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Abstract 

Many preterm neonates have white-matter damage (WMD, 
damaged connections between neurons) and grey matter-
damage (GMD, dead neurons). These children are known to 
have lower IQs than their full-term peers, yet the mechanisms 
underlying this association are poorly understood. We 
designed a developmental connectionist model of the Raven 
Matrices IQ task in which (1) all neurons had intact output, 
simulating normal development, or (2) half the neurons had 
noisy output, simulating noisy transmission or WMD, or (3) 
half the neurons had no output, simulating cell death or GMD. 
We found that damage increased task error. Further, WMD 
was worse than GMD overall, yet GMD was at once worse 
for generalization problems not given in training and better 
for training problems. Our model is the first to simulate an 
effect of perinatal brain damage on a cognitive task, and 
predicts that different types of brain damage may lead to 
different cognitive impairments. 

Keywords: White-matter damage; cortical damage; preterm 
birth; Raven Matrices; IQ; connectionism; learning. 

Background 
In 2007, 12.7% of all births in the United States were 
preterm, an increase of over 2% since 1990 (Heron et al., 
2009). This increase inevitably exacerbates family distress 
and healthcare costs, as children born preterm present many 
cognitive and developmental impairments compared to their 
full-term peers, including lower IQ scores (Bhutta, Cleves, 
Casey, Cradock, & Anand, 2002). The severity of preterm 
children’s cognitive deficits appears to be correlated with 
brain abnormalities, e.g., reduced volume in specific brain 
regions (Peterson et al., 2000), which may result from 
abnormal development following perinatal brain damage 
(Robinson, 2005). Indeed, preterm neonates have immature 
brains that are likely to suffer damage from prematurity-
associated adverse exposures before and after birth. 

Perinatal brain damage can occur in either of the two 
major macroscopically distinct areas of the brain, the white 
(Dyet et al., 2006) and grey matter (Burd et al., 2009). 
White matter is made up of myelinated axons connecting 
neuronal regions and is the matter principally damaged in 

preterm brains (Leviton & Paneth, 1990). By contrast, grey 
matter consists of neuronal cell bodies and its damage is 
usually more constrained in the preterm brain (Billiards, 
Pierson, Haynes, Folkerth, & Kinney, 2006). Although the 
association between cognitive impairments and brain 
damage is well known in the pediatric community, not much 
is known about either the general mechanisms underlying 
the association (Counsell et al., 2008), or more specifically, 
about how damage to white or grey matter may potentially 
affect cognitive function differentially. Although a previous 
computational model indicated that white-matter damage 
may be worse than grey-matter damage for synaptic 
recovery (Follett, Roth, Follett, & Dammann, 2009), that 
model did not implement any cognitive task and thus did not 
inform us about the effect of damage on cognition. 

In order to explore how white- and grey-matter damage 
may affect cognitive ability, we designed a computational 
developmental model of a popular IQ task, the Raven 
Matrices, and incorporated white- and grey-matter damage 
in the model to assess their effects on task performance. 

Computational Developmental Algorithm 
Sibling-Descendent Cascade-Correlation (SDCC, Baluja & 
Fahlman, 1994) is a supervised-learning, artificial-neural-
network algorithm which benefits from fast and powerful 
learning and implements some psychologically- and 
neurologically-plausible mechanisms (Shultz, 2006; Shultz, 
Mysore, & Quartz, 2007). Its developmental or constructive 
aspect comes from the fact that networks initially have only 
input and output units (fully interconnected with random 
weights), but develop by recruiting hidden units, as required 
to reduce error in training.  

Training includes output and input phases. Networks are 
first given training patterns (input and target patterns), and 
training enters the output phase, in which the algorithm 
reduces output error, the discrepancy between output 
activation (initially random) and the target patterns. If the 
algorithm cannot bring error lower than the Score Threshold 
(ST) parameter, left at its default value of .4 for all training 
patterns, training switches to the input phase. In the input 
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phase, the network selects the one hidden unit, out of a pool 
of 8 randomly-initialized candidate recruits, that correlates 
most with output error. This selected unit is integrated into 
the network and training switches back to output phase. 
Training usually stops as soon as error for each training 
pattern drops below the ST. However, in order to have 
consistent amount of training across all types of networks, 
we imposed here a training limit of 14 hidden units and 
2500 epochs, based on the average training cost of an 
independent, undamaged sample of 100 networks.  

At the end of training, networks are tested by freezing 
connection weights (so that networks do not learn during 
testing), and measuring output error on testing patterns. 

Raven Matrices task 
The Raven Matrices task consists of a series of problems, in 
which subjects have to study a 3-by-3 matrix, and chose 
amongst 8 alternatives the figure that best fits the empty 
spot in the matrix (Figure 1). 

 

 
 

Figure 1. An example Raven problem. Copyright © 1990 by 
the American Psychological Association. Reproduced with 
permission from Carpenter, Just, and Shell (1990). The use 
of APA information does not imply endorsement by APA. 
 
There are four rules (Carpenter et al., 1990) for predicting 

the missing figure. In the constant-in-a row rule, a figure 
feature is constant across rows. For example, the narrow 
rectangle in Figure 1 is always vertical in the first row, 
horizontal in the second, and diagonal in the third. In the 
distribution-of-three rule, a feature is distributed amongst 
the figures in a row, e.g., the narrow rectangle is either 
black, striped, or transparent in each column in Figure 1. If 
one of the three features is absent, the distribution-of-three 
rule can also cover a distribution-of-two-values rule, 
sometimes considered as a separate rule. In the quantitative-
pairwise-progression rule, figure attributes (such as small 
squares in a grid) increment or decrement between adjacent 
columns. In the addition and subtraction rules, a figure 

feature from column 1 is added to or subtracted from a 
figure in column 2 to produce a third figure in column 3. 

Methods 
We used SDCC to train and test undamaged networks on the 
Raven Matrices task. We next incorporated damage in two 
different groups of networks by either randomizing (white-
matter damage) or blocking (grey-matter damage) the output 
activation of approximately half the networks’ neurons. 

Undamaged Training and Testing  
A first group of 100 undamaged networks were trained and 
tested on Raven task problems that each implemented one 
of the four rules identified by Carpenter and colleagues 
(1990). Performance was evaluated on problems that 
networks knew about, and on novel problems, a technique 
somewhat similar to some psychological studies using the 
Raven task (e.g., Skuy et al., 2002). 

Networks had eight inputs corresponding to the eight 
figures constituting a Raven problem, and one output 
corresponding to the missing ninth figure. Inputs and 
outputs used linear activation functions to cover the range of 
possible input and output values (see below). In order to 
compare network performance on known and novel data, 
two datasets of equal size were constructed: the training and 
generalization sets. Figure 2 illustrates an example Raven 
problem coded for training and generalization patterns. 

 

 
 

Figure 2. A Raven problem represented in figures and as a 
training pattern, and its derived generalization pattern. 

 
The left-most panel of Figure 2 shows the example 

figures, and the middle panel shows how the figures may be 
coded as a training pattern. For each training pattern, 
selected features were coded by integers (chosen at random 
between 1 and 4 from a uniform distribution) that 
represented the figure feature relevant to the problem rule. 
Each training pattern implemented one of the 4 rules 
identified by Carpenter and colleagues, (1990). For instance, 
in this constant-in-a-row example problem, 1.0 represents a 
vertical bar, 4.0 an horizontal one, and 2.0 a diagonal one.  

The right panel shows a generalization pattern, obtained 
by subtracting .5 from every value of the example training 
pattern. Following previous practice (Dandurand, 
Berthiaume, & Shultz, 2007), generalization patterns were 
all obtained using this calculation (although in feature-
addition and -subtraction problems, .5 was only subtracted 
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from numbers in the first two columns, because the third 
value depended on the first two). Other types of problems 
were coded similarly. Distribution-of-three problems had 
one of three numbers appear in each column. Quantitative-
pairwise-progression problems were represented by an 
increment or decrement of numbers across adjacent 
columns. Addition and subtraction problems had a number 
from the second column added to or subtracted from the 
number the first column, to produce the third column 
number (in subtraction problems, the first column value was 
always bigger than in the second column, to ensure positive 
values in the third column). The range of input and output 
values was [.5, 8.0], where [5.0, 8.0] were only present 
when due to the addition of other features, i.e., [1.0, 4.0] for 
the training set and [.5, 3.5] for the generalization set. 

Training and generalization sets each included 20 
examples of each of the 5 types of Raven problems (feature-
addition and-subtraction were considered 2 different types), 
for a total of 100 problems. Each dataset was created by 
sampling randomly, with possible repetitions of rows and 
problems, through the possible permutations of the 4 feature 
values, so that no network had identical training or testing. 
In test, after training, we calculated mean squared output 
error for both training and generalization datasets. 

Damaged Training and Testing on the Raven task 
Two other groups of 100 networks were trained and tested 
as described above, except that they were damaged by either 
randomly reducing (white-matter damage) or blocking 
(grey-matter damage) the output activation of some of their 
neurons. Damaged neurons were selected randomly for each 
network, and half of the input neurons and half of the 
candidate hidden neurons were damaged. There is nothing 
special about impairing half the neurons, we selected that 
proportion as a starting point for our experiments. Networks 
were free to recruit or not recruit impaired hidden neurons, 
so as to simulate more naturally perinatal brain damage, i.e., 
prior to learning and performing on tasks. The output 
neuron was not damaged, in order to insure a fairer 
comparison of white- and grey-matter damage (a grey-
matter-damaged output would prevent any network output). 

 
White-matter damage. White-matter damage is often 
observed as abnormal white-matter signal and abnormal 
axonal myelination (Counsell et al., 2006). A reduction in 
white-matter signal may be due to noisy or leaky axonal 
transmissions in which abnormal axonal myelination causes 
action potentials to be lost. To model this leaky transmission 
we subtracted a different random value from the activation 
value of impaired neurons each time an activation value was 
calculated, as in: 

 
Ar = Activation – [Activation × RandomValue(0,1)] 
 

where Ar is the reduced random activation, Activation is the 
undamaged activation and RandomValue(0,1) is a value 
chosen randomly from a [0, 1] uniform distribution. 

Grey-matter damage. Grey-matter damage can be 
considered as cell death, leading to a complete loss of signal 
(e.g., Follett et al., 2009). It was therefore modeled by 
reducing the activation values of each impaired neuron to 0. 

Results 
After training, we performed a two-way between networks 
analysis of variance (ANOVA) in order to compare the 
effects of dataset (training, generalization) and damage type 
(undamaged, grey-matter, white-matter) on mean output 
error. The main effects of dataset and damage type, as well 
as the dataset by damage type interaction, were all 
significant. Figure 3 shows mean output error for the 
different datasets and damage types. 
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Figure 3. Mean output error and SE bars for the different 
datasets and damage types. Due to low variation, error bars 

in the undamaged condition are not clearly visible. 
 

First, error was higher for the generalization, M = 1.22, 
SD = .83, than for the training set, M = .68, SD = .73, F(1, 
594) = 139, p < .001. It is common for networks to perform 
better on problems on which they have been trained.  

Second, the significant effect of damage type, F(2,594) = 
213, p < .001, was explored using Bonferroni post-hoc tests. 
Error was significantly lower for the undamaged condition, 
M = .30, SD = .31, than for either the white-matter, M = 
1.42, SD = .42, or grey-matter damage condition, M = 1.14, 
SD = 1.04, ps < .001. Further, error was significantly lower 
for grey- than for white-matter damage networks, p = .001.  

Third, to explore the significant dataset by damage type 
interaction, F(2,594) = 62, p < .001, we analyzed mean 
network error for each level of the factor dataset (training, 
generalization), using one-way ANOVAs with damage type 
(undamaged, grey-matter, white-matter). For the training 
set, the effect of damage type was significant, F(2, 297) = 
250, p < .001, and Bonferroni post-hoc tests revealed that 
error was significantly lower for the undamaged condition, 
M = .06, SD = .12, than for either grey-, M = .54, SD =.58, 
or white-matter damage, M = 1.44, SD = .49, with error 
being significantly lower error for the grey- than the white-
matter damage, ps < .001. For the generalization set, the 
effect of damage type was also significant, F(2, 297) = 87, p 
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< .001, and error was still significantly lower for 
undamaged, M = .54, SD = .24 than for either grey, M = 
1.74, SD = 1.06, or white-matter damage, M = 1.39, SD = 
.34, ps < .001. However, this time error was significantly 
lower for white- than for grey-matter damage, p = .001.  

Discussion 
We modeled undamaged, white-matter-damage and grey-
matter-damage performance on the Raven Matrices task. Of 
the three conditions, white-matter damage produced highest 
error. However, the damage type by dataset interaction 
revealed that compared to white-matter damage, grey-matter 
damage produced at once higher error for generalization 
problems not seen in training, and lower error for problems 
seen in training. To our knowledge, our computational 
model is the first to demonstrate an association between 
white- and grey-matter damage and cognitive impairment. 

White- worse than grey-matter damage overall 
Why was white-matter damage, i.e., noisy reduced axonal 
signal, overall worse than grey-matter damage, i.e., no 
axonal signal at all? This perhaps unexpected result may be 
due to white-matter damage varying in time. That is, white-
matter damaged neurons had different noise values every 
time activation values were calculated, whereas grey-matter 
damaged activation values were constantly null. White-
matter damage networks thus had to deal with changing 
information, whereas grey-matter damage networks—
although missing considerable information—could adapt 
better to their damage because at least it was constant. 

In their computational model of synaptic recovery, Follett 
and colleagues (2009) also reported a worse effect of white- 
compared to grey matter-damage, but their model did not 
test cognitive impairment. Our model adds to their findings 
by indicating that white- may be worse than grey-matter 
damage for learning and performing on cognitive tasks. Our 
results may thus provide insights into the mechanisms 
underlying the association between damaged and/or reduced 
white-matter structure and reduced cognitive abilities in 
preterm children (Skranes et al., 2007), full-term children 
(Schmithorst, Wilke, Dardzinski, & Holland, 2005) and 
normal, age-related cognitive decline (Charlton et al., 2006).  

Damage type and dataset interaction 
Even though error was overall larger for white- than grey-
matter damage, grey-matter damage produced larger error 
on generalization problems, i.e., problems not used in 
training. Our model thus predicts that different types of 
perinatal brain damage may be associated with different 
types of cognitive impairment. It is however difficult to 
compare our predictions with findings from the preterm 
literature as not much is currently known about white- 
versus grey-matter damage in cognitive development 
(Dammann, Kuban, & Leviton, 2002), and because preterm 
children with grey-matter damage generally also have 
white-matter damage, (Pierson et al., 2007). Further, the 

association between preterm perinatal grey-matter damage 
and cognitive impairments has not yet been studied directly. 

Why different effects? 
Interestingly, our further simulations (not reported here) 
indicate that the differential effects of white and grey-matter 
damage still hold when the imposed training limit is either 
doubled or cut in half, when using generalization patterns 
drawn from the same distribution as training patterns, as 
well as on the continuous XOR benchmark problem. In 
continuous XOR there are 2 inputs, each varying between [-
.5, .5] and the output is 1 when inputs indicate a point in 
either the first or third quadrant, and zero in the other two 
quadrants. The interaction thus seems to be robust to 
changing the training length and the task.  

Insight into our findings may be achieved by analyzing 
other computational studies. We implemented white-matter 
damage by randomly reducing the output activations of 
damaged neurons. Such manipulations resemble injection of 
noise in neural-network simulations, which was previously 
found to improve generalization. For instance, Jim, Giles, 
and Horne (1996) found improved generalization on a dual-
parity problem and a randomly generated six-state problem 
by adding noise to the connection weights of their networks. 
Unsworth and Coghill (2006) also found improved 
generalization in their multilayer perception networks, 
designed to recognize partially obscured human movement, 
but this time by injecting noise in the training data.  

Adding noise can thus improve generalization, perhaps 
explaining better generalization for white than grey-matter 
damage. Generalization was however worse for white-
matter damage than for undamaged networks. This may be 
due to very high training error in white-matter damage 
(more than four times higher than for undamaged networks). 
Indeed, networks’ generalization is limited by the quality of 
their learning. Because white-matter damaged networks had 
high training error, their overall generalization error was 
also high. Further, Figure 3 reveals white-matter damage to 
be the only condition in which error is not higher for 
generalization than training problems (in fact it appears to 
be slightly lower for generalization), which suggests some 
improved generalization in white-matter damaged networks.  

Our implementation of white matter damage differed 
from the previous noisy simulations. Compared to others 
who injected noise in either connection weights (e.g., Jim et 
al., 1996) or in the training data (e.g., Unsworth & Coghill, 
2006), we injected noise at the level of neurons’ output 
activations, to simulate impaired axonal transmission. 
Further, whereas others have used absolute, small noise 
values, e.g., between [0, 2] (Jim et al., 1996), we used 
proportional, large noise values that varied between 0% and 
100% of neurons’ output activations. Thus our noise values 
varied between [.5, 8.0] due to the range of possible values 
in the input patterns. Therefore, white-matter damage may 
have produced large error due to the large noise values.  

We implemented grey-matter damage by blocking the 
output of damaged neurons, simulating cell death and no 
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axonal transmission. This manipulation resembles neuronal 
pruning, usually used to increase generalization in neural 
networks (Reed, 1993). However, pruning algorithms 
usually select smaller, less important connection weights to 
be deleted (LeCun, Denker, & Solla, 1990). The idea is that 
large networks may use their extra connections to encode 
some of the specifics of the training data. Pruning 
algorithms thus usually remove smaller weights, in the hope 
that the remaining, larger connection weights better encode 
the pattern underlying the data. By contrast to these 
connection pruning techniques, our networks had whole 
neurons damaged and these neurons were chosen at random, 
without regards to whether they were important or not for 
task performance. Removing potentially critical neurons and 
connections, as opposed to non-important ones, may explain 
why grey-matter damage worsened generalization rather 
than improve it like pruning algorithms.  

It is still unclear why training error was lower for grey- 
than for white-matter damage. This result may reflect the 
intuition that learning may be easier when missing some 
information compared to when having wrong information. 
For instance, Eggert, Ladda, and Straube (2009) found that 
subjects were better at predicting the trajectory of dots on a 
screen if no aiding cues were provided compared to when 
both correct and misleading cues were provided. In the case 
of grey-matter damage, networks apparently learned training 
problems without the missing input neurons. By contrast, 
networks with white-matter damage received information 
from all their input neurons, including some misleading, 
noisy information which may have made it difficult to learn.  

Future directions 
We simulated the Raven task by assigning random values to 
the main features of the matrix figures, and arranging these 
values in problems following any of the four Raven rules 
(Carpenter et al., 1990). By contrast, real Raven matrix 
figures often contain several features which vary along 
several rules, and thus human subjects have to find which of 
the features are relevant to which rules. Future simulations 
may more closely match the task, e.g., by using vectors or 
sub-matrices to encode all the figures’ features. However, 
because networks still had to figure out the four rules only 
from the pattern of inputs, we consider our task to still be 
quite challenging. An indication of this difficulty may lie in 
the fact that many hidden neurons, i.e., 14 on average, were 
required by undamaged networks to learn the task. Further 
analyses may also use the number of problems solved 
correctly rather than using the usual output error measure. 
We could thus study whether white- and grey-matter 
damage also have differential effects on the number of 
problems solved, and assess the order in which networks 
succeed at different types of problems as they develop. 

We implemented white- and grey-matter damage by 
impairing half of the neurons in damaged networks 
(excluding the single output neuron), and damage was static, 
i.e., a given damaged neuron stayed damaged for the whole 
simulation. However, because the infant brain is very 

plastic, perinatal brain damage may interact in a complex 
way with the child’s later development. Future work may 
consider developmental damage, e.g., punctual damage only 
at the beginning rather than throughout the simulation, or 
that is more closely related to the networks’ hidden neuron 
recruitment. For instance, an area often damaged in the 
preterm brain is the germinal matrix, which is responsible 
for generating cortical neurons. Because white-matter 
damage is associated with damage to neurons migrating 
from the germinal matrix (Leviton & Gressens, 2007), 
future simulations may more closely simulate perinatal 
brain damage by directly impairing the hidden neuron 
recruitment process in SDCC, rather than letting networks 
decide whether to recruit damaged or undamaged neurons. 
We may also compare networks with different proportions 
of both white- and grey-matter damage. 

Summary 
Our computational model explored the potential link 
between brain damage and cognitive impairments in 
preterm children. White-matter damage produced overall 
higher task error, but grey-matter damage produced higher 
error on generalization problems, not seen in training. Our 
results thus predict that different types of brain damage may 
lead to different types of cognitive impairments. Future 
psychological work may test this prediction, e.g., by having 
white- and grey-matter damage populations trained on 
Raven problems and tested on novel problems (perhaps 
using a procedure similar to Skuy et al., 2002). Insights 
gained into the mechanisms underlying the association 
between perinatal brain damage and cognitive impairment 
may lead to more effective treatment for survivors of 
prematurity and help alleviate this aggravating problem.  
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