significant interaction, F(Z1,
54) = 3.21, MSe = 1417.98, p = .079. Follow-up analyses
indicated that tau tends to be smaller for low-density words
compared to high-density words for low-frequency words,
but it tends to be larger for low-density words compared to
high-density words for high-frequency words. More
important, a cross examination of the tau data, with the mu
data, revealed that the small density effect observed for the
high-frequency word condition appears to be attributable to
distributional skewing, rather than distributional shifting.

Recall that one important constraint of the ex-Gaussian
analyses is that the mean of the RT distribution is the
algebraic sum of mu and tau. In the traditional mean latency
analyses, only reliable main effects of frequency and density
were obtained; there was no reliable frequency x density
interaction. Analyses of the ex-Gaussian parameters provide
important observations that constitute a more faithful
account of the apparent lack of interaction between the
factors; the tradeoff between the mu and tau parameters
accounts for why the mean interaction effect was very small
(see Table 2). First, analyses of the mu parameter as a
function of density suggest that there is distributional
shifting only for the low-frequency words but not for the
high-frequency words. This finding strongly suggests that
the density effect observed for low-frequency words in the
traditional mean latency analyses is predominantly mediated
by distributional shifting. Second, analyses of the tau
parameter, in conjunction with the mu parameter, strongly
suggest that the small density effect observed for high-
frequency words in the traditional mean latency analyses is,
on the other hand, largely mediated by distributional
skewing.

To corroborate this interpretation, vincentile analyses
were performed on the RT data. Figure 1 shows the mean
vincentiles across the different experimental conditions. The
lines represent the estimated vincentiles of the best-fitting
ex-Gaussian distribution. This graphical representation
allows a visual assessment of the goodness-of-fit between
the empirical and estimated vincentiles.

From the top panel, it is clear that the density effect is
observed for the low-frequency words across all vincentiles.
The high-density means are always below the low-density
means in each of the vincentiles. In the middle panel, the
density effect is only apparent at the later vincentiles. The
differential density effects can be seen more clearly in the
bottom panel, which plots the difference scores between the
low- and high-density means for each of the low- and high-
frequency conditions. It can be observed that the density
effect generally remains stable across vincentiles for the
low-frequency words, indicating that the difference between
low- and high-density words remains fairly constant as RT
increases. This trend implicates distributional shifting per
se. However, for high-frequency words, the density effect
increases only in the slower RTs. This trend implicates
distributional skewing per se.
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Figure 1: Vincentiles of lexical decision performance.
The participants’ mean vincentiles are represented
across different conditions. The lines represent the
estimated vincentiles of the best-fitting ex-Gaussian
distribution. The top and middle panels show
performance as a function of density in the low- and
high-frequency conditions respectively, while the
bottom panel shows the density effect.

Discussion

RT distributional analyses of orthographic neighborhood
density and word frequency effects in visual lexical decision
have not been done in previous studies examining
neighborhood effects, which relied on mean RTs as the
primary DV. The findings in the present study can be
summarized as follows.
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First, facilitatory effects of frequency, where high-
frequency words elicited faster RTs than low-frequency
words did, and of density, where words from high-density
neighborhoods elicited faster RTs than words from low-
density neighborhoods did, were obtained.

Second, and more important, the distributional analyses
revealed a density x frequency interaction which was
primarily attributable to differential shifting and skewing of
the latency distribution between low- and high-density
words as a function of frequency. For low-frequency words,
the density effect obtained, replicating Andrews’ (1992,
1989) finding, and the effect was predominantly mediated
by distributional shifting; for high-frequency words, the
small density effect observed was primarily mediated by
distributional skewing.

A shift in the RT distribution as a function of density for
low-frequency words is compatible with existing accounts
which assume that lexical access relies upon an activation
mechanism. Such an activation mechanism, which
postulates top-down feedback from word to letter nodes,
characterizes McClelland and Rumelhart’s (1981)
interactive activation model' which assumes parallel
activation of both lexical units and units that correspond to
sublexical components, such as letters. First, the assumption
must hold that excitatory activation between lexical and
sublexical units is not cancelled out by lateral inhibition at
the lexical level. Then, the partial activation of neighbors
can increase the activation of sublexical components of the
target, and consequently accelerate access to the target
representation.

To explain the present data within such an activation
mechanism framework, one must specify why the
neighborhood effects arising from such sublexical/lexical
interactions would affect only responses to low-frequency
words. Frequency effects have mainly been attributed to
differences in the resting activation level of lexical units
within the original logogen (Morton, 1969) as well as the
interactive activation (McClelland & Rumelhart, 1981)
accounts. A functionally equivalent assumption appears to
characterize distributed memory models (McClelland &
Rumelhart, 1985) that assume that frequency determines
how rapidly a lexical unit reaches a threshold level of
activation. The present interaction between frequency and
neighborhood size implicates that sublexical units play a
greater role in the recognition of low-, rather than high-,
frequency words; high-frequency words obtain threshold
sufficiently quickly through direct activation of lexical

! Although activation models, such as McClelland and Rumelhart’s
(1981), can accommodate the present data, one must recall that
whether the net effect of neighborhood size is facilitatory or
inhibitory depends, within this framework, on the relative values of
the parameters governing letter-word excitation, word-word
inhibition, and the base activation level associated with word
frequency. In a sense, rather than regarding the present data as
supporting the model per se, it might be more appropriate to regard
the data as providing evidence that constrains the future
specification of activation models.



units, such that they are not influenced by the reverberating
sublexical activation arising from active neighbors.

The increase in response time as a function of density for
low-frequency words observed in the present study appears
to be additive in nature, reflected by the distributional shift.
Such a shift effect has been argued by Balota and Spieler
(1999) to indicate early automatic processes, rather than
later analytical or more attention-demanding processing.
That density effects for low-frequency words are
predominantly mediated by distributional shifting reflect
processes involved in early lexical access, and not late
postlexical processes which may also be involved in the
LDT.

On the other hand, for high-frequency words, it appears
that density effects are absent except at the slower end of the
distribution, which are reflected in slightly greater skewing
for low-density words. Recall that under the activation
framework (e.g., McClelland & Rumelhart, 1985), high-
frequency words obtain threshold sufficiently quickly
through direct activation of lexical units, such that lexical
access need not be facilitated by the reverberating
sublexical activation arising from activated neighbors. The
tau parameter revealed, for high-frequency words, some
difference in RTs comparing low- with high-N words. It
appears that high-frequency words with  small
neighborhoods would have received little facilitation from
their active neighbors to aid lexicality decision of the target,
as compared to those with big neighborhoods. Where
facilitatory effects of N were lacking, compensatory
postlexical checks could tend to be adopted, resulting in
slightly longer RTs for low-N words. The emergence of
density effects at the tail end of the distribution may
therefore reflect, particularly for the low-N words, late
postlexical checking processes that are specific to the lexical
decision task (see Balota & Chumbley, 1984), rather than
early lexical access processes.

Conclusion

The present study extends previous work on distributional
analyses and underscores the contribution of these
techniques in illuminating the interaction between
orthographic neighborhood density and word frequency
effects in a visual LDT. The new understanding is that the
effects of density as a function of frequency are represented
differentially in the shift and skew of the underlying RT
distributions.
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