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Abstract

Many preterm neonates have white-matter damage (WMD,
damaged connections between neurons) and grey matter-
damage (GMD, dead neurons). These children are known to
have lower 1Qs than their full-term peers, yet the mechanisms
underlying this association are poorly understood. We
designed a developmental connectionist model of the Raven
Matrices 1Q task in which (1) all neurons had intact output,
simulating normal development, or (2) half the neurons had
noisy output, simulating noisy transmission or WMD, or (3)
half the neurons had no output, simulating cell death or GMD.
We found that damage increased task error. Further, WMD
was worse than GMD overall, yet GMD was at once worse
for generalization problems not given in training and better
for training problems. Our model is the first to simulate an
effect of perinatal brain damage on a cognitive task, and
predicts that different types of brain damage may lead to
different cognitive impairments.
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Background

In 2007, 12.7% of all births in the United States were
preterm, an increase of over 2% since 1990 (Heron et al.,
2009). This increase inevitably exacerbates family distress
and healthcare costs, as children born preterm present many
cognitive and developmental impairments compared to their
full-term peers, including lower IQ scores (Bhutta, Cleves,
Casey, Cradock, & Anand, 2002). The severity of preterm
children’s cognitive deficits appears to be correlated with
brain abnormalities, e.g., reduced volume in specific brain
regions (Peterson et al., 2000), which may result from
abnormal development following perinatal brain damage
(Robinson, 2005). Indeed, preterm neonates have immature
brains that are likely to suffer damage from prematurity-
associated adverse exposures before and after birth.
Perinatal brain damage can occur in either of the two
major macroscopically distinct areas of the brain, the white
(Dyet et al., 2006) and grey matter (Burd et al., 2009).
White matter is made up of myelinated axons connecting
neuronal regions and is the matter principally damaged in
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preterm brains (Leviton & Paneth, 1990). By contrast, grey
matter consists of neuronal cell bodies and its damage is
usually more constrained in the preterm brain (Billiards,
Pierson, Haynes, Folkerth, & Kinney, 2006). Although the
association between cognitive impairments and brain
damage is well known in the pediatric community, not much
is known about either the general mechanisms underlying
the association (Counsell et al., 2008), or more specifically,
about how damage to white or grey matter may potentially
affect cognitive function differentially. Although a previous
computational model indicated that white-matter damage
may be worse than grey-matter damage for synaptic
recovery (Follett, Roth, Follett, & Dammann, 2009), that
model did not implement any cognitive task and thus did not
inform us about the effect of damage on cognition.

In order to explore how white- and grey-matter damage
may affect cognitive ability, we designed a computational
developmental model of a popular IQ task, the Raven
Matrices, and incorporated white- and grey-matter damage
in the model to assess their effects on task performance.

Computational Developmental Algorithm

Sibling-Descendent Cascade-Correlation (SDCC, Baluja &
Fahlman, 1994) is a supervised-learning, artificial-neural-
network algorithm which benefits from fast and powerful
learning and implements some psychologically- and
neurologically-plausible mechanisms (Shultz, 2006; Shultz,
Mysore, & Quartz, 2007). Its developmental or constructive
aspect comes from the fact that networks initially have only
input and output units (fully interconnected with random
weights), but develop by recruiting hidden units, as required
to reduce error in training.

Training includes output and input phases. Networks are
first given training patterns (input and target patterns), and
training enters the output phase, in which the algorithm
reduces output error, the discrepancy between output
activation (initially random) and the target patterns. If the
algorithm cannot bring error lower than the Score Threshold
(ST) parameter, left at its default value of .4 for all training
patterns, training switches to the input phase. In the input



phase, the network selects the one hidden unit, out of a pool
of 8 randomly-initialized candidate recruits, that correlates
most with output error. This selected unit is integrated into
the network and training switches back to output phase.
Training usually stops as soon as error for each training
pattern drops below the ST. However, in order to have
consistent amount of training across all types of networks,
we imposed here a training limit of 14 hidden units and
2500 epochs, based on the average training cost of an
independent, undamaged sample of 100 networks.

At the end of training, networks are tested by freezing
connection weights (so that networks do not learn during
testing), and measuring output error on testing patterns.

Raven Matrices task

The Raven Matrices task consists of a series of problems, in
which subjects have to study a 3-by-3 matrix, and chose
amongst 8 alternatives the figure that best fits the empty
spot in the matrix (Figure 1).
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Figure 1. An example Raven problem. Copyright © 1990 by
the American Psychological Association. Reproduced with
permission from Carpenter, Just, and Shell (1990). The use
of APA information does not imply endorsement by APA.

There are four rules (Carpenter et al., 1990) for predicting
the missing figure. In the constant-in-a row rule, a figure
feature is constant across rows. For example, the narrow
rectangle in Figure 1 is always vertical in the first row,
horizontal in the second, and diagonal in the third. In the
distribution-of-three rule, a feature is distributed amongst
the figures in a row, e.g., the narrow rectangle is either
black, striped, or transparent in each column in Figure 1. If
one of the three features is absent, the distribution-of-three
rule can also cover a distribution-of-two-values rule,
sometimes considered as a separate rule. In the quantitative-
pairwise-progression rule, figure attributes (such as small
squares in a grid) increment or decrement between adjacent
columns. In the addition and subtraction rules, a figure
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feature from column 1 is added to or subtracted from a
figure in column 2 to produce a third figure in column 3.

Methods

We used SDCC to train and test undamaged networks on the
Raven Matrices task. We next incorporated damage in two
different groups of networks by either randomizing (white-
matter damage) or blocking (grey-matter damage) the output
activation of approximately half the networks’ neurons.

Undamaged Training and Testing

A first group of 100 undamaged networks were trained and
tested on Raven task problems that each implemented one
of the four rules identified by Carpenter and colleagues
(1990). Performance was evaluated on problems that
networks knew about, and on novel problems, a technique
somewhat similar to some psychological studies using the
Raven task (e.g., Skuy et al., 2002).

Networks had eight inputs corresponding to the eight
figures constituting a Raven problem, and one output
corresponding to the missing ninth figure. Inputs and
outputs used linear activation functions to cover the range of
possible input and output values (see below). In order to
compare network performance on known and novel data,
two datasets of equal size were constructed: the training and
generalization sets. Figure 2 illustrates an example Raven
problem coded for training and generalization patterns.
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Figure 2. A Raven problem represented in figures and as a
training pattern, and its derived generalization pattern.

The left-most panel of Figure 2 shows the example
figures, and the middle panel shows how the figures may be
coded as a training pattern. For each training pattern,
selected features were coded by integers (chosen at random
between 1 and 4 from a uniform distribution) that
represented the figure feature relevant to the problem rule.
Each training pattern implemented one of the 4 rules
identified by Carpenter and colleagues, (1990). For instance,
in this constant-in-a-row example problem, 1.0 represents a
vertical bar, 4.0 an horizontal one, and 2.0 a diagonal one.

The right panel shows a generalization pattern, obtained
by subtracting .5 from every value of the example training
pattern.  Following previous practice (Dandurand,
Berthiaume, & Shultz, 2007), generalization patterns were
all obtained using this calculation (although in feature-
addition and -subtraction problems, .5 was only subtracted



from numbers in the first two columns, because the third
value depended on the first two). Other types of problems
were coded similarly. Distribution-of-three problems had
one of three numbers appear in each column. Quantitative-
pairwise-progression problems were represented by an
increment or decrement of numbers across adjacent
columns. Addition and subtraction problems had a number
from the second column added to or subtracted from the
number the first column, to produce the third column
number (in subtraction problems, the first column value was
always bigger than in the second column, to ensure positive
values in the third column). The range of input and output
values was [.5, 8.0], where [5.0, 8.0] were only present
when due to the addition of other features, i.e., [1.0, 4.0] for
the training set and [.5, 3.5] for the generalization set.

Training and generalization sets each included 20
examples of each of the 5 types of Raven problems (feature-
addition and-subtraction were considered 2 different types),
for a total of 100 problems. Each dataset was created by
sampling randomly, with possible repetitions of rows and
problems, through the possible permutations of the 4 feature
values, so that no network had identical training or testing.
In test, after training, we calculated mean squared output
error for both training and generalization datasets.

Damaged Training and Testing on the Raven task

Two other groups of 100 networks were trained and tested
as described above, except that they were damaged by either
randomly reducing (white-matter damage) or blocking
(grey-matter damage) the output activation of some of their
neurons. Damaged neurons were selected randomly for each
network, and half of the input neurons and half of the
candidate hidden neurons were damaged. There is nothing
special about impairing half the neurons, we selected that
proportion as a starting point for our experiments. Networks
were free to recruit or not recruit impaired hidden neurons,
so as to simulate more naturally perinatal brain damage, i.c.,
prior to learning and performing on tasks. The output
neuron was not damaged, in order to insure a fairer
comparison of white- and grey-matter damage (a grey-
matter-damaged output would prevent any network output).

White-matter damage. White-matter damage is often
observed as abnormal white-matter signal and abnormal
axonal myelination (Counsell et al., 2006). A reduction in
white-matter signal may be due to noisy or leaky axonal
transmissions in which abnormal axonal myelination causes
action potentials to be lost. To model this leaky transmission
we subtracted a different random value from the activation
value of impaired neurons each time an activation value was
calculated, as in:

A, = Activation — [Activation * RandomValue(0,1)]
where A, is the reduced random activation, Activation is the

undamaged activation and RandomValue(0,1) is a value
chosen randomly from a [0, 1] uniform distribution.
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Grey-matter damage. Grey-matter damage can be
considered as cell death, leading to a complete loss of signal
(e.g., Follett et al., 2009). It was therefore modeled by
reducing the activation values of each impaired neuron to 0.

Results

After training, we performed a two-way between networks
analysis of variance (ANOVA) in order to compare the
effects of dataset (training, generalization) and damage type
(undamaged, grey-matter, white-matter) on mean output
error. The main effects of dataset and damage type, as well
as the dataset by damage type interaction, were all
significant. Figure 3 shows mean output error for the
different datasets and damage types.
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Figure 3. Mean output error and SE bars for the different
datasets and damage types. Due to low variation, error bars
in the undamaged condition are not clearly visible.

First, error was higher for the generalization, M = 1.22,
SD = .83, than for the training set, M = .68, SD = .73, F(1,
594) = 139, p < .001. It is common for networks to perform
better on problems on which they have been trained.

Second, the significant effect of damage type, F(2,594) =
213, p <.001, was explored using Bonferroni post-hoc tests.
Error was significantly lower for the undamaged condition,
M = .30, SD = .31, than for either the white-matter, M =
1.42, SD = .42, or grey-matter damage condition, M = 1.14,
SD = 1.04, ps < .001. Further, error was significantly lower
for grey- than for white-matter damage networks, p = .001.

Third, to explore the significant dataset by damage type
interaction, F(2,594) = 62, p < .001, we analyzed mean
network error for each level of the factor dataset (training,
generalization), using one-way ANOVAs with damage type
(undamaged, grey-matter, white-matter). For the training
set, the effect of damage type was significant, (2, 297) =
250, p < .001, and Bonferroni post-hoc tests revealed that
error was significantly lower for the undamaged condition,
M = .06, SD = .12, than for either grey-, M = .54, SD =.58,
or white-matter damage, M = 1.44, SD = .49, with error
being significantly lower error for the grey- than the white-
matter damage, ps < .001. For the generalization set, the
effect of damage type was also significant, (2, 297) =87, p



< .001, and error was still significantly lower for
undamaged, M = .54, SD = .24 than for either grey, M =
1.74, SD = 1.06, or white-matter damage, M = 1.39, SD =
.34, ps < .001. However, this time error was significantly
lower for white- than for grey-matter damage, p = .001.

Discussion

We modeled undamaged, white-matter-damage and grey-
matter-damage performance on the Raven Matrices task. Of
the three conditions, white-matter damage produced highest
error. However, the damage type by dataset interaction
revealed that compared to white-matter damage, grey-matter
damage produced at once higher error for generalization
problems not seen in training, and lower error for problems
seen in training. To our knowledge, our computational
model is the first to demonstrate an association between
white- and grey-matter damage and cognitive impairment.

White- worse than grey-matter damage overall

Why was white-matter damage, i.e., noisy reduced axonal
signal, overall worse than grey-matter damage, i.e., no
axonal signal at all? This perhaps unexpected result may be
due to white-matter damage varying in time. That is, white-
matter damaged neurons had different noise values every
time activation values were calculated, whereas grey-matter
damaged activation values were constantly null. White-
matter damage networks thus had to deal with changing
information, whereas grey-matter damage networks—
although missing considerable information—could adapt
better to their damage because at least it was constant.

In their computational model of synaptic recovery, Follett
and colleagues (2009) also reported a worse effect of white-
compared to grey matter-damage, but their model did not
test cognitive impairment. Our model adds to their findings
by indicating that white- may be worse than grey-matter
damage for learning and performing on cognitive tasks. Our
results may thus provide insights into the mechanisms
underlying the association between damaged and/or reduced
white-matter structure and reduced cognitive abilities in
preterm children (Skranes et al., 2007), full-term children
(Schmithorst, Wilke, Dardzinski, & Holland, 2005) and
normal, age-related cognitive decline (Charlton et al., 2006).

Damage type and dataset interaction

Even though error was overall larger for white- than grey-
matter damage, grey-matter damage produced larger error
on generalization problems, i.e., problems not used in
training. Our model thus predicts that different types of
perinatal brain damage may be associated with different
types of cognitive impairment. It is however difficult to
compare our predictions with findings from the preterm
literature as not much is currently known about white-
versus grey-matter damage in cognitive development
(Dammann, Kuban, & Leviton, 2002), and because preterm
children with grey-matter damage generally also have
white-matter damage, (Pierson et al., 2007). Further, the
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association between preterm perinatal grey-matter damage
and cognitive impairments has not yet been studied directly.

Why different effects?

Interestingly, our further simulations (not reported here)
indicate that the differential effects of white and grey-matter
damage still hold when the imposed training limit is either
doubled or cut in half, when using generalization patterns
drawn from the same distribution as training patterns, as
well as on the continuous XOR benchmark problem. In
continuous XOR there are 2 inputs, each varying between [-
.5, .5] and the output is 1 when inputs indicate a point in
either the first or third quadrant, and zero in the other two
quadrants. The interaction thus seems to be robust to
changing the training length and the task.

Insight into our findings may be achieved by analyzing
other computational studies. We implemented white-matter
damage by randomly reducing the output activations of
damaged neurons. Such manipulations resemble injection of
noise in neural-network simulations, which was previously
found to improve generalization. For instance, Jim, Giles,
and Horne (1996) found improved generalization on a dual-
parity problem and a randomly generated six-state problem
by adding noise to the connection weights of their networks.
Unsworth and Coghill (2006) also found improved
generalization in their multilayer perception networks,
designed to recognize partially obscured human movement,
but this time by injecting noise in the training data.

Adding noise can thus improve generalization, perhaps
explaining better generalization for white than grey-matter
damage. Generalization was however worse for white-
matter damage than for undamaged networks. This may be
due to very high training error in white-matter damage
(more than four times higher than for undamaged networks).
Indeed, networks’ generalization is limited by the quality of
their learning. Because white-matter damaged networks had
high training error, their overall generalization error was
also high. Further, Figure 3 reveals white-matter damage to
be the only condition in which error is not higher for
generalization than training problems (in fact it appears to
be slightly lower for generalization), which suggests some
improved generalization in white-matter damaged networks.

Our implementation of white matter damage differed
from the previous noisy simulations. Compared to others
who injected noise in either connection weights (e.g., Jim et
al., 1996) or in the training data (e.g., Unsworth & Coghill,
2006), we injected noise at the level of neurons’ output
activations, to simulate impaired axonal transmission.
Further, whereas others have used absolute, small noise
values, e.g., between [0, 2] (Jim et al., 1996), we used
proportional, large noise values that varied between 0% and
100% of neurons’ output activations. Thus our noise values
varied between [.5, 8.0] due to the range of possible values
in the input patterns. Therefore, white-matter damage may
have produced large error due to the large noise values.

We implemented grey-matter damage by blocking the
output of damaged neurons, simulating cell death and no



axonal transmission. This manipulation resembles neuronal
pruning, usually used to increase generalization in neural
networks (Reed, 1993). However, pruning algorithms
usually select smaller, less important connection weights to
be deleted (LeCun, Denker, & Solla, 1990). The idea is that
large networks may use their extra connections to encode
some of the specifics of the training data. Pruning
algorithms thus usually remove smaller weights, in the hope
that the remaining, larger connection weights better encode
the pattern underlying the data. By contrast to these
connection pruning techniques, our networks had whole
neurons damaged and these neurons were chosen at random,
without regards to whether they were important or not for
task performance. Removing potentially critical neurons and
connections, as opposed to non-important ones, may explain
why grey-matter damage worsened generalization rather
than improve it like pruning algorithms.

It is still unclear why training error was lower for grey-
than for white-matter damage. This result may reflect the
intuition that learning may be easier when missing some
information compared to when having wrong information.
For instance, Eggert, Ladda, and Straube (2009) found that
subjects were better at predicting the trajectory of dots on a
screen if no aiding cues were provided compared to when
both correct and misleading cues were provided. In the case
of grey-matter damage, networks apparently learned training
problems without the missing input neurons. By contrast,
networks with white-matter damage received information
from all their input neurons, including some misleading,
noisy information which may have made it difficult to learn.

Future directions

We simulated the Raven task by assigning random values to
the main features of the matrix figures, and arranging these
values in problems following any of the four Raven rules
(Carpenter et al., 1990). By contrast, real Raven matrix
figures often contain several features which vary along
several rules, and thus human subjects have to find which of
the features are relevant to which rules. Future simulations
may more closely match the task, e.g., by using vectors or
sub-matrices to encode all the figures’ features. However,
because networks still had to figure out the four rules only
from the pattern of inputs, we consider our task to still be
quite challenging. An indication of this difficulty may lie in
the fact that many hidden neurons, i.e., 14 on average, were
required by undamaged networks to learn the task. Further
analyses may also use the number of problems solved
correctly rather than using the usual output error measure.
We could thus study whether white- and grey-matter
damage also have differential effects on the number of
problems solved, and assess the order in which networks
succeed at different types of problems as they develop.

We implemented white- and grey-matter damage by
impairing half of the neurons in damaged networks
(excluding the single output neuron), and damage was static,
i.e., a given damaged neuron stayed damaged for the whole
simulation. However, because the infant brain is very
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plastic, perinatal brain damage may interact in a complex
way with the child’s later development. Future work may
consider developmental damage, e.g., punctual damage only
at the beginning rather than throughout the simulation, or
that is more closely related to the networks’ hidden neuron
recruitment. For instance, an area often damaged in the
preterm brain is the germinal matrix, which is responsible
for generating cortical neurons. Because white-matter
damage is associated with damage to neurons migrating
from the germinal matrix (Leviton & Gressens, 2007),
future simulations may more closely simulate perinatal
brain damage by directly impairing the hidden neuron
recruitment process in SDCC, rather than letting networks
decide whether to recruit damaged or undamaged neurons.
We may also compare networks with different proportions
of both white- and grey-matter damage.

Summary

Our computational model explored the potential link
between brain damage and cognitive impairments in
preterm children. White-matter damage produced overall
higher task error, but grey-matter damage produced higher
error on generalization problems, not seen in training. Our
results thus predict that different types of brain damage may
lead to different types of cognitive impairments. Future
psychological work may test this prediction, e.g., by having
white- and grey-matter damage populations trained on
Raven problems and tested on novel problems (perhaps
using a procedure similar to Skuy et al., 2002). Insights
gained into the mechanisms underlying the association
between perinatal brain damage and cognitive impairment
may lead to more effective treatment for survivors of
prematurity and help alleviate this aggravating problem.
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