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Abstract in an attempt to resolve the debate over the universality of
color naming. For example, Kay and Regier (2003; Regier,

In 1969, Berlin and Kay proposed that there exist cross- ;
cultural universals in the form of basic color terms. To test Kay, & Cook, 2005) showed that the focal colors in the WCS

this hypothesis, the World Color Survey (WCS) collected color ~ data largely fall in similar regions to those seen in English
naming data from 110 non-industrial societies, identifying reg- in another study they defined a statistical measure of “well-

ularities in the structure of languages with different numbers " ;
of terms. This leaves us with the question of where these uni- formedness”, and used this measure to show that observed

versals come from. We use a simple model of cultural evo- Systems of color terms correspond to a near-optimal pautiti
lution known as “iterated learning” to explore the hypothesis  of color space (Regier, Kay, & Khetarpal, 2007).

that universals emerge from human perceptual and learning bi- : : o N
ases. We conducted an experiment simulating the process of The consistent cross-linguistic structure highlightedtisy

cultural transmission in the laboratory, and compared the re- WCS raises a new question: Where do these universals come
sults to the systems of color terms that appear in the WCS data. from? They may be a result of cultural universals that may

Our results show that cultural evolution results in convergence . . . . .
of systems of color terms towards a form consistent with the arise from the homogeneity of biological traits and evolu-

WCS, supporting the hypothesis that universals are the result tionary paths across cultures that constrain people tddens

of perceptual and learning biases. only a limited range of color categories when learning lan-
Keywords: basic color terms; iterated learning model; color  guage, thus forcing color term systems to conform to a lim-
term universals; cultural evolution; Bayesian inference. ited range of universal types (Hawkins, 1988). However, if
) we view language as a system culturally transmitted from

Introduction generation to generation, a simpler hypothesis is thakthes

Linguistic universals — properties that seem to hold acatiss Universals may arise directly from biases that cause lesrne
human languages — have the potential to provide unique if® Prefer some color categorizations over others, but that d
sight into the nature of human cognition. Universals in sys0t place absolute constraints on the types of color caitegor
tems of color terms are among the best documented of thedBat are learnable. One way to explore this hypothesis igusi
properties. Berlin and Kay (1969) proposed that color ngmin theiterated learning model, a simple model of cultural trans-
systems across different cultures are based on one or more BfSsion in which a sequence of agents each learns from the
eleven focal colors corresponding to the English color germ behavior of the previous agent in the sequence (Kirby, 2001)
black, white, red, green, yellow, blue, brown, purple, pink, or- N an iterated learning model of the transmission of systems
ange, andgray. Kay and McDaniel (1978) and Kay and Maffi ©f color terms, each agent learns a system of color terms from
(1999) later refined this model to emphasize the six Hering?*@mples provided by another agent, and then generates ex-
primary colors black, white, red, green, yellow, andblug) ~ @mples which are provided to the next agent in the sequence.
(Hering, 1964), and to characterize the process by which sdlathematical analyses of iterated learning show that as thi
cieties might transition from one system of color terms te an Process continues, the information being transmitted grad
other as new terms are introduced. ally changes to become consistent with the learning biafses o
The World Color Survey (WCS) was initiated in the late the agents involved (Griffiths & Kalish, 2007; Kirby, Dow-
1970’s to provide a more comprehensive empirical test of théhan, & Griffiths, 2007). If systems of color terms similar
univerality hypothesis (Kay, Berlin, & Merrifield, 1991; ka {© those seen in the WCS emerge from a process of cultural
Berlin, Maffi, & Merrifield, 1997). In the WCS, a total of 330
color chips, comprised of 40 equally spaced Munsell hues at 8
levels of lightness and achromatic chips at 10 levels oftligh | &
ness (see Figure 1), were presented to speakers of 110 dif o smmsms. T
ferent languages in non-industrial societies. Those speak | FEEEEEEEREE - SEEES
were asked to name each color chip, and also to point out the B:EEEER
most representative chip for each color term. Later amabyfsi =T==========““““|“=“=
the WCS data showed that the universality hypothesis was by ®
and large confirmed (Kay et al., 1997). Recently, several sta
tistical analyses of the WCS data have also been conducted ~ Figure 1: The World Color Survey stimulus array.

1
12345678090

352



transmission by iterated learning, then the biases of iddiv  (a)

ual learners may be sufficient to explain the regularitiense Q Q
across human societies. » o ,» > ,» .
Previous work has used computer simulations to demon—, Q/g Q/}
strate that iterated learning with simulated agents can pro
duce systems of color terms similar to those seeninthe WCS,, o POy, P g, PO, Py, PO
(Dowman, 2007, 2009). In this paper, we test the hypothesis
that color naming universals may be a result of the percepFigure 2: Iterated learning. (a) Each learner sees data pro-
tual and learning biases of human learners by conducting duced by the previous generation, forms a hypothesis about
large-scale laboratory experiment based on iterateditgarn the process by which those data were produced, and uses this
In our experiment, human learners acquire and transmit novénypothesis to produce the data that will be supplied to the
systems of color terms, providing a human simulation of thenext generation. (b) Initerated learning with Bayesiamagje
process of cultural evolution. We examine how these systemsach learner sees data and uses Bayes’ rule to compute
of color terms change over time, comparing the results to théhe posterior probability of each hypothesisp(h|d). The
WCS. We show that, consistent with the hypothesis that perearner samples a hypothesis from this distribution, aed th
ceptual and learning biases are the source of color-namingenerates data from the distributip(d|h).
universals, the systems of color terms generated by our it-
erated learning chains converged over time to become more
consistent with the WCS.
The plan of the paper is as follows. The next section pro-
vides further details of the iterated learning model and itgnductive biases, being a factor that combines with the ob-
predictions about the influence of learning biases on the ougerved data to yield a conclusion.
come of cultural transmission. We then present our exper-
iment, which used human learners to simulate the cultural In the cultural transmission process, data are passed along
transmission of systems of color terms. Analyzing the tesul & chain of learners. Assume that the same Bayesian infer-
of this experiment raises some technical challenges, whicBnce process happens repeatedly at each generation, with
we address by introducing a novel method for quantifying theeach learner sampling a hypothesis from their posterior dis
correspondence between the languages produced by our p#ibution and generating data by sampling from the liketitio
ticipants with those in the WCS. We conclude the paper byunction associated with that hypothesis. This procesdean
discussing the implications of our results, and considereso analyzed as a Markov process: The probability each learner

of the potential limitations of our analysis. selects a particular hypothesis depends only on the data pro
duced by the previous generation. Griffiths and Kalish (2005
Iterated Learning 2007) showed that when learners share a common prior dis-

Much of human knowledge is not learned from the world di-tribution, the probability a learner selects a hypothesis-c

rectly, but from other people. When we learn languages, w&/€79€s t0 the prior probability of that hypothesis as the pro
learn them from the utterances of existing speakers, and oSS Of iterated leaming continues. Likewise, the prdbabi
utterances inform the next generation of speakers. A simplY Of generating data converges to the prior predictive dis-
way to model this process of cultural transmission is in term tribution, being the average of the likelihood over the prio
of “iterated learning”, as illustrated in Figure 2. We imagi p(d) = Zn p(d|h)p(h).
a sequence of learners, each of whom observes data, forms ) _ )
a hypothesis about the process that produced those data, and' "€ convergence of iterated learning to the prior poten-
then generates data for the next learner based on that hypoff@!ly provides an explanation of linguistic universatsiud-
esis. ing universals in color naming. Languages are constantly be
We can analyze the process of iterated learning by assunil9 Passed from speaker to speaker via a process of cultural
ing that our learners are rational Bayesian agents. In thifansmission similar to iterated learning. If this procpas-
framework, learners come up with tipesterior probability vides a way for perceptual and learning biases of the kind

P(h|d) of a hypothesié given the observed dathby apply- captured by a prior distribution to have an effect on thecstru
ing Bayes' rule ture of languages, we should expect languages to demanstrat

properties that are consistent with human biases. If this hy
P(d|h)P(h) pothesis is correct, we should expect to see systems of color

W (1) terms transmitted via a process of iterated learning toghan

over time to resemble those that appear in the WCS. To test
whereP(d|h) is thelikelihood, indicating the probability of this idea, we ran a series of iterated-learning chains among
observingd if h were true, andP(h) is theprior probability,  an English-speaking population in our laboratory, comyari
indicating the extent to which the learner was willing to ac-the systems of color terms produced by those chains to those
cepth prior to observingd. The prior encodes the learner’s seen in the WCS.

P(hld) =
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Color Term Transmission in the Lab e L

i i e
Methods
Participants Participants were 390 members of the com e Bl e
munity at the University of California, Berkeley, receigin
either course credit or approximately $10/hr for taking par ' —
the experiment.
Stimuli  Each participant learned a system of color terms — S
by being provided with examples of colors and the terms thatE ——
were associated with them, and then generalized those terrr e
to new colors. The color stimuli were presented on an Ap-
ple iMac computer by a Java program, and the monitor was; TE | 7
calibrated using a ColorVision Spyder2 colorimeter/caialr
ibrator on regular basis. A total of 330 colors were used as B
stimuli, corresponding to the computer screen analogues o

the 330 Munsell color chips used in the WCS. Each term wagigure 3: Representative examples of the data produced by
a randomly-allocated pseudo word (from Rastle, Harringtonsjmylating iterated learning of systems of color terms ia th

& Coltheart, 2002), and varied across participants. laboratory. Each panel shows one system of color terms, with
Procedure We simulated a total of 30 iterated learning arbitrary colors indicating the term assigned to each ahip i
chains, each with 13 “generations” of learners. Each chaithe World Color Survey array. Each column is one chain with
varied in the number of terms that were allowed in the “lan-a particular number of terms, each row shows a different gen-
guage” being transmitted, with two, three, four, five or six eration. The first row shows the random partitions used to
terms per language. The first learner in each chain receiveiditialize each chain.

data generated from one of three types of initial partitibn o

the WCS color space: hue, lightness, and random. The “hueliesults

and “lightness” partitions were approximately equal \cati

and horizontal partitions of the color space into the reteva Figure 3 shows one set of chains initialized with random par-
number of categories; the “random” partitions were a trulytitions, with the number of terms varying from two to six.
random partition of the color space, generated uniquely fol hrough this simple visualization of the data, we can see
each chain. These three kinds of initial partitions werelese that each chain started from an unnatural color term system
a means of checking the convergence of iterated learning: b{g random partition), and that transmission along the hain
starting the chains with very different systems of colontgy ~ resulted in a very rapid restructuring towards a more regu-
we could easily establish when the influence of the inital parlar form. However, it is not clear how well these laboratory-
tition had disappeared. The following generations of leesn generated data fit the WCS data. In the next section, we use a
all received data generated from the responses of the pievio measure of the difference between each system of color terms
generation, as detailed below. We ran a total of 20 randon@nd a randomly selected set of responses from the WCS data
chains, four for each number of terms, and five hue and fivéo test the convergence of the chains and to compare them to
lightness chains, one for each number of terms. the kinds of systems seen across human languages.

Each participant was trained on the system of color terms
by being shown a set of chips together with the corresponding
terms. The total number of observed chips was six times the Color Term Systems
number of terms in the language. These chips were chosefinalyzing the results of our experiment presents a chadlieng
at random from the 330 chips making up the full array, andhow can we evaluate whether two systems of color terms are
then provided labels according to either the initial pemtit ~ similar? Various methods have been proposed for solvirgg thi
(for the first learner) or the responses of the previous &arn problem. For example, Kay and Regier (2003) converted the
(for subsequent learners). These training examples remain color chips from Munsell space to CIE L*a*b* space so they
on the screen while the participant went on to label all 330could compute the centroid for each color term. Centroid dis
color chips from the WCS array. On every trial, they weretances could then be used to compare clusterings. However,
presented a color chip and asked to select one of the ternjgst using centroid measurements may discard important in-
to label the color chip. No feedback was given during thisformation about the variance of a cluster, and about the lo-
phase of the experiment. The responses of each participaocations of boundaries. This method is also dependent on the
thus produced a partition of the set of 330 chips, and thigpsychological validity of the CIE L*a*b* representation of
partition was used to generate the labels given to chipsiéor t colors, which is disputable (Dowman, 2007).
next learner in the chain. Since our participants’ responses consisted of partitbdns

Using Variation of Information to Analyze
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the same set of colors as those used in the WCS, we usdtve reached the same distribution over languages. Figure 4
a technique that compares the Munsell arrays directly,-withshows the VI values for the three types of initializationatcke

out referring to another color space. This technique uses danguage system, showing individual chains with two to six
information-theoretic measure known ¥ariation of Infor-  terms for the hue and lightness initialization and the ayera
mation (V1) to compare clusterings of a set of items (Meila, over all chains for the random initialization.

2003). Given two clusterings andC’, the VI is To test for a difference in VI values across chains, we
, , ) ran a two-way ANOVA at each generation with initializa-
VI(C,C) =H(C)+H(C)-2I(C,C) (2)  tion and number of terms as the two factors. The main effect

of number of terms are significant for all generatiops<(

whereH(C) is theentropy of C, 0.05); while only the initial systems(2,23) — 19678, p <

K 0.0001) and the first generatiofi (2,23) =11.19, p < 0.001)
H(C)=- z P(k)logP(k) (3) showed a statistically significant effect of initial padit.
k=1 These results are consistent with a relatively rapid conver

gence towards a common distribution. Rapid convergence is
to be expected in this experiment, since only a very small
proportion of the color chips were labeled in each genematio
providing a good opportunity for other factors (such as the

K K P(k, k) learning and perceptual biases of the participants) to-influ
I(C,C) = Z P(k, k’)logm (4)  ence the resulting systems of color terms. This can be seen

k=1K'=1 in Figure 3, where the initial partitions quickly give way to
more systematic responses.

wherek ranges over the cluster labels ank) is the proba-
bility of an item being assigned to each cluster, &@.C’)
is themutual information between the two clusterings

whereP(k, k') is the probability an item belongs to cluster
in clusteringC and tok’ in clusteringC'. Comparison to the WCS

While V1 was originally developed for comparing cluster- As described above, to compare our experimental resulis wit

ings, a clustering is simply a par'utpp of a set of |tems.11us the WCS data, VI values were calculated between the re-
as our systems of color terms partition colors according to

the terms applied to them. The VI value for two systems ofSPonses of each participant and 110 randomly selected WCS

color terms is thus calculated by comparing the distrilsutio systems. Figure 5 shows the VI values for all 20 random

. . chains. A paired t-test on the VI values for the initial and
of the terms in the two systems, as well as the extent to whic . : -

. . final systems in those random chains showed a statistically
they agree with one another. A high VI value reflects a larger

difference between two clusterings, whereas a small Viesalu 5'9’.““9?‘” d|fferenc_et(19) = 1144 P< 0.0001), |n_d|cat|ng_
. . o . a significant reduction of VI along iterated learning chains
indicates that the two clusterings are more similar. Our pri

) . o resulting a better fit to the WCS data.
mary an_al_yt|c tool was comparing the partmons produced by The remaining question is how close our data are to the
our participants with those observed in the WCS data. W?NCS data: What counts as a low VI score? To address this

did this by randomly selecting one speaker from each of the uestion, we randomly selected another set of systems from

110 languages in the WCS data set, and then calculating t .
VI of the partition produced by our participants with the 110%e WCS data, one from each of the 110 languages. Using the

partitions from the WCS. Finally, we average across all of>ame method as used above, we computed the VI between the

. X two sets of WCS data. The average pairwise VI is shown in

the languages from the WCS, to give us a single measure ?}V . . .

consistency igure 5. This average lies close to the mean VI seen in our
' random chains once they converge. We tested the difference

Testing Convergence between the VI scores produced by the final participants in

The theoretical analyses of iterated learning outlinedvabo €aCh of our random chains and the VI scores for speakers
predict that, no matter what language begins a chain, it wilf@mpled from the WCS using a two-samples t-test. The result
eventually converge to a distribution over languages reflec Was not significant(128) = —0.29, p= 0.78). These results
ing the prior. We could evaluate this prediction by compgrin suggestthat the_system; of color terms generated fromlour la
the chains generated with different initial partitions. @ces- are indeed consistent with the data collected from the WCS.

sary characteristic for convergence is that the VI to the WCSRotation Analysis

data should not differ between chains, since they should a% . L . .
ne potential objection to the conclusion that our chaies ar

Iwhile it would be desirable to also average over speakers, thisnoving closer to the WCS could be that the reduction in

was too computationally intensive to be practical in our current analy/| may merely be a result of increasing regularity in the re-
yses. We observed little variation in average VI across sampled sets

of speakers. We chose to use a single speaker rather than a composiRPnses. As the systems of color terms in the random chains

formed by aggregating across speakers within a language (a “mod®ove towards more regular forms, the VI scores will go down
map”) on the grounds that this might not produce a system typicahatyrally, regardless of whether the actual partition ofte

of the language of any individual, especially as different speakers of fl h f th furth h
the same language sometimes use different numbers of color word§flects the structure of the WCS or not. To further test the

(Kay & Maffi, 1999). consistency between our experiment results and the WCS
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Initial Partition by Hue Initial Partition by Lightness Random Initial Partition
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Figure 4: Variation of Information (V1) fit to WCS data for igted-learning chains with three types of initial partisand two

to six color terms. Results for random initial partitions averaged over four chains each.

VI for Random Chains vs. English and WCS Data VI for Rotated Random Chains

4 - 2.4
3.5¢
31 2.35}
2.5f
S 2 S 237
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Ir 1 2.25}
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Figure 5: Variation of Information (V1) fit to WCS data for Figyre 6: Variation of Information (V1) fit to WCS data for
random chains. The dashed line shows the VI for comparingotations of the final partitions produced by chains inittied
the WCS to itself. with random partitions.

data, we compared the degree of match of each system to, .. B -
the WCS data when it was rotated in the hue dimension brotatlon ((19) = —4.61,p < 0.001) all showed statistically

varying amounts. We would expect that the more a partitior)é'gmf'cam differences, indicating that the data from the e

was rotated out of position, the lower the resulting degfiee Operiment fits the WCS data significantly better than the ro-

match would be. This procedure was used by Regier et afated systems. This analysis thus confirmed that the itrate

(2007) in connection with their measure of how “optimal” a earning chains did converge to forms closer to the WCS.
set of color terms was as a division of the color space into
maximally perceptually distinct regions.

Figure 6 shows the mean VI values of the partitions gen\We tested the idea that human color-naming universals may
erated by the final participants in our random chains, whetbe a result of shared learning and perceptual biases, demon-
rotated from O to 20 steps in the hue dimension. Pairedtrating that systems of color terms similar to those seen in
t-tests on VI values for no-rotation vs. maximum-rotation a variety of non-industrial societies emerge purely as a re-
(t(19) = —6.12 p < 0.01), no-rotation vs. quarter-rotation sult of cultural transmission. Using Variation of Informa-
(t(19) = —3.66, p < 0.001), and no-rotation vs. three-quarter- tion as a measure of the difference between systems of color

Discussion
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terms generated in our experiment and the WCS data, wBoster, J. (1986). Can individuals recapitulate the evahut

showed that the VI for systems generated by iterated learn- ary development of color lexicong2thnology, 25, 61-74.

ing rapidly decreases as the systems moves from unnaturBlowman, M. (2007). Explaining color term typology with

random partitions to more regular forms. Our rotation ahaly an evolutionary modelCognitive Science, 31(1), 99-132.

sis also showed that this reduction of VI can not be explainedowman, M. (2009). Evolution of basic color terms. In

as simply a result of the emergence of more regularity, but J. W. Minett & W. S.-Y. Wang (Eds.),.anguage evolution

reflects the adoption of a form consistent with the WCS data. and the brain (p. 109-139). Hong Kong: City University of
One objection that could be made with respect to our study Hong Kong Press.

is that our English-speaking subjects could have been imposriffiths, T. L., & Kalish, M. L. (2005). A Bayesian view

ing a system of colour naming reflecting that of English on the  of language evolution by iterated learning. In B. G. Bara,

languages in our experiments, rather than using pre-litigui L. Barsalou, & M. Bucciarelli (Eds.)Proceedings of the

universal biases. As English has 11 basic color terms, many Twenty-Seventh Annual Conference of the Cognitive Sci-

more than the 2 to 6 terms in our experiments, none of the ence Society (p. 827-832). Mahwah, NJ: Erlbaum.

emergent languages could reflect English very closely, lwhic Griffiths, T. L., & Kalish, M. L. (2007). Language evolu-

we could expect would minimize the potential for our partic-  tion by iterated learning with bayesian agentSognitive

ipants knowledge of language to shape the colour categories Science, 31, 441-480.

formed in the experiment. We take the finding that systems oHawkins, J. (Ed.). (1988)Explaining language universals.

color terms similar to those seen in the WCS can be produced Oxford: Blackwell.

by cultural transmission by English speakers as supportinglering, E. (1964).Outlines of a theory of the light sense.

our argument that human learning and perceptual biases mayCambridge, MA: Harvard University Press.

be sufficient to explain universals, under the assumptian th Kay, P., Berlin, B., Maffi, L., & Merrifield, W. R. (1997).

the English-speaking participants in our experimentseshar Color naming across languages. In C. L. Hardin & L. Maffi

the same learning and perceptual biases as the members ofEds.), Color categories in thought and language. Cam-

non-industrial societies surveyed by the WCS. This result is bridge, UK: Cambridge University Press.

less surprising when we take into account previous finding&ay, P., Berlin, B., & Merrifield, W. R. (1991). Biocultural

relating the color term categories produced by Englishlspea  implications of systems of color naminglournal of Lin-

ers with cross-linguistic trends. For example, Boster /98  guistic Anthropology, 1, 12-25.

found that when English speakers were asked to recursivelkay, P., & Maffi, L. (1999). Color appearance and the emer-

split a set of color chips into subsets, the partitions they p ~ gence and evolution of basic color lexicoAmerican An-

duced corresponded to those seen in other languages with athropologist, 101, 743-760.

corresponding number of terms. Kay, P., & McDaniel, C. (1978). The linguistic significance
Our experiment and subsequent analyses not only demon- Of the meanings of basic color termsanguage, 54, 610-

strate that iterated learning may provide a valuable experi 646.

mental method for investigating human inductive biases, buKay, P., & Regier, T. (2003). Resolving the question of color

also show that languages formed in the laboratory by English haming universals Proceedings of the National Academy

speaking participants seem to converge toward a form con- Of Sciences, 100, 9085-9089.

sistent with the WCS. These results suggest that the coloKirby, S. (2001). Spontaneous evolution of linguistic stru

naming universals may come from the learning and percep- ture: An iterated learning model of the emergence of regu-

tual biases of human learners, brought out through the pro- larity and irregularity.|EEE Journal of Evolutionary Com-

cess of cultural transmission. In particular, our resulfspée- putation, 5, 102-110.

ment previous computational modeling results demonsgati Kirby, S., Dowman, M., & Griffiths, T. L. (2007). Innateness

that such properties could be produced by iterated learning @nd culture in the evolution of languagé&roceedings of

with simulated agents. We anticipate that similar pairings theNational Academy of Sciences, 104, 5241-5245.

of laboratory experiments and computer simulations will beMeila, M. (2003). Comparing clusterings by the variation

effective in further elucidating how languages and corgept ©f information. InLearning theory and kernel machines

change through cultural transmission. (p. 173-187).
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