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Abstract 

Prior research has found that while people are generally quite 
poor at recognizing when a new situation is structurally 
similar to a known case, comparison of two analogous cases 
greatly improves the likelihood of achieving such recognition. 
Our study examines the effects of varying the similarity 
between these compared cases, both featurally and 
structurally. We find that between-case similarity has a 
significant impact on transfer, and that these effects interact 
with characteristics of the learner. 

Introduction 
Our minds are filled with valuable knowledge that we are 
unable to use. This is particularly true of what might be the 
most valuable knowledge of all: general principles that can 
be applied across a wide range of situations. Research in 
analogy has repeatedly found that principles that are learned 
in one context often fail to be retrieved when an individual 
is confronted with a deeply related situation that differs in 
concrete or contextual ways (e.g., Gentner, Rattermann & 
Forbus, 1983; Gick & Holyoak, 1983; Ross, 1984). For 
example, in Gick and Holyoak’s classic (1980; 1983) 
analogy studies, individuals attempting to solve an insight 
problem routinely failed to recognize that the problem was 
analogous to one they had been taught earlier (unless given an 
explicit hint), and therefore failed to make use of their 
relevant knowledge. For both theoretical and practical 
reasons, researchers are keenly interested in finding ways to 
overcome this kind of impediment. 

One approach that has shown great promise is simply 
asking learners to compare two different examples of a 
principle (e.g., Gick & Holyoak, 1983; Loewenstein et al, 
2003; Gentner et al, 2003; Rittle-Johnson & Star, 2007). For 
example, Loewenstien and colleagues (2003) conducted 
research with MBA students enrolled in a course on 
negotiation. Some of the students compared two specific 
cases involving a “contingency contract,” a useful but 
sometimes counterintuitive negotiation technique. Other 
students received the same two cases, but read and analyzed 
them separately, without any explicit comparison. The 
researchers found that students who had compared cases 
were nearly three times more likely to apply the relevant 
principle to a new case than those students who had 
analyzed the cases separately. Consistent with prior findings 
of poor analogical transfer in general, the students who had 
read but not compared cases performed no better on the 
transfer task than those who had received no training. 

Results such as these point to the potential power of 
comparison. The most common explanation for these effects 
is that structural alignments generated when comparing two 
concrete examples serve to highlight meaningful structural 
commonalities between them, while simultaneously taking 
the focus away from elements that are extraneous or 
irrelevant (e.g., Markman & Gentner, 2000). This, in theory, 
allows a more explicit representation of the structure or 
principle itself, making it easier to recognize when it arises 
in new situations.  

However, a great deal remains unknown about the factors 
that make comparison successful in transfer. Particularly, 
there is a surprising lack of research on how the relationship 
between the compared cases (such as their similarity) may 
influence the representations that are formed during 
comparison. Given that the similarities and differences 
between the cases are the basis for the knowledge that 
comparison is presumed to generate, this would seem to be a 
critical area for study. 

For instance, will transfer to new situations be best when 
the features of the compared cases are relatively similar to 
one another, or when their content is more dissimilar? There 
are empirical reasons to predict either of these outcomes. 
Evidence for “conservative generalization” (Medin & Ross, 
1989) suggests that the comparison of two examples that 
share significant surface commonalities may lead to a 
representation in which many of these irrelevant features are 
retained. If so, one of the primary assumed benefits of 
comparison—a more general representation—may be lost. 
Comparison of dissimilar cases may therefore lead to 
representations with broader generalizability. On the other 
hand, comparisons between overtly similar cases are likely 
to be less cognitively demanding, and may therefore help to 
“boot-strap” early learning processes. Consistent with this 
possibility, Kotovsky and Gentner (1996) found that young 
children were better able to perform matches on the basis of 
abstract structural commonalities after performing a similar 
task involving more perceptually similar stimuli. 

A related issue is the effect of the similarity of the 
structures themselves. Most studies focusing on comparison 
and transfer have made use of cases with essentially 
identical relational structures. However, there are reasons to 
suggest that structural variation may be beneficial as well. 
For instance, some research has shown that comparing two 
“near-miss” cases (Winston, 1975), which are identical 
except for a crucial structural difference, may improve 
transfer (e.g., Gick & Paterson, 1992). This approach may 
be particularly effective when an individual needs to 
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discriminate examples of a specific structure from other 
non-matching cases, as is generally the case in the real world. 

The current study examines the impact of both featural 
and structural similarity in compared cases. Additionally, 
unlike previous studies, our design requires participants to 
discriminate different kinds of structures, which may be a 
more ecologically valid way of assessing the benefits of 
comparison. Finally, in contrast to previous research that 
has concentrated on analogical transfer in college-age 
students, our study uses 7th and 8th grade students in a 
science class. Children may be more prone to concrete 
interpretations of scenarios, and thereby miss connections 
between deeply related scenarios. Given the importance of 
students appreciating deep principles (e.g. diffusion, order 
from randomness, and our current topic of interest – 
feedback loops), it is particularly important to know how 
children’s understanding of principles is influenced by 
superficial and deep similarities between scenarios. 

Experiment 
Participants 
90 students from a public middle school participated in this 
study, as part of their regular class time in a General Science 
course. The group included both 7th- and 8th-grade students 
(n = 49 and 41, respectively) from six class periods. 
Roughly half of the students (n = 47) were part of the 
school’s Accelerated Learning Program (ALPs), which is 
composed of students passing a science achievement test. 

Materials and Design 
We led the students’ class sessions for two days. The first 
day involved general instruction on the concept of complex 
systems, including several real-world examples of such 
systems. This instruction did not include any specific 
discussion of feedback systems, our target principle. The 
experiment itself was conducted on the second day. 

The overall design of the experiment was as follows: 
Brief instruction on feedback systems was followed by a 
pre-test, in which students classified specific scenarios as 
examples of positive or negative feedback, and answered 
inference questions about those cases. Students then 
interacted with two computer simulations, each of which 
could vary in terms of its content domain (biology or 
economics) and the type of feedback system it represented 
(positive or negative). These variations represented the 
experimental manipulation in the study. Afterwards, 
students explicitly compared and contrasted the simulations 
they had completed. Finally, the classification and inference 
task was administered a second time, as a post-test. 

The initial instruction included brief descriptions of 
positive and negative feedback systems, and included an 
example of each. These definitions and examples were 
available to students throughout the experiment. 

Pre-test and post-test The pre-test and post-test materials 
were designed to assess students’ understanding of feedback 
systems, particularly the ability to discriminate positive and 
negative feedback systems. These materials included eight 
brief scenarios (averaging 50 words apiece), each describing 

a real-world phenomenon. Four of these scenarios 
represented positive feedback systems, and four represented 
negative feedback systems. For example, one scenario was 
the following: 

The lynx is a natural predator of the hare. When 
lynx populations are small, hare populations 
increase rapidly. This makes the lynx population 
increase, since food is plentiful. However, a large 
lynx population reduces the number of hares, 
which ultimately brings the lynx population back 
down. This cycle repeats every ten years or so. 

After reading each scenario, participants classified it as an 
example of either a positive or negative feedback system by 
selecting a response from a 5-point scale: Definitely 
negative, Probably negative, Don’t know, Probably positive, 
Definitely positive. They also answered one multiple-choice 
inference question about each scenario. For example: 

As the lynx population decreases, the population of 
rabbits should: [Increase / Decrease] 

Identical items were given at pre-test and post-test. 
However, in order to minimize explicit memorization and 
reference to previous answers, students were not informed 
about the post-test until later in the experimental session. 
 
Computer simulations. All students interacted with two 
computer simulations demonstrating feedback behavior. 
These were implemented in NetLogo (Wilensky, 1999), a 
software package for developing agent-based simulations. 
Each of the simulations depicted either a positive or a 
negative feedback system, and each instantiated one of two 
domains: biology (specifically, interacting slime mold cells) 
or economics (a simple stock market). This resulted in four 
relevant simulation types: Biology Positive, Biology 
Negative, Economics Positive, and Economics Negative. 
Two versions of each type were created, differing in 
cosmetic ways. This allowed some students to interact with 
two different versions of the same type without repeating an 
identical simulation. The main theoretical focus of our study 
was on the effects of the similarity between simulations; that 
is, whether the domain and/or feedback type were the same 
or different for each participant. 

Each simulation began with a brief description of its 
behavior. For instance, the Economics Positive simulation 
presented the following introductory description: 

“This simulation involves a small economic system. 
People in this system buy stocks, and they pay attention 
to what other people are doing. When they see someone 
else buying a stock, they are more likely to want to buy 
it themselves. When they see someone else selling a 
stock, they are more likely to sell it themselves. This 
creates a POSITIVE FEEDBACK LOOP. People 
buying the stock leads to even more people buying it. 
People selling the stock leads to even more people 
selling it.”  

The presentation of the simulation was strictly guided 
although interactive, instructing students to perform 
specific actions and then to observe the resulting effects 
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A. B. C. D. 

Box 1: Simulations.  

The economic (stock market) simulations begin (Frame A) with the 420 agents evenly divided between owning the stock (dark; red in the original simulation) 
and not owning the stock (white). A bar on the right side of the screen indicates the proportion of the agents currently owning the stock. While the simulation is 
running, each agent will buy or sell the stock with some specified probability. In the Positive Feedback version of the simulation, the probability of buying rather 
than selling is a positive function of the overall ownership of the stock. As more agents own the stock, the likelihood of new agents purchasing the stock 
increases. Conversely, as fewer agents own the stock, the likelihood of other agents selling the stock increases. Because of this, random initial fluctuations in 
stock ownership tend to be amplified over time, and the system quickly moves toward the extremes, resulting in either ownership by all agents or ownership by 
no agents (Frame B). In the Negative Feedback version, the probability of an agent buying the stock is a negative function of overall ownership. Therefore, 
increased overall ownership makes agents more likely to sell the stock, while decreased overall ownership makes agents more likely to buy. This tends to create 
homeostasis in the system. As the ownership of the stock begins to increase or decrease, the market quickly “corrects” itself and maintains an even proportion of 
owners and non-owners (as in Frame A).  

In the course of the simulation, students are instructed to force a proportion of the agents to buy or sell the stock. This is accomplished by selecting the 
appropriate button on the left side of the screen, then clicking and dragging across the agents. These interactions serve to highlight the way that the system 
responds to small imbalances, by either amplifying them (positive feedback) or reducing them (negative feedback). Additionally, students are explicitly reminded 
at one point during the simulation that it is an example of a positive or negative feedback system. For instance, those in the Negative Feedback version were told: 
“Observe how this system is a negative feedback loop. People buying the stock leads to other people selling it, and people selling the stock leads to other people 
buying it. This tends to keep the system in balance, without allowing too many people to own or not own the stock at once.” 

The biological (slime mold) simulations begin with 27 agents (mold cells) randomly distributed on the screen. While the simulation is running, each cell 
moves about the screen probabilistically, and secretes a chemical that remains for a short period of time in its current location. In the Positive Feedback version, 
cells are attracted this chemical, and their likelihood of moving toward a location increases with the quantity of the chemical there. Over time, this results in the 
cells grouping into a small number of clusters (Frame C), since more cells in a given location leads to a greater amount of the chemical there, attracting even 
more individuals. (Chemical density is reflected by the brightness of a location). In the Negative Feedback version, cells tend to be repelled by the chemical, and 
are therefore more likely to move to locations where less of the substance is present. This results in the cells attempting to maintain a maximal distance from one 
another, leading to a relatively homogenous distribution across the field (Frame D).  
During the simulation, users are instructed to add additional mold cells to the system, by selecting the “Add slime mold” button and clicking in the desired 
location on the screen. They are asked at various points to observe the relative effects of clustering these new cells close together versus spreading them out in 
the space. They are also reminded at one point that the simulation is an example of positive or negative feedback, and why. For example, users in the Positive 
Feedback version were told: “Observe how this system is a positive feedback loop. Cells produce the chemical in a certain location, which brings other cells to 
that location, which leads to even more of the chemical there. This tends to bring the cells together into large clusters. 
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on the system. For example, students in the Economics 
simulations were instructed at various times to force a 
proportion of the agents to buy or sell the stock and observe 
the results. At one point during each simulation, students 
were explicitly reminded of which type of feedback system 
the simulation portrayed (positive or negative), and 
specifically why this system’s behavior reflected that 
feedback type. After being guided through several relevant 
actions, students were encouraged to interact freely with the 
system. Each simulation lasted approximately five minutes. 
Box 1 provides a detailed description of the simulations. 

After completing both simulations, students were 
instructed: “Now we would like you to compare the two 
simulations that you just interacted with. Please write about 
the ways in which the two simulations were similar and 
different from each other, especially in terms of the way that 
they behaved.” There was no time restriction on the 
comparison phase. After comparison, all students completed 
the classification and inference task again. 
 
Predictions. The primary variable of interest is the change 
in performance between pre-test and post-test. There are 
several potential predictions about how this variable might 
be affected by the comparisons that students make. First, 
prior work on the effects of comparing analogous cases 
(e.g., Loewenstein et al, 2003) leads us to expect an overall 
improvement in classification and inference performance, 
reflecting generally stronger representations of the 
principles underlying feedback systems. Given that all 
students are explicitly comparing cases that share a 
feedback structure, it seems likely that their understanding 
of such structures should improve on average. 

We also predict that the kinds of comparisons made may 
affect performance. Comparing two systems involving the 
same type of feedback (i.e., both positive or both negative) 
could lead to a bias in the interpretation of new cases. For 
instance, a student comparing two simulations involving 
negative feedback may be more likely to classify new cases 
as examples of negative feedback at post-test.  

Another way in which the kind of comparison may matter 
is in whether it provides an appropriate balance between the 
compatibility (ease of alignment) and the generalizability of 
the two simulations. As discussed, the similarity of the 
compared cases may have two opposing influences on 
transfer. Cases that are more similar to one another may be 
easier to align, and may therefore provide a more 
straightforward basis for learning about their shared 
underlying structure. On the other hand, highly similar cases 
may artificially restrict students’ representations of the 
relevant principles, leading them to only recognize the 
structure in new situations that are concretely similar to the 
learned cases. Less similar comparison cases may therefore 
lead to better generalization of the principles. We predict 
that learning will be optimal when dissimilarity on one 
dimension is “scaffolded” by relatively high similarity on 
another dimension. In the current context, we would predict 
relatively good performance from those comparing different 
feedback types in the same domain (e.g., Biology Positive 
and Biology Negative). In this case, the relevant differences 
in the positive and negative systems should be particularly 

highlighted because the concrete features of the simulations 
are otherwise highly similar. Likewise, strong performance 
is predicted for individuals comparing the same feedback 
type across different domains (e.g., Biology Positive and 
Economics Positive), since the same underlying principles 
can be observed across more diverse contexts, presumably 
supporting broader generalization. 

We are also interested in potential effects of individual 
differences between students, and how these may interact 
with comparison.  For instance, it is possible that students in 
accelerated classes will tend to focus more on the 
underlying principles of the simulations, and will therefore 
be less influenced by perceptual variation between them. 

Results 
Our data yielded several informative findings. Surprisingly, 
however, most of our initial predictions were not borne out. 
We first examined the overall improvement of the students 
between pre-test and post-test. Calculating improvement 
simply as post-test performance minus pre-test performance, 
there was no evidence of any improvement on average, 
either in classification (M = .03, t(89) = 0.52, n.s.) or 
inference (M = .01, t(89) = 0.78, n.s.). 

Next, we examined possible bias effects in classifications. 
Specifically, we predicted that individuals who had 
compared two cases representing the same kind of feedback 
system (i.e., either two positive cases or two negative cases) 
would become more disposed to classify new cases as 
instances of that particular type. For each of these students 
(n = 43), we calculated bias as the shift toward whichever 
end of the classification scale matched the type of feedback 
cases that the student had compared. This measurement did 
not differ from zero (M = .01, t(42) = 0.23, n.s.). 

There was also no evidence for the kind of interaction 
between structural and featural similarity that we had 
predicted (analysis below). Neither of the conditions that 
included one similar dimension and one dissimilar 
dimension showed any improvement (see Figure 1). 
However, our analysis did reveal several significant results. 

We conducted a 2 (Feedback similarity: Same v. 
Different) × 2 (Domain similarity: Same v. Different) × 2 
(ALPs: Accelerated v. Regular classes) ANOVA on the 
improvement scores. The omnibus test indicated reliable 
differences between groups for the classification task, F(7, 
82) = 2.27, p < .05. (No effects were found for the inference 
task on this or any other analysis discussed). Specifically, 
the test revealed main effects for both Feedback similarity 
(F(1, 82) = 4.02, p < .05) and Domain similarity (F(1, 82) = 
6.18, p < .05). In both cases, improvement was greatest 
when dissimilar cases were compared. Interestingly, for 
both dimensions of similarity, performance actually 
decreased numerically at post-test when similar cases were 
compared (Feedback: similar = -.07, dissimilar = .13; 
Domain: similar = -.08, dissimilar = .16). This fact explains 
the absence of the predicted improvement in overall 
performance: increased scores associated with comparing 
dissimilar cases were largely offset by decreased scores 
resulting from the comparison of similar cases. As seen in 
Figure 1, the greatest improvement was seen in students 
who  compared  cases  involving  both  different feedback  
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     Figure 1: Post-test improvement, by condition 

 
types and different domains, while the least improvement 
(actually negative) was seen in those whose comparisons 
involved the same domain and feedback type. Improvement 
by those in the Different-Different condition was reliably 
greater than zero (M = .26, t(19) = 2.22, p < .05). Those in 
the Same-Same condition were marginally less than zero (M 
= -.21, t(21) = 1.79, p < .10). No effect of membership in 
the accelerated class was observed (F(1, 89) = 0.33, n.s.). 

The influences of structural and featural similarity 
therefore appear to reflect independent main effects. 
However, these two effects did not apply equally across all 
individuals. Interestingly, students in non-accelerated 
classrooms showed large effects of Domain similarity (t(42) 
= 2.83, p < .01), but no evidence of any influence from the 
similarity of the feedback types that were compared (t(42) = 
0.04, n.s.; see Figure 2). In contrast, the ALPs students were 
influenced by Feedback similarity (t(46) = 2.38, p < .05) but 
not Domain similarity (t(46) = 0.38, n.s). 

Discussion 
Several conclusions are suggested by these data. First, the 
results are consistent with previous characterizations of 
explicit comparison as a powerful cognitive process that 
may have an important impact on the acquisition of 
generalizable principles. Under the right conditions, 
participants in our study improved reliably in their ability to 
classify new cases, even in very dissimilar domains. 
However, our data also suggest that the situation is more 
complex that is generally proposed, and that comparison is 
not uniformly beneficial. In fact, on average, explicit 
comparison by the students was not associated with any 
improvement at all at post-test. Under some circumstances, 
there were even trends suggesting that students might be 
negatively impacted by the comparison process (although 
these effects were not reliable, they were large enough to 
effectively offset any overall benefits of comparison). These 
results highlight the importance of exploring the comparison 
process more deeply, and attempting to establish the factors 
that influence comparison-based learning. The remainder of 
our findings begin to address these issues, exploring aspects 
of both the compared materials and the learners themselves. 

Our study varied both the structural similarity (whether 
the systems involved the same or different feedback types) 
and the surface similarity (same versus different content 

domain) of the compared simulations. We predicted that 
learning would be optimal when dissimilarity along one 
dimension was “balanced” by higher similarity on another 
dimension, which we believed would facilitate alignment 
while still highlighting important structural features. This 
prediction was based in part on the approach that has 
generally been taken in the literature: either presenting the 
same underlying structure in dissimilar contexts (e.g., 
Loewenstein et al, 2003), or using “near-miss” cases 
involving the same content but slightly varying the relevant 
structure (e.g., Gick & Paterson, 1992). In contrast to our 
expectations, however, we found that post-test improvement 
was greatest when the cases were less similar to one another 
on both dimensions of similarity. 

Of course, it is important not to over-interpret the results 
from one task and set of materials. Each dimension was only 
tested at two levels, one of which was very high similarity. 
It is possible (even likely) that these effects do not reflect a 
simple linear relationship between dissimilarity and transfer, 
but that there is in fact some optimal similarity level beyond 
which learning and transfer will decline. Regardless, our 
results do clearly indicate that the similarity of the compared 
cases—and not simply the similarity between the learning 
and transfer cases—is a critical factor influencing whether 
or not relevant knowledge will be successfully learned and 
applied. Furthermore, our results highlight the importance of 
using materials that will maximize the generalizability of 
the learned representations, and suggest that this factor may 
often be more important than attempting to facilitate 
alignment through high similarity. 

Perhaps the most interesting—and challenging—finding 
from our study is the way in which properties of the 
comparison cases appear to interact with individual 
differences between learners. Transfer by the students in 
accelerated classes was influenced by the structural 
similarity between the cases, but not at all by the similarity 
of the domains involved. In contrast, structural similarity 
had no impact on students in regular classes, but learning in 
these individuals was significantly affected by domain 
similarity. This finding raises important issues about the 
effects of comparing cases. 

The benefits of comparison are generally attributed to its 
ability to focus attention on relevant aspects of cases while  
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Figure 2: Post-test improvement for accelerated and 

regular classes. 

469



backgrounding less relevant features. This is, in fact, a 
mechanism that likely frequently occurs. However, it is 
important to be mindful of the ways in which differences in 
individuals’ representations of the cases will influence 
which aspects of the situations are highlighted, and to 
recognize that these do not always correspond with those 
that the experimenter may consider “relevant.” While 
membership in the accelerated classes is certainly based on 
a number of interrelated factors—motivation, achievement, 
intelligence, ability to focus—it is clear that some difference 
between the groups is causing them to attend to different 
aspects of the simulations. These differences appear to have a 
stark impact on the effects of comparison. 

Although more work will be necessary to establish the 
exact basis of these differences, it seems likely that the 
ALPs students are better able to look past the immediate 
surface features of a simulation, and to focus instead on its 
underlying structural relationships. There are many reasons 
that this might be the case. For instance, these individuals 
might be coming to the task with richer background 
knowledge about the systems that are being presented, and 
therefore have more cognitive resources available for 
learning. Consistent with this explanation, students in the 
accelerated classes had reliably greater performance at pre-
test, prior to the primary instruction (t(89) = 4.60, p < .001). 
It is also possible that these students have adopted different 
learning strategies, and are more likely to view all 
instructional cases as examples of some relevant principle 
rather than simple facts to be learned independently. Bassok 
and Holyoak (1989, Experiment 3) found that individuals 
appeared to acquire the exact same material more concretely 
or more abstractly based on the specificity of the context in 
which it was presented. It is possible that successful 
students have learned to take advantage of this cognitive 
flexibility by deliberately treating new materials as 
instantiations of deeper principles, rather than ends in 
themselves. Previous research has found that experts tend to 
weigh structural similarities more than superficial 
similarities (Novick, 1988). The current results extend this 
finding; even non-experts that are generally high achieving 
in science show similar tendencies. As such, there appear to 
be domain-general individual differences in sensitivity to 
structure that go beyond expertise in a particular domain. 

Future research will provide more insight into the exact 
processes underlying these differences, but our results make 
clear that characteristics of the learner must be considered 
when using comparison as an instructional tool. As our data 
show, cases that lead to reliable gains in one population may 
foster no improvement at all in another (even very similar) 
group. 

Conclusions 
Our knowledge is only valuable to the extent that we are 

able to make use of it. In previous research, the simple act 
of comparing two analogous situations has been shown to 
be extremely valuable in this regard, freeing up concepts 
that were otherwise bound to a specific context and allowing 
them to be employed in a much wider range of situations. 

The current research shows, however, that these processes 
may interact in complex and unexpected ways with the 

features of the cases that are compared and with individual 
differences in the learner. Our results begin to establish 
some of the factors that influence the efficacy of 
comparison, and point the way to future research that may 
further help us take advantage of this powerful cognitive 
tool. 
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