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Abstract

This article proposes a method by which anchoring effects
can be mathematically modeled. Anchoring effects are a type
of assimilation effect; so this article proposes using
Anderson’s (1965; 1981) integration model to model
anchoring effects, as it is typically used to model other
assimilation effects. The difficulty in using the integration
model is that doing so requires that the modeler knows or is
able to estimate participants’ unbiased estimates (i.e., what
their estimates would have been had they never seen the
anchor) and this information is not available from
conventional anchoring effect paradigms. A method for
estimating unbiased estimates is proposed. This method is
used to estimate unbiased estimates for a set of anchoring
effect data and the integration model is fit to these data. This
article closes by speculating on possible theoretical insights
into anchoring effects that might be gleaned by using the
proposed methodology and possible practical applications.

Anchoring Effects

The goal of this paper is to propose a method by which
anchoring effects can be mathematically modeled. The
ability to mathematically model anchoring effects might be
useful both for differentiating among theoretical models of
anchoring effects and for calculating likely practical
applications of anchoring effects in situations such as
negotiations (e.g., Chapman & Bornstein, 1996; Galinsky &
Mussweiler, 2001), auctions (Ku, Galinsky, & Murnighan,
2006), and pricing (Northcraft & Neale, 1987). These
possible applications of the proposed model will be
discussed in the General Discussion section.

In anchoring effects, estimates of an unknown value are
assimilated towards an arbitrary numeric value called the
anchor. For example, in a well-known study, Tversky and
Kahneman (1974) asked participants to judge whether
African nations represented a higher or lower percentage of
UN-member nations than an anchor and then to estimate the
actual percentage. Estimates were assimilated towards the
anchor. When the anchor was 10% of UN-member nations,
the median estimate was assimilated downward toward 10%
to equal 25%; but when the anchor was 65%, the median
estimate was assimilated upward toward 65% to equal 45%.

Assimilation  effects like these are typically
mathematically modeled using Anderson’s (1965; 1981)
integration model. A mathematical formalization like the
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integration model formalization was alluded to in at least
one anchoring effect paper (see Jacowitz & Kahneman, 's,
1995, discussion of priming models of anchoring effects).
In addition, this mathematical formalization has been used
to model assimilation effects in phenomena as diverse as
impression formation (the domain that originally inspired
Anderson's model, see Urada, Stenstrom, & Miller, 2007,
for a recent application), physical attractiveness (e.g.,
Wedell, Parducci, & Geiselman, 1987), product evaluation
(e.g., Miyazaki, Grewal, & Goodstein, 2005; Troutman &
Shanteau, 1976), risk assessment (e.g., Hampson, Andrews,
Barckley, Lee, & Lichtenstein, 2003), and the best timing
for lesbian and gay politicians to come out of the closet
(Golebiowska, 2003)".

The Proposed Mathematical Model

Anderson’s (1965; 1981) integration model would model
the assimilation observed in anchoring effects as a weighted
average of the anchor value (A) and the unbiased estimate a
participant would have made had she or he never seen the
anchor (U: U for Unbiased; see below for how this quantity
can be empirically measured):

EST = wA + (1-w)U 1)
where EST represents a participant’s estimate (i.e., the
dependent measure in anchoring estimation tasks) and w is
the weight bound between 0 and 1 of the anchor value (A)
relative to the unbiased estimate (U). A weight of 0 would
represent a case in which estimates were not affected at all
by exposure to the anchor. In such a case, unbiased
estimates (U) would be equal to participants’ estimates
(EST) so that EST = U. A weight of 1 would represent a
case in which all participants simply respond with the
anchor value.  Weights between these two extremes
represent estimates that are assimilated toward the anchor
value, but are not equal to it.

The key problem in using Anderson’s (1965; 1981)
integration model to model anchoring effects is that it
requires the modeler to know what participants’ unbiased
estimates (U) would have been had they never seen the
anchor. Measuring these unbiased estimates is made
particularly difficult, because it is not possible to ask
participants to make a numerical estimate twice (once
before and once after being exposed to the anchor value) as



their first numerical estimate will bias their second. To solve
this problem, the methodology proposed here would have
participants make a non-numerical estimate before being
exposed to the anchor and then make a numerical estimate
afterwards. The mapping between non-numerical estimates
and numerical estimates can then be established by running
a control condition in which participants make both types of
estimates without being exposed to the anchor and
calculating a regression line between the two types of
estimates. The unbiased estimates (U) of the participants in
the experimental condition can then be calculated using the
non-numerical estimates that these participants make and
the regression line.

Empire
State
Building

Petronas
Towers

Figure 1. Graphic estimate of the height of the Sears
Tower. Participants placed a tick mark between the
horizontal line representing the height of the Empire State
Building and the horizontal line representing the height of
the Petronas Towers to represent how tall they believed
the Sears Tower to be.

In the data modeled below, for example, the task was to
estimate the height of the Sears Tower (a Chicago landmark
and one of the world’s tallest buildings; since the time
during which these data were collected, this building has
been renamed the Willis Tower). Participants made two
estimates: a non-numerical estimate and a numerical
estimate. The non-numerical estimate was made on the
graphic presented in Figure 1. Participants were told that the
Empire State Building was the tallest building in the world
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until the Sears’ Tower was built and that the Sears’ Tower
was the tallest building in the world until the Petronas
Towers in Kuala Lumpur, Malaysia were built (taller
buildings yet have been built since the Petronas Towers
were built). Participants made a tick mark between the two
horizontal lines in Figure 1 to denote how tall they believed
the Sears Tower to be relative to the Empire State Building
and the Petronas Towers. The distance between the bottom
line representing the height of the Empire State Building
and each participant’s tick mark was then measured in
millimeters (mm).

The numerical estimate was the number of feet tall that
participants estimated the Sears Tower to be. Participants in
the control condition made the non-numerical estimate and
then the numerical estimate without being exposed to the
anchor. Participants in the experimental condition made the
non-numerical estimate before they made a judgment
regarding whether the Sears Tower was taller or shorter than
the anchor value of 1,367 feet and then made the numerical
estimate. A regression line was calculated between the
control  participants’ non-numerical and numerical
estimates. This regression line was then used to calculate the
experimental participants’ unbiased estimates (U) from their
non-numerical estimates.
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Figure 2. Anchoring effect that would be characterized as
an assimilation effect. The black line represents the
predicted pattern of estimates, if estimates were not
affected by the anchor. The gray line represents the
predicted pattern of estimates, if an assimilation effect
were observed. Notice that the gray line represents a
weighted average of the black line (estimates unbiased by
the anchor) and the anchor value (See Equation 1).

A pattern of biases that would fit Anderson’s (1965;
1981) integration model definition of an assimilation effect
as presented in Equation 1 is demonstrated in Figure 2. The
x-axis represents unbiased estimates (U) and the y-axis
represents participants’ estimates in anchoring estimation
tasks (EST). Do not confuse this figure with the similar-
looking figures used by Chapman and Johnson (1994). In
Chapman and Johnson’s figures, the x-axis represented



alternative anchor values. In Figure 2, the x-axis represents
unbiased estimates and the location labeled “Anchor”
represents a situation wherein a participant’s unbiased
estimate just happened to be equal to the anchor value. The
black line in Figure 2 represents what the pattern of
estimates would look like, if the anchor did not bias
estimates (i.e., the case in which w = 0 and EST = U). The
gray line represents a pattern of biased estimation that
would be characterized as an assimilation effect (any linear
slope between the slope of the black line and horizontal—
that is, where w in Equation 1 takes a value greater than
zero and less than one—would be classified as an
assimilation effect).

Notice that regardless of the values of the unbiased
estimates (U), Equation 1 predicts that they will be biased
toward the anchor value by the same proportion. For
example, all values might be biased 20% toward the anchor.
Sometimes the term “assimilation effect” has been used
roughly to refer to any bias towards a standard regardless of
the extent of the bias and whether the bias toward the
standard is uniform (e.g., Schwarz & Bless, 1992). While
using the term in this way often provides a useful way to
quickly classify results (i.e., as either “assimilation,” bias
toward or “contrast,” bias away from a standard),
Anderson’s (1965; 1981) definition is more precise in that it
captures the degree of bias toward the anchor across the
entire range of unbiased estimates and provides a starting
point from which to model anchoring effects. If it turns out
that not all estimates are biased toward the anchor by the
same proportion (e.g., unbiased estimates close to the
anchor might be biased towards the anchor by a smaller
proportion than unbiased estimates that are farther away
from the anchor or vice versa), then the methodology
proposed here can also be used to fit alternative equations—
other than the integration theory equation—to anchoring
effect data.

We used this methodology and collected anchoring effect
data to which Anderson’s (1965; 1981) integration model
could be fit.

Anchoring Effect Data

The purpose of the experiment reported here was to use
the methodology proposed above to collect data to which
mathematical models—Anderson’s (1965; 1981) integration
model, in particular—could be fit. There was an
experimental group of participants and a control group. The
experimental group made a non-numerical estimate of the
height of the Sears’ Tower, then compared its height to the
anchor value of 1,367 feet, and finally made a numerical
estimate of the height of the Sears’ Tower in feet. The
control group made a non-numerical estimate and then a
numerical estimate without ever being exposed to the
anchor.

Method

Participants. One hundred sixty passengers on the
Chicago elevated train system participated voluntarily (80 in
the control condition and 80 in the experimental condition).
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Materials and Procedure. We told our participants that
the Empire State Building was the tallest building in the
world until the Sears Tower was built and that the Sears
Tower was the tallest building in the world until the
Petronas Towers were built. To measure unbiased
estimates, we first asked participants to estimate the height
of the Sears Tower graphically by showing them in-scale
silhouettes of the Empire State Building and the Petronas
Towers as shown in Figure 1. Horizontal lines crossed the
page to represent the height of each skyscraper. Participants
placed a tick mark between the lines to represent their
estimates of the height of the Sears Tower. After estimating
the height of the Sears Tower graphically, participants in the
control condition simply estimated the height of the Sears
Tower in feet (numerical estimate). Participants in the
experimental condition judged the height of the Sears Tower
to be “more” than or “less” than the anchor value of 1,367
feet before estimating the height of the Sears Tower in feet
(numerical estimate).

Results

The results are presented in Figure 3. As noted in the
discussion of Figure 2 above, be careful not to confuse these
figures with the similar-looking figures used by Chapman
and Johnson (1994). The x-axis here represents unbiased
estimates as measured using the graphic presented in Figure
1, and the y-axis represents participants’ numerical
estimates in feet. We first investigated whether an anchoring
effect was observed by performing a t-test on the absolute
difference between participants’ numerical estimates in feet
and the anchor value of 1,367 feet. The anchoring effect
was highly reliable, t(158)=4.72, p<.01. Estimates were
significantly closer to the anchor value in the experimental
condition (M=128.30 feet away from 1,367 feet,
SD=127.93) than in the control condition (M=479.90 feet
away from 1,367 feet, SD=654.42).

Fitting the Model

Equation 1 was fit to the results of this experiment. The
criterion variable, EST, represented each participant’s
estimate. To use Equations 1 to predict EST, one must
somehow measure the estimates participants would have
made had they never seen the anchor value. That is, one
must measure participants’ unbiased estimates, Parameter
U. To do so, we used the results from the control group to
regress their non-numerical estimates (as collected using the
graphic presented in Figure 1 and measured on mm from the
bottom horizontal line representing the height of the Empire
State Building) on their numerical estimates. We then used
this regression equation along with each experimental
participant’s non-numerical estimate to predict what their
unbiased numerical estimates, U, would have been had they
never seen the anchor. The regression line predicts U as:
U=766.12+(50.93*the distance in mm between the bottom
line in Figure 1 representing the height of the Empire State
Building and each participant’s tick mark). With EST equal
to each experimental participant’s estimate and U equal to
the value predicted by the regression equation, assimilation
effects toward the anchor were modeled using Equation 1.
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Figure 3. Results of the anchoring effect experiment reported here including the regression line and Anderson’s
(1965;1981) integration model fits. The x-axis represents participants’ unbiased estimates of the height of the
Sears/Willis Tower on the graphic presented in Figure 1 and the y-axis represents participants’ numerical estimates of
the height in feet. The white diamonds represent particular participants’ estimates; the black diamonds represent the
regression line calculated on the control participants’ estimates; and the gray diamonds represent the best fit from

Anderson’s integration model.

Parameter A, representing the anchor value, took a value of
1,367 feet and the best-fitting value for Parameter w was
calculated using a root mean squared error (RMSE)
criterion. The best-fitting value for Parameter w was 0.47;
and the RMSE was 116.93. A paired sample t-test on the
squared errors of the values predicted by Anderson’s
integration model versus the squared errors of the values
predicted by the regression equation found that Anderson’s
integration model provided a better fit, t(79)=3.81, p<.01.

Discussion

A method of mathematically modeling anchoring effects
was proposed. This method calculated unbiased estimates
(the estimates participants would have made had they never
seen the anchor value) by having participants make a non-
numerical estimate before being exposed to the anchor value
and a numerical estimate afterwards. The mapping between
non-numerical estimates and numerical estimates was
calculated by asking a control group of participants to make
both types of estimates without ever being exposed to the
anchor and calculated a regression line between the two
types of estimates. The regression line along with the non-
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numerical estimates of the experimental participants
allowed us to estimate what the experimental participants’
estimates would have been had they never been exposed to
the anchor value. Anderson’s (1965; 1981) integration
model (Equation 1) was then fit to these data where U
represented each experimental participants’ unbiased
estimate as calculated by the regression line, EST
represented each participants’ numerical estimate, and A
represented the anchor value of 1,367 feet. The best fitting
value for parameter w using a RMSE criterion was 0.47.
Future research should fit other types of equations to
anchoring effect data collected using this method. Doing so
might prove useful for further refining theoretical models of
anchoring effects. For example, if the anchor value is
outside of the range of acceptable estimates, then Tversky
and Kahneman’s (1974) account of anchoring effects—
under which anchors provide a starting point for
participants’ search for an appropriate estimate—would not
produce a pattern of results that should be modeled using
Anderson’s integration model. Instead of predicting that all
unbiased estimates would be biased toward the anchor by
the same proportion, Tversky and Kahneman’s (1974)



account would predict an approximately horizontal
estimation function. It would predict a horizontal estimation
function, because all participants would start their search for
an appropriate value at the anchor value which is outside of
the range of acceptable estimates, and adjust from there,
stopping at the first acceptable value. They would do so
regardless of what their unbiased estimates would have been
had they never been exposed to the anchor value. One
qualification on this prediction of the anchoring and
adjustment model of anchoring effects would be if the range
of values that participants thought acceptable correlated
with their unbiased estimates, but this question could be
addressed in future research as well (by having control
participants identify the range of values they consider
acceptable) and the issue would not have been addressable
without the methodology proposed here.

By contrast, priming models of anchoring effects (Wilson,
et al., 1996; Wong & Kwong, 2000) would predict
estimation functions that would follow Anderson’s
integration model pattern (see Jacowitz & Kahneman, 's,
1995, discussion of priming models of anchoring effects).
Exposure to the anchor value would prime that value and
then estimates would be a weighted average between the
primed values and the unbiased estimates participants would
have made had they never been exposed to the anchor.

The pattern of bias predicted by Mussweiler and Strack’s
(1999; see also Strack & Mussweiler, 1997) selective
accessibility model is less clear. The selective accessibility
model assumes that when people compare the unknown, to-
be-estimated value to the anchor value, they test whether the
unknown, to-be-estimated value might be the same as the
anchor value by searching for semantic information that
would confirm that the to-be-estimated value is equal to the
anchor value. Confirmation biases almost always produce a
situation wherein people are able to find semantic
information about the to-be-estimated value suggesting that
it is equal to the anchor value. If this account of anchoring
effects is correct, then the degree of bias toward the anchor
will depend upon the amount of confirmatory information
they are able to recall. The ability to find such confirmatory
evidence may vary as a function of people’s unbiased
estimates. People whose estimates would have otherwise
suggested a value close to the anchor based upon their
unbiased semantic knowledge of the to-be-estimated value
may be more likely to find confirmatory evidence than
people whose unbiased estimates would have otherwise
been farther away. The proportion of bias towards the
anchor may then be greater for unbiased estimates that are
relatively close to the anchor than for unbiased estimates
that are farther away from the anchor. Furthermore, future
work might investigate the role of selective accessibility
mechanisms in anchoring effects by using the methodology
proposed here to investigate anchoring effects when
participants have a great deal of semantic knowledge about
the to-be-estimated value and when they do not.

The methodology proposed here (perhaps using a rating
scale to measure unbiased estimates, rather than the measure
presented in Figure 1) may also be useful for studying
practical applications of anchoring effects in situations such
as negotiations (e.g., Chapman & Bornstein, 1996; Galinsky
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& Mussweiler, 2001), auctions (Ku, Galinsky, &
Murnighan, 2006), and pricing (Northcraft & Neale, 1987).
For example, starting negotiations over the selling price of a
home at a high initial asking price may have different
effects depending upon what the potential buyer’s unbiased
estimate of a reasonable price for the house would have
been had she or he never heard the asking price. It is not
clear a priori whether all buyers’ bids are biased toward the
initial asking price by the same proportion. It might turn out
that closer unbiased estimates are biased toward the initial
asking price by a smaller proportion; or it might turn out
that they are biased toward the initial asking price by a
greater proportion. If it turns out that closer unbiased
estimates are biased toward the initial asking price by a
greater proportion, then it may not be the case that larger
initial asking prices always produce the highest selling
prices even if on average they do so. It may turn out that this
phenomenon is mostly due to people who’s unbiased
estimates would have been relatively high before hand and
the bias just makes their estimates of an appropriate bid
higher yet. If so, then lower initial asking prices might be
more effective in producing high selling prices among the
segment of consumers whose unbiased estimates of an
appropriate price were not quite as high at the start. If so,
then the methodology proposed here might be useful in
setting optimal initial asking prices for the entire range of
potential consumers.
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