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Abstract

Prior research has found that while people are generally quite
poor at recognizing when a new situation is structurally
similar to a known case, comparison of two anaogous cases
greatly improves the likelihood of achieving such recognition.
Our study examines the effects of varying the similarity
between these compared cases, both featurdly and
structurally. We find that between-case similarity has a
significant impact on transfer, and that these effects interact
with characteristics of the learner.

Introduction

Our minds are filled with valuable knowledge that we are
unable to use. This is particularly true of what might be the
most valuable knowledge of all: general principles that can
be applied across a wide range of situations. Research in
analogy has repeatedly found that principles that are learned
in one context often fail to be retrieved when an individual
is confronted with a deeply related situation that differsin
concrete or contextual ways (e.g., Gentner, Rattermann &
Forbus, 1983; Gick & Holyoak, 1983; Ross, 1984). For
example, in Gick and Holyoak's classic (1980; 1983)
analogy studies, individuals attempting to solve an insight
problem routinely failed to recognize that the problem was
analogous to one they had been taught earlier (unless given an
explicit hint), and therefore failed to make use of their
relevant knowledge. For both theoretica and practica
reasons, researchers are keenly interested in finding ways to
overcome this kind of impediment.

One approach that has shown great promise is smply
asking learners to compare two different examples of a
principle (e.g., Gick & Holyoak, 1983; Loewenstein et a,
2003; Gentner et a, 2003; Rittle-Johnson & Star, 2007). For
example, Loewenstien and colleagues (2003) conducted
research with MBA students enrolled in a course on
negotiation. Some of the students compared two specific
cases involving a “contingency contract,” a useful but
sometimes counterintuitive negotiation technique. Other
students received the same two cases, but read and analyzed
them separately, without any explicit comparison. The
researchers found that students who had compared cases
were nearly three times more likely to apply the relevant
principle to a new case than those students who had
analyzed the cases separately. Consistent with prior findings
of poor analogical transfer in general, the students who had
read but not compared cases performed no better on the
transfer task than those who had received no training.
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Results such as these point to the potential power of
comparison. The most common explanation for these effects
isthat structural alignments generated when comparing two
concrete examples serve to highlight meaningful structural
commonalities between them, while simultaneously taking
the focus away from elements that are extraneous or
irrelevant (e.g., Markman & Gentner, 2000). This, in theory,
allows a more explicit representation of the structure or
principle itself, making it easier to recognize when it arises
in new situations.

However, a great deal remains unknown about the factors
that make comparison successful in transfer. Particularly,
thereis a surprising lack of research on how the relationship
between the compared cases (such as their similarity) may
influence the representations that are formed during
comparison. Given that the similarities and differences
between the cases are the basis for the knowledge that
comparison is presumed to generate, thiswould seemto be a
critical areafor study.

For instance, will transfer to new situations be best when
the features of the compared cases are relatively similar to
one another, or when their content is more dissimilar? There
are empirical reasons to predict either of these outcomes.
Evidence for “conservative generaization” (Medin & Ross,
1989) suggests that the comparison of two examples that
share significant surface commonalities may lead to a
representation in which many of these irrelevant features are
retained. If so, one of the primary assumed benefits of
comparison—a more genera representation—may be lost.
Comparison of dissmilar cases may therefore lead to
representations with broader generalizability. On the other
hand, comparisons between overtly similar cases are likely
to be less cognitively demanding, and may therefore help to
“boot-strap” early learning processes. Consistent with this
possibility, Kotovsky and Gentner (1996) found that young
children were better able to perform matches on the basis of
abstract structural commonalities after performing a similar
task involving more perceptually similar stimuli.

A related issue is the effect of the similarity of the
structures themselves. Most studies focusing on comparison
and transfer have made use of cases with essentially
identical relational structures. However, there are reasons to
suggest that structural variation may be beneficial as well.
For instance, some research has shown that comparing two
“near-miss’ cases (Winston, 1975), which are identical
except for a crucia structural difference, may improve
transfer (e.g., Gick & Paterson, 1992). This approach may
be particularly effective when an individua needs to
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discriminate examples of a specific structure from other
non-matching cases, asis generally the casein the real world.
The current study examines the impact of both featural
and structural similarity in compared cases. Additionally,
unlike previous studies, our design requires participants to
discriminate different kinds of structures, which may be a
more ecologicaly valid way of assessing the benefits of
comparison. Finaly, in contrast to previous research that
has concentrated on analogical transfer in college-age
students, our study uses 7" and 8" grade students in a
science class. Children may be more prone to concrete
interpretations of scenarios, and thereby miss connections
between deeply related scenarios. Given the importance of
students appreciating deep principles (e.g. diffusion, order
from randomness, and our current topic of interest —
feedback loops), it is particularly important to know how
children’s understanding of principles is influenced by
superficial and deep similarities between scenarios.

Experiment
Participants

90 students from a public middle school participated in this
study, as part of their regular classtimein a General Science
course. The group included both 7th- and 8th-grade students
(n = 49 and 41, respectively) from six class periods.
Roughly half of the students (n = 47) were part of the
school’s Accelerated Learning Program (ALPs), which is
composed of students passing a science achievement test.

Materialsand Design

We led the students' class sessions for two days. The first
day involved general instruction on the concept of complex
systems, including severa real-world examples of such
systems. This instruction did not include any specific
discussion of feedback systems, our target principle. The
experiment itself was conducted on the second day.

The overall design of the experiment was as follows:
Brief instruction on feedback systems was followed by a
pre-test, in which students classified specific scenarios as
examples of positive or negative feedback, and answered
inference questions about those cases. Students then
interacted with two computer simulations, each of which
could vary in terms of its content domain (biology or
economics) and the type of feedback system it represented
(positive or negative). These variations represented the
experimental manipulation in the study. Afterwards,
students explicitly compared and contrasted the simulations
they had completed. Finally, the classification and inference
task was administered a second time, as a post-test.

The initial instruction included brief descriptions of
positive and negative feedback systems, and included an
example of each. These definitions and examples were
available to students throughout the experiment.

Pre-test and post-test The pre-test and post-test materials
were designed to assess students’ understanding of feedback
systems, particularly the ability to discriminate positive and
negative feedback systems. These materials included eight
brief scenarios (averaging 50 words apiece), each describing

a red-world phenomenon. Four of these scenarios
represented positive feedback systems, and four represented
negative feedback systems. For example, one scenario was
the following:

The lynx is a natural predator of the hare. When
lynx populations are small, hare populations
increase rapidly. This makes the lynx population
increase, since food is plentiful. However, a large
lynx population reduces the number of hares,
which ultimately brings the lynx population back
down. This cycle repeats every ten years or so.

After reading each scenario, participants classified it as an
example of either a positive or negative feedback system by
selecting a response from a 5-point scale: Definitely
negative, Probably negative, Don’'t know, Probably positive,
Definitely positive. They also answered one multiple-choice
inference question about each scenario. For example:

As the lynx population decreases, the population of
rabbits should: [Increase/ Decrease]

Identical items were given at pretest and post-test.
However, in order to minimize explicit memorization and
reference to previous answers, students were not informed
about the post-test until later in the experimental session.

Computer simulations. All students interacted with two
computer simulations demonstrating feedback behavior.
These were implemented in NetLogo (Wilensky, 1999), a
software package for developing agent-based simulations.
Each of the simulations depicted either a positive or a
negative feedback system, and each instantiated one of two
domains: biology (specifically, interacting slime mold cells)
or economics (a simple stock market). This resulted in four
relevant simulation types. Biology Positive, Biology
Negative, Economics Positive, and Economics Negative.
Two versions of each type were created, differing in
cosmetic ways. This allowed some students to interact with
two different versions of the same type without repeating an
identical simulation. The main theoretical focus of our study
was on the effects of the similarity between simulations; that
is, whether the domain and/or feedback type were the same
or different for each participant.

Each simulation began with a brief description of its
behavior. For instance, the Economics Positive simulation
presented the following introductory description:

“This simulation involves a small economic system.
People in this system buy stocks, and they pay attention
to what other people are doing. When they see someone
else buying a stock, they are more likely to want to buy
it themselves. When they see someone else selling a
stock, they are more likely to sell it themselves. This
creates a POSTIVE FEEDBACK LOOP. People
buying the stock leads to even more people buying it.
People selling the stock leads to even more people
selling it.”

The presentation of the simulation was strictly guided
although interactive, instructing students to perform
specific actions and then to observe the resulting effects
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Box 1: Simulations.

The economic (stock market) ssimulations begin (Frame A) with the 420 agents evenly divided between owning the stock (dark; red in the original simulation)
and not owning the stock (white). A bar on the right side of the screen indicates the proportion of the agents currently owning the stock. While the simulation is
running, each agent will buy or sell the stock with some specified probability. In the Positive Feedback version of the simulation, the probability of buying rather
than selling is a positive function of the overall ownership of the stock. As more agents own the stock, the likelihood of new agents purchasing the stock
increases. Conversely, as fewer agents own the stock, the likelihood of other agents selling the stock increases. Because of this, random initial fluctuations in
stock ownership tend to be amplified over time, and the system quickly moves toward the extremes, resulting in either ownership by all agents or ownership by
no agents (Frame B). In the Negative Feedback version, the probability of an agent buying the stock is a negative function of overall ownership. Therefore,
increased overall ownership makes agents more likely to sell the stock, while decreased overall ownership makes agents more likely to buy. This tends to create
homeostasis in the system. As the ownership of the stock begins to increase or decrease, the market quickly “corrects’ itself and maintains an even proportion of
owners and non-owners (asin Frame A).

In the course of the simulation, students are instructed to force a proportion of the agents to buy or sell the stock. This is accomplished by selecting the
appropriate button on the left side of the screen, then clicking and dragging across the agents. These interactions serve to highlight the way that the system
responds to small imbalances, by either amplifying them (positive feedback) or reducing them (negative feedback). Additionally, students are explicitly reminded
at one point during the simulation that it is an example of a positive or negative feedback system. For instance, those in the Negative Feedback version were told:
“Observe how this system is a negative feedback loop. People buying the stock leads to other people selling it, and people selling the stock leads to other people
buying it. Thistendsto keep the system in balance, without allowing too many people to own or not own the stock at once.”

The biological (dime mold) simulations begin with 27 agents (mold cells) randomly distributed on the screen. While the simulation is running, each cell
moves about the screen probabilistically, and secretes a chemical that remains for a short period of time in its current location. In the Positive Feedback version,
cells are attracted this chemical, and their likelihood of moving toward alocation increases with the quantity of the chemical there. Over time, this resultsin the
cells grouping into a small number of clusters (Frame C), since more cellsin agiven location leads to a greater amount of the chemical there, attracting even
more individuals. (Chemical density isreflected by the brightness of alocation). In the Negative Feedback version, cells tend to be repelled by the chemical, and
are therefore more likely to move to locations where less of the substance is present. This resultsin the cells attempting to maintain a maximal distance from one
another, leading to arelatively homogenous distribution across the field (Frame D).

During the simulation, users are instructed to add additional mold cells to the system, by selecting the “Add slime mold” button and clicking in the desired
location on the screen. They are asked at various points to observe the relative effects of clustering these new cells close together versus spreading them out in
the space. They are also reminded at one point that the simulation is an example of positive or negative feedback, and why. For example, users in the Positive
Feedback version were told: “Observe how this system is a positive feedback loop. Cells produce the chemical in a certain location, which brings other cells to
that location, which leads to even more of the chemical there. This tends to bring the cells together into large clusters.
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on the system. For example, students in the Economics
simulations were instructed at various times to force a
proportion of the agents to buy or sell the stock and observe
the results. At one point during each simulation, students
were explicitly reminded of which type of feedback system
the simulation portrayed (positive or negative), and
specifically why this system’'s behavior reflected that
feedback type. After being guided through several relevant
actions, students were encouraged to interact freely with the
system. Each simulation lasted approximately five minutes.
Box 1 provides a detailed description of the simulations.

After completing both simulations, students were
instructed: “Now we would like you to compare the two
simulations that you just interacted with. Please write about
the ways in which the two simulations were similar and
different from each other, especially in terms of the way that
they behaved.” There was no time restriction on the
comparison phase. After comparison, all students completed
the classification and inference task again.

Predictions. The primary variable of interest is the change
in performance between pre-test and post-test. There are
several potential predictions about how this variable might
be affected by the comparisons that students make. First,
prior work on the effects of comparing analogous cases
(e.g., Loewenstein et al, 2003) leads us to expect an overall
improvement in classification and inference performance,
reflecting generally stronger representations of the
principles underlying feedback systems. Given that all
students are explicitly comparing cases that share a
feedback structure, it seems likely that their understanding
of such structures should improve on average.

We aso predict that the kinds of comparisons made may
affect performance. Comparing two systems involving the
same type of feedback (i.e., both positive or both negative)
could lead to a bias in the interpretation of new cases. For
instance, a student comparing two simulations involving
negative feedback may be more likely to classify new cases
as examples of negative feedback at post-test.

Another way in which the kind of comparison may matter
isin whether it provides an appropriate balance between the
compatibility (ease of alignment) and the generalizability of
the two simulations. As discussed, the similarity of the
compared cases may have two opposing influences on
transfer. Cases that are more similar to one another may be
easier to aign, and may therefore provide a more
straightforward basis for learning about their shared
underlying structure. On the other hand, highly similar cases
may artificially restrict students’ representations of the
relevant principles, leading them to only recognize the
structure in new situations that are concretely similar to the
learned cases. Less similar comparison cases may therefore
lead to better generalization of the principles. We predict
that learning will be optimal when dissimilarity on one
dimension is “scaffolded” by relatively high similarity on
another dimension. In the current context, we would predict
relatively good performance from those comparing different
feedback types in the same domain (e.g., Biology Positive
and Biology Negative). In this case, the relevant differences
in the positive and negative systems should be particularly
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highlighted because the concrete features of the simulations
are otherwise highly similar. Likewise, strong performance
is predicted for individuals comparing the same feedback
type across different domains (e.g., Biology Positive and
Economics Positive), since the same underlying principles
can be observed across more diverse contexts, presumably
supporting broader generalization.

We are also interested in potentia effects of individual
differences between students, and how these may interact
with comparison. For instance, it is possible that studentsin
accelerated classes will tend to focus more on the
underlying principles of the simulations, and will therefore
be less influenced by perceptual variation between them.

Results

Our data yielded several informative findings. Surprisingly,
however, most of our initial predictions were not borne out.
We first examined the overall improvement of the students
between pre-test and post-test. Calculating improvement
simply as post-test performance minus pre-test performance,
there was no evidence of any improvement on average,
either in classification (M .03, t(89) = 0.52, ns) or
inference (M = .01, t(89) = 0.78, n.s.).

Next, we examined possible bias effects in classifications.
Specifically, we predicted that individuals who had
compared two cases representing the same kind of feedback
system (i.e., either two positive cases or two negative cases)
would become more disposed to classify new cases as
instances of that particular type. For each of these students
(n = 43), we calculated bias as the shift toward whichever
end of the classification scale matched the type of feedback
cases that the student had compared. This measurement did
not differ from zero (M = .01, t(42) = 0.23, n.s.).

There was also no evidence for the kind of interaction
between structural and featural similarity that we had
predicted (analysis below). Neither of the conditions that
included one similar dimenson and one dissimilar
dimension showed any improvement (see Figure 1).
However, our analysis did reveal several significant results.

We conducted a 2 (Feedback similarity: Same v.
Different) x 2 (Domain similarity: Same v. Different) x 2
(ALPs. Accelerated v. Regular classes) ANOVA on the
improvement scores. The omnibus test indicated reliable
differences between groups for the classification task, F(7,
82) = 2.27, p < .05. (No effects were found for the inference
task on this or any other analysis discussed). Specificaly,
the test revealed main effects for both Feedback similarity
(F(1, 82) = 4.02, p < .05) and Domain similarity (F(1, 82) =
6.18, p < .05). In both cases, improvement was greatest
when dissimilar cases were compared. Interestingly, for
both dimensions of similarity, performance actually
decreased numerically at post-test when similar cases were
compared (Feedback: similar -.07, dissimilar A3;
Domain: similar = -.08, dissimilar = .16). This fact explains
the absence of the predicted improvement in overall
performance; increased scores associated with comparing
dissimilar cases were largely offset by decreased scores
resulting from the comparison of similar cases. As seen in
Figure 1, the greatest improvement was seen in students
who compared cases involving both different feedback
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Figure 1: Post-test improvement, by condition

types and different domains, while the least improvement
(actually negative) was seen in those whose comparisons
involved the same domain and feedback type. Improvement
by those in the Different-Different condition was reliably
greater than zero (M = .26, t(19) = 2.22, p < .05). Those in
the Same-Same condition were marginally less than zero (M
=-.21, t(21) = 1.79, p < .10). No effect of membership in
the accelerated class was observed (F(1, 89) = 0.33, n.s.).

The influences of structural and featural similarity
therefore appear to reflect independent main effects.
However, these two effects did not apply equally across all
individuals. Interestingly, students in non-accelerated
classrooms showed large effects of Domain similarity (t(42)
= 2.83, p < .01), but no evidence of any influence from the
similarity of the feedback types that were compared (t(42) =
0.04, n.s.; see Figure 2). In contrast, the ALPs students were
influenced by Feedback similarity (t(46) = 2.38, p < .05) but
not Domain similarity (t(46) = 0.38, n.s).

Discussion
Several conclusions are suggested by these data. First, the
results are consistent with previous characterizations of
explicit comparison as a powerful cognitive process that
may have an important impact on the acquisition of
generalizable principles. Under the right conditions,
participants in our study improved reliably in their ability to
classify new cases, even in very dissimilar domains.
However, our data also suggest that the situation is more
complex that is generally proposed, and that comparison is
not uniformly beneficial. In fact, on average, explicit
comparison by the students was not associated with any
improvement at all at post-test. Under some circumstances,
there were even trends suggesting that students might be
negatively impacted by the comparison process (although
these effects were not reliable, they were large enough to
effectively offset any overall benefits of comparison). These
results highlight the importance of exploring the comparison
process more deeply, and attempting to establish the factors
that influence comparison-based learning. The remainder of
our findings begin to address these issues, exploring aspects
of both the compared materials and the learners themsel ves.
Our study varied both the structural similarity (whether
the systems involved the same or different feedback types)
and the surface similarity (same versus different content

domain) of the compared simulations. We predicted that
learning would be optimal when dissimilarity along one
dimension was “balanced” by higher similarity on another
dimension, which we believed would facilitate alignment
while still highlighting important structural features. This
prediction was based in part on the approach that has
generally been taken in the literature: either presenting the
same underlying structure in dissmilar contexts (e.g.,
Loewenstein et al, 2003), or using “near-miss’ cases
involving the same content but dightly varying the relevant
structure (e.g., Gick & Paterson, 1992). In contrast to our
expectations, however, we found that post-test improvement
was greatest when the cases were less similar to one another
on both dimensions of similarity.

Of course, it is important not to over-interpret the results
from one task and set of materials. Each dimension was only
tested at two levels, one of which was very high similarity.
It is possible (even likely) that these effects do not reflect a
simple linear relationship between dissimilarity and transfer,
but that there is in fact some optimal similarity level beyond
which learning and transfer will decline. Regardless, our
results do clearly indicate that the similarity of the compared
cases—and not simply the similarity between the learning
and transfer cases—is a critical factor influencing whether
or not relevant knowledge will be successfully learned and
applied. Furthermore, our results highlight the importance of
using materials that will maximize the generalizability of
the learned representations, and suggest that this factor may
often be more important than attempting to facilitate
alignment through high similarity.

Perhaps the most interesting—and challenging—finding
from our study is the way in which properties of the
comparison cases appear to interact with individual
differences between learners. Transfer by the students in
accelerated classes was influenced by the structura
similarity between the cases, but not at al by the similarity
of the domains involved. In contrast, structural similarity
had no impact on students in regular classes, but learning in
these individuals was significantly affected by domain
similarity. This finding raises important issues about the
effects of comparing cases.

The benefits of comparison are generally attributed to its
ability to focus attention on relevant aspects of cases while
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Figure 2: Post-test improvement for accelerated and
regular classes.



backgrounding less relevant features. This is, in fact, a
mechanism that likely frequently occurs. However, it is
important to be mindful of the ways in which differencesin
individuals' representations of the cases will influence
which aspects of the situations are highlighted, and to
recognize that these do not always correspond with those
that the experimenter may consider “relevant.” While
membership in the accelerated classes is certainly based on
a number of interrelated factors—motivation, achievement,
intelligence, ability to focus—it is clear that some difference
between the groups is causing them to attend to different
agpects of the simulations. These differences appear to have a
stark impact on the effects of comparison.

Although more work will be necessary to establish the
exact basis of these differences, it seems likely that the
ALPs students are better able to look past the immediate
surface features of a simulation, and to focus instead on its
underlying structural relationships. There are many reasons
that this might be the case. For instance, these individuals
might be coming to the task with richer background
knowledge about the systems that are being presented, and
therefore have more cognitive resources available for
learning. Consistent with this explanation, students in the
accelerated classes had reliably greater performance at pre-
test, prior to the primary instruction (t(89) = 4.60, p < .001).
It is also possible that these students have adopted different
learning strategies, and are more likely to view all
instructional cases as examples of some relevant principle
rather than simple facts to be learned independently. Bassok
and Holyoak (1989, Experiment 3) found that individuals
appeared to acquire the exact same material more concretely
or more abstractly based on the specificity of the context in
which it was presented. It is possible that successful
students have learned to take advantage of this cognitive
flexibility by deliberately treating new materials as
instantiations of deeper principles, rather than ends in
themselves. Previous research has found that experts tend to
weigh structural  similarities more than  superficial
similarities (Novick, 1988). The current results extend this
finding; even non-experts that are generally high achieving
in science show similar tendencies. As such, there appear to
be domain-general individual differences in sensitivity to
structure that go beyond expertise in a particular domain.

Future research will provide more insight into the exact
processes underlying these differences, but our results make
clear that characteristics of the learner must be considered
when using comparison as an instructional tool. As our data
show, cases that lead to reliable gains in one population may
foster no improvement at all in another (even very similar)
group.

Conclusions

Our knowledge is only valuable to the extent that we are
able to make use of it. In previous research, the simple act
of comparing two analogous situations has been shown to
be extremely valuable in this regard, freeing up concepts
that were otherwise bound to a specific context and allowing
them to be employed in a much wider range of situations.

The current research shows, however, that these processes
may interact in complex and unexpected ways with the

470

features of the cases that are compared and with individual
differences in the learner. Our results begin to establish
some of the factors that influence the efficacy of
comparison, and point the way to future research that may
further help us take advantage of this powerful cognitive
tool.
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