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Abstract

Spatial terms such ason and in are found in every language,
and psychologists have suggested that the meanings of these
terms may be constructed from a universal set of spatial primi-
tives. We develop a computational version of this idea and ex-
plore whether the primitives typically proposed are sufficient
to account for the meanings of spatial terms across languages.
We compare a model where spatial terms correspond directly
to primitives with models that represent spatial terms as dis-
crete or weighted combinations of primitives. Our results sug-
gest that combinations play an critical role, and we find limited
evidence for weighted combinations.
Keywords: spatial cognition; cross-cultural; semantics; com-
putational model.

Every documented language includes some machinery for
describing spatial relationships. For example, an English
speaker might say that the cup in Figure 1b ison the table
and that the spoon isunderthe cloth. Spatial terms like these
are acquired relatively early by children (Antell & Caron,
1985) and are used so frequently that they may come to
seem unremarkable. Researchers have found, however, that
it is surprisingly difficult to specify the meanings of spatial
terms (Brown, 1994), and that different cultures make use
of very different spatial concepts (Levinson & Meira, 2003;
Levinson & David, 2006). This paper presents computa-
tional models that explore how spatial concepts might be con-
structed from more basic components, and that help to estab-
lish whether spatial concepts across cultures are constructed
from a universal set of spatial primitives.

Many previous researchers have discussed the idea that
spatial concepts might be constructed as combinations of
primitive notions such as “support”, “contact” and “contain-
ment”. (Piaget & Inhelder, 1956; Jackendoff, 1983; Feist,
2000) For example, Figure 1b suggests thaton in English
may be roughly defined as the conjunction of “support” and
“contact”. Although this basic proposal is very familiar, there
have been few sustained attempts to evaluate how well it can
account for cross-linguistic data. Here we focus on primitives
gathered from the existing literature and ask whether the dis-
tinctions that they capture are sufficient to account for spatial
concepts across 25 different languages. Future work in this
area can compare different sets of candidate primitives and
compare how well they account for the data.

Any attempt to study semantic primitives must include
some proposal about how these primitives combine to cre-
ate spatial concepts. Here we compare proposals that vary
along three dimensions. One of these dimensions specifies
whether combinations of primitives are or are not allowed. A

simple baseline approach assumes that every concept in ev-
ery language corresponds to one of the semantic primitives,
and we compare this approach to alternatives which assume
that concepts correspond to combinations of primitives. In
Figure 1b, for example, “on” is defined as the conjunction of
support and contact. A second dimension specifies whether
primitives are differentially weighted. In Figure 1b, all com-
binations are assumed to be conjunctions, and we compare
this approach with an alternative that relies on weighted com-
binations. The final dimension specifies whether or not nega-
tions of primitives are allowed—for example, whether “no
contact” is included in addition to “contact.” Our three di-
mensions produce a collection of eight possible models, and
we explore the five most interesting cases (Table 1). Com-
paring the performance of these models suggests that combi-
nations of primitives are important, but we find only limited
evidence for weighted combinations. None of the models we
consider is rich enough to capture the true complexity of spa-
tial cognition, but these simple models are a useful starting
point for the computational approach that we advocate.

Our work is inspired in part by several recent studies of
cross-cultural spatial cognition (Feist, 2000; Bowerman &
Choi, 2001; Levinson & Meira, 2003; Feist, 2008; Khetarpal,
Majid, & Regier, 2009). A consistent theme in the previ-
ous literature is that spatial concepts correspond to regions in
some kind of similarity space. To mention just two examples,
Bowerman and Choi (2001) suggest that scenes described us-
ing “on” and “in” by English speakers can be arranged along
a similarity gradient, and that different languages carve up
this similarity space in different ways. Levinson and Meira
(2003) propose that spatial terms correspond to attractorsin a
similarity space, and use multidimensional scaling to support
their proposal. Approaches like these have helped to illumi-
nate the basis of spatial cognition, but they rely on a notion
of similarity that is rarely made precise, and are unable to ex-
plain exactly how humans recognize similarities between spa-
tial configurations. Our work is compatible with many of the
insights that have emerged from these previous approaches,
and could be viewed as an attempt to ground the notion of
similarity in terms of concrete spatial primitives. We prefer,
however, to treat similarity as an epiphenomenon, and expect
that similarity will play no explanatory role once the building
blocks of spatial concepts are understood.

We begin by introducing the semantic primitives that we
will consider and the cross-linguistic data that we will at-
tempt to explain. We then evaluate five simple models which
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Figure 1: (a) A computational framework for exploring how
spatial primitives (P) combine to create the meanings of
spatial terms (T). Given information about which primitives
characterize a set of scenes (S), the framework predicts which
terms apply to which scenes. (b) An illustration of the frame-
work in (a). English “on” is a combination of “support” and
“contact,” and applies to scenes (like cup on table) where both
primitives are present.

make different assumptions about how spatial concepts are
constructed from semantic primitives. Each successive model
includes one or more previous models as a special case, and
we explore whether the additional assumptions made by each
model help to account for the cross-linguistic data.

A Computational Approach to Spatial
Cognition

Our formal approach is summarized by the graphical model
in Figure 1a. Suppose thatP represents a set of spatial prim-
itives and thatS is a matrix of scene vectors, where column
si is a binary vector that indicates which primitives apply to
scenei. In Figure 1b, for example, the scene vector for “cup
on table” indicates that this scene is characterized by “sup-
port” and “contact” but not “hanging.” LetT be a matrix of
term vectors, where vectort j indicates which primitives con-
tribute to the meaning of termj. In Figure 1b, the term vector
for “on” indicates that the meaning of this term is based on
the “support” and “contact” primitives. Finally, letD be a

Table 1: A brief description of the five models and their ab-
breviations. The two columns on the right compare model
scores on the real data to the mean scores on the random sets
discussed in Results.D1 is data from the authors and Levin-
son and Meira (2003).D2 is data collected by Feist (2000).

Model Abbrev. S(D1) S(D2)
Singleton BS+ .61 : .39 .61 : .50

Singleton with negations BS− .62 : .41 .66 : .53
Conjunction BC+ .66 : .46 .70 : .58

Conjunction with negations BC− .79 : .57 .83 : .68
Weighted combination WC− .79 : .54 .80 : .65

binary matrix where entrydi j indicates whether the spatial
relationship in scenei can be described by termj.

The graphical model in Figure 1a can capture at least three
kinds of inferences. If asked to decide whether termj ap-
plies to scenei, a native speaker can use scene vectorsi and
term vectort j to decide whetherdi j = 1. When interpreting
a description of an unobserved scenei , a native speaker can
use term vectort j along with the information thatdi j = 1 to
predict the scene vectorsi . When learning the meanings of
spatial terms, a learner givenP, S, andD can infer the term
vectors inT. We will address this third problem and the nodes
for P, S, andD are shaded in Figure 1a to indicate that these
variables are observed for all cases we consider.

We report results for two cross-linguistic data sets. The
first is based on a triple(P1,S1,D1) that combines data re-
ported by Levinson and Meira (2003) with new data that
we have collected. Our second data set is based on a triple
(P2,S2,D2) that is taken from the work of Feist (2000). The
next sections describe these triples, and we then describe how
we used these triples to explore the meanings of spatial terms.

Spatial primitives. The first set of primitives (P1) is shown
in Table 2, and includes 19 primitives that capture position
along the vertical axis, position with respect to the observer,
and various notions related to contact and inclusion. These
primitives were collected from several previous authors, and
the set is intended to capture most of the concepts that have
previously been proposed as candidate primitives. The sec-
ond set of primitives (P2) is based on a set proposed by Feist
(2000), and includes primitives like “above,” “contact,” and
“support.” The complete set of primitives is shown at the top
left of Figure 2b.
Scenes and scene vectors. The scenes we consider are taken
from the Topological Relations Picture Seriesdesigned by
Melissa Bowerman. This picture set is composed of 71 dif-
ferent line drawings of a wide range of spatial scenes. Each
scene in the picture set represents a spatial relationship be-
tween a designatedfigure(indicated by an arrow in the draw-
ing) and agroundobject. Figure 1 shows a few examples of
these drawings. Scene matrixS1 includes all 71 pictures. We
asked three English speakers to code these pictures using the
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19 primitives in Table 2. Each primitive was described using
a short phrase, and summaries of these descriptions are shown
in Table 2. MatrixS1 was created by merging the three sets
of responses using a majority vote, and a subset of this matrix
appears in Figure 2a. Scene matrixS2 includes information
for 27 scenes from the picture series. Feist coded each scene
in terms of the primitives in her set, and matrixS2 is based on
her codes. A subset ofS2 is shown in Figure 2b.
Scene-term mappings. Matrix D1 includes results for all 71
scenes. Levinson and Meira (2003) reported data for 4 lan-
guages, and we built on this data set by asking one speaker for
each of 21 additional languages to label the set of 71 scenes.
The languages included are listed in Table 2. Participants
were asked to provide a single spatial term for each picture
and were allowed to use as many different terms as they liked
across the set of 71 scenes. In cases where they were not
sure, we asked them to choose the term that seemed best to
them. Feist (2000) asked speakers of 16 languages to label
the scenes represented inS2, and the results are collected in
data matrixD2.

Modeling the meaning of spatial terms
The information in a triple(P,S,D) can be used to explore the
semantics of spatial terms. We consider a family of five mod-
els that make different assumptions about the spatial term rep-
resentationsT and the way in which scene representations (S)
and term representations (T) combine to generate the term-
scene mappings(D). All of the models assume that spatial
term j is represented as a term vectort j , but the models vary
along three dimensions which determine the nature of the en-
tries in each vector.

One of these dimensions—binary (B) or weighted (W)—
indicates whether primitives can be differentially weighted.
Binary models use term vectorst j where 0 indicates that a
primitive makes no contribution to the meaning oft j , and 1
indicates that a primitive must be present in order for termj
to apply. Weighted models use vectors where each entry is a
real number between -1 and 1 inclusive. Weights near 1 indi-
cate that a primitive should be present in order for a term to
apply, and weights near -1 indicate that a primitive should be
absent. A second dimension—singleton (S) or combination
(C)—indicates whether terms correspond to single primitives
or combinations of primitives. Singleton models assume that
each term vector has exactly one non-zero entry, but combi-
nation models allow term vectors to have multiple non-zero
entries. The final dimension—positive (+) or negative (-)—
indicates whether spatial terms can be defined using negations
of primitives. For binary models with negation, we expand
the set of primitives so that it includes negated versions of
each primitive in Table 2. For weighted models with negation,
we keep the original set of primitives and capture negation by
allowing term vectors to include negative weights. The three
dimensions just introduced generate 8 models in total, and we
will focus on the five models in Table 1.

Although some of our models allow term vectorst j to con-
tain real-valued entries, scene vectorssi are always repre-

sented as binary vectors which specify which primitives apply
(1) or do not apply (0) to each scene. Given a scene vector
si and a term vectort j , all of our binary models determine
whether spatial termj applies to scenei as follows:

di j =

{

1, if si
Tt j = |t j |

0, otherwise
(1)

where|t j | is the number of non-zero entries in term vectort j .
Equation 1 states that termi applies to scenej (i.e. di j = 1)
only if all of the constraints specified by term vectort j are
consistent with the scene. Weighted models use a soft version
of Equation 1:

di j =

{

1, if σ(si
Tt j) > p

0, otherwise
(2)

where σ(·) is a sigmoid function (e.g.σ(x) = 1
1+exp(−x) )

which maps its argument into a probability (i.e. a number be-
tween 0 and 1). The parameterp is a threshold that will be
learned from the data sets that we consider.

The models in Table 1 make contact with previous ideas
from several fields. The singleton model is based on an idea
proposed by Piaget and Inhelder (1956) who claims that there
exists a common topology in which spatial languages build
on concepts such as proximity and contiguity. Jackendoff
(1983) further suggests that spatial semantics are composed
of simple primitives such as “on” and “in”, which are directly
encoded in languages. We expect, however, that the single-
ton model is unlikely to prove adequate. Levinson and others
(Levinson & Meira, 2003; Levinson & David, 2006) have
argued that there is great variation in spatial concepts across
cultures, and the singleton model cannot account for this vari-
ation without an explosion in the number of primitives.

The combination models are also related to previous work.
The discrete combination model captures the familiar pro-
posal that meanings can be represented as conjunctions of
primitive concepts, and psychologists have also proposed
that spatial terms are represented as sets of weighted at-
tributes (Feist, 2000). The weighted model in Equation 2 is
known to statisticians as a logistic regression model, and is
equivalent to a single-layer neural network, where the input
(si) is mapped to the output (di j ) via a layer of weights (t j )
and the sigmoid function.

Inferring term vectors

Our goals can now be precisely formulated. Given a triple
(P,S,D) and one of the five models in Table 1, we wish to
infer a term matrixT and decide how wellS andT account
for the dataD. For both the singleton and conjunction models,
we use a greedy algorithm to infer the term matrixT. For
each spatial term we begin with a term vectort j that includes
only zeros, then greedily flip elements to improve a standard
precision-recall F-score

F =
2×∑i I(d̂i j = di j = 1)

∑i I(d̂i j = 1)+ ∑i I(di j = 1)
(3)
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Table 2: Lists of author-collected languages (alphabetical),
spatial primitives and their descriptions. “∗” indicates negat-
able primitives. “F” and “G” stand for figure and ground.

Language Primitive Description
Arabic above F higher than G

Bengali below F lower than G

Cantonese vertical equality∗ F and G of equal height

Croatian support∗ F supported by G

English horizontal support∗ F supported horizontally by G

Finnish front F closer to viewer than G

French back G closer to viewer than F

German viewpoint equality∗ F and G equidistant from viewer

Hindi contact∗ F in touch with G

Indonesian surface contact∗ F in surface contact with G

Italian attachment∗ F attached to G

Japanese adhesion∗ F stuck to G

Mandarin hanging∗ F hung from G

Portuguese piercing∗ F pierces through G

Romanian impaled∗ F impaled by G

Russian proximity∗ F in close proximity to G

Slovakian containment∗ F contained by G

Slovene encircled∗ G circles F

Spanish circlement∗ F circles G

Thai
Vietnamese

whered̂i j is a prediction based on the term vectort j anddi j

indicates whether termj actually applies to scenei. The F-
score will be high if most of thêdi j = 1 entries predicted by
t j are correct (high precision), and if these predicted 1-entries
include most of the actual 1-entries for termj (high recall).

For the weighted combination model, instead of inferring
binary vectors we must learn a vector of weights for each
term. Choosing the weights to maximize the F-Score is pos-
sible in principle (Jansche, 2005), but instead we fit a stan-
dard L1 regression model which is equivalent to a Bayesian
logistic regression (Genkin, Lewis, & Madigan, 2004) with
a Laplacian prior on the weights. For each spatial term, this
approach searches for a weight vectort j such that Equation 2
accurately predicts which scenes can be described by term
j. The Laplacian prior captures the idea that term vectors
t j should be as simple as possible, and encourages small en-
tries in t j to end up as zero weights. In addition to this prior,
we use the number of non-zero entries inferred by the con-
junction model as an upper bound on the number of non-zero
weights for the weighted model. Allowing many of the en-
tries to be non-zero gives the weighted model more flexibil-
ity, but enforcing a sparsity constraint enables a direct com-
parison between the conjunction and weighted combination
models. After learning the weights in all of term vectorst j ,
we finish by choosing thresholdp in Equation 2 to maximize
the F-score (Equation 3).

Results

We applied the five models just described to the two triples
(P,S,D) mentioned previously. In each case we computed the
term matrixT that best accounts for the data. Term vectors
for some languages are shown in Figure 2, and are discussed
towards the end of this section.

The extent to which each model captures each data set can
be captured using the F-score in Equation 3. Scores for the
five models are shown in Table 1. To assess whether these
scores are better than chance-level performance, we com-
pared them with baseline scores achieved on random data
sets. We used three randomization strategies. Arandomized
D set is created by randomizing all entries inD so that the
sparsity is preserved (i.e. the number of “1” entries remains
the same but all other structure is lost. Ashuffled Dset is
created by randomly reordering the rows inD and leaving the
scene vectors inSfixed. Finally, ashuffled Sset is created by
permuting the rows inSand leavingD fixed. Note that both
shuffled sets leave the columns inD and S unchanged and
therefore preserve many characteristics of these matrices, in-
cluding the extent to which scenes (i.e. columns) tend to fall
into clusters. For each triple, we created 20 random sets for
each randomization strategy and computed the model scores.
We then used t-tests to evaluate the hypothesis that perfor-
mance on the real sets was significantly higher than perfor-
mance on the random sets. In all cases we obtained highly
significant results with truncatedp < 0.001 after correction
for multiple tests (first five rows of Table 2). These results
suggest that all of our models were able to capture the struc-
ture in the observed data better than chance.

Although all models appear to capture some structure in
the data, it is natural to ask which model performs best. The
scores for the individual models do not address this question
directly—for example, since the singleton model is a special
case of the conjunction model, the conjunction model will
always achieve a higher score regardless of whether it is ac-
tually the better approach. We therefore compared pairs of
models by exploring whether whether the difference between
their scores was significantly above chance level. For each
pair, we compared the difference in prediction scores on the
real data set against the differences achieved on the three ran-
dom sets. The results appear in the final five rows of Table 2.
Rows 6 and 7 suggest that the conjunction models perform
better overall than the singleton models. Rows 8 and 9 sug-
gest that allowing negated primitives leads to a significantim-
provement in performance. Finally, row 10 suggests that the
weighted combination model does not perform better than the
conjunction model with negations. Note, however, that we
also evaluated an alternative weighted model where the spar-
sity of the weight vectors was not constrained by the conjunc-
tive solution, and where all of the entries in each vector were
allowed to be nonzero. This model performed significantly
better than the conjunction with negation model on three of
the six randomized tests across the two data sets, suggest-
ing that weighted combinations may capture some aspects
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Table 3: Significance of model performances and pairwise
comparisons from t-tests. The model scores on the real data
sets are compared to those on the random sets (1 –random-
ized D, 2 –shuffled D, 3 –shuffled S). D1 is data from the au-
thors and Levinson and Meira (2003).D2 is collected by Feist
(2000). For each pairwise comparison, the model on the left
scores higher than the model on the right (e.g. BC+ outper-
forms BS+). ‘∗’ indicates statistical significance atp < 0.05.

D1 D2

1 2 3 1 2 3
BS+ * * * * * *
BS− * * * * * *
BC+ * * * * * *
BC− * * * * * *
WC− * * * * * *

BC+ vsBS+ * – – * * *
BC− vsBS− * * – * * *
BS− vsBS+ * – – * * *
BC− vsBC+ * * * * * *
BC− vsWC− – – – – – –

of spatial semantics. Future work can explore this issue in
more detail and determine which sparsity assumptions allow
weighted models to provide the best account of spatial terms.

Our analyses so far suggest that the primitives inP1 and
P2 are able to account for much of the structure in data sets
D1 andD2. It is important, however, to consider whether our
models combine the primitives in psychologically meaningful
ways. Figure 2 shows the definitions learned by our models
for three languages, and focuses on a subset of 10 scenes that
were used in both data sets. Figure 2a shows term vectors
and predictions for our data set. Note that the conjunction
model captures important aspects of meaning that the sin-
gleton model misses. For example, Figure 2a.ii shows that
“contact” is included in the meaning ofon by the conjunc-
tion but not the singleton model. The plots also illustrate how
negations allow the conjunction model to improve its predic-
tions. Figure 2a.xi shows that the conjunction model makes
several predictions about “qian mian” that do not match the
true scene-term mapping in Figure 2a.x. “Qian mian” corre-
sponds roughly to the phrase “in front of,” and including “no
contact” in the definition of this term allows the negated con-
junction model to successfully predict that it will not apply to
scenes like “handle on cupboard” or “stamp on letter.”

For our second analysis the term vectorsT1 (Figures 2b.iii
and b.iv) can be compared against a gold standard, which
is the set of term vectors manually assigned by Feist (Fig-
ure 2b.ii). The vectors learned by our model are similar to
those specified by Feist, and the predictions that follow from
Feist’s representation (Figure 2b.vi) do not appear more ac-
curate overall than the predictions generated by our automat-
ically learned term vectors (Figure 2b.vii).

Conclusion
We presented computational models that explore whether
spatial concepts can be constructed by combining a set of uni-
versal primitives. Our results suggest that a large proportion
of the information in two cross-linguistic data sets can be cap-
tured by models that begin with the primitives typically dis-
cussed in the literature and combine them using simple oper-
ations such as conjunctions and weighted sums. Our general
framework (Figure 1a) can be used to address many questions
in spatial cognition and we mention just two directions for fu-
ture work. First, we fit our models to the cross-linguistic data
by learning definitions for each spatial term, and future work
can use our approach to explore how humans learn spatial
concepts. Second, all our analyses used primitives that were
specifieda priori, but it is conceptually straightforward to de-
velop models that learn the primitives that best account fora
given data set. Uncovering the nature of spatial primitives
presents many challenges, but computational approaches can
help address some of these challenges.
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Figure 2: Term vectors and scene-term mappings for (a) English and Mandarin in the data set collected by the authors and (b)
German in the data set collected by Feist. (a)(i) Ten scenes coded according to the nineteen primitives in Table 2. (ii) Inferred
term vectors for four models: BS+ (indicated by +), BS- (-), BC+ (white cells) and BC- (white and black cells). Model BS-
chooses a negated primitive only once (aboveis defined as “not F12”). (iii) Inferred term vectors for model WC-. (iv) True
scene-term mappings (v) - (vii) Predicted scene mappings for five models. The predictions of models BC+ and BC- (black cells)
are a subset of the predictions of the singleton models (black and gray cells). (viii)-(xiii) Results for Mandarin. (b) Results for
German. Feist provided the encoding in (i) and the term vectors in (ii). (iii)-(iv) Term vectors for the singleton model (”S”),
the conjunction model (white cells) and the weighted combination model. (v)-(viii) Actual and predicted scene-term mappings.
Since the primitives in (b)(i) already include negations, models BS and BC do not allow additional negations.
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