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Abstract

We investigated the possibility of predicting students’
engagement and learning gains during a tutoring session from
trait measures of motivation, engagement, burnout, cognitive
ability, prior knowledge, and task related measures.
Participants completed a multiple choice pretest, a learning
session, a posttest, and a battery of individual differences tests
and questionnaires. Multiple regression and exploratory factor
analyses indicated that the individual differences measures
yielded medium sized effects at predicting learning gains as
well as engagement levels that were self-reported during the
tutorial session. In general, self-reported interest in the task
and confidence in learning from a computer tutor coupled
with working memory capacity and attentional abilities were
the major predictors of both engagement and learning.
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Introduction

There is no one-size-fits-all approach when it comes to
promoting student engagement and learning. Engagement
and learning are affected by a number of factors such as, the
learning environment (classroom, human tutor, high stakes
learning), the task (acquiring shallow facts versus obtaining
a deeper conceptual understanding), and characteristics of
the learners themselves (e.g., visual versus verbal learners,
performance versus mastery-oriented learners) (Ackerman,
Sternberg, & Glaser, 1989; Jonassen & Grabowski, 1993;
Schmeck &  Geisler-Brenstein,  1989).  Therefore,
understanding how a particular student will be engaged in
and benefit from a learning session requires an analysis of
how the learning environment, the task, and the
characteristics of the learner (i.e. individual differences)
interact and influence learning outcomes.

For a given learning activity (e.g., learning conceptual
physics from a human tutor), the context and the task are
fixed, however the individuals involved in the activity vary.
Hence, it is important to discriminate learners that actively
engage and benefit from a learning session from others who
passively attend the session and do not demonstrate
dramatic improvements in their knowledge levels.
Consequently, individual differences research has been a
long standing and valuable tradition in the fields of
psychology and education (Ackerman et al., 1989; Jonassen
& Grabowski, 1993). Although research efforts along this
front have yielded some important insights, there is little
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data on how individual differences influence engagement
and learning within the context of intelligent learning
environments such as Intelligent Tutoring Systems (ITSs).
Understanding how individual differences impact learning
sessions with ITSs is important, because ITSs are emerging
as effective alternatives to deliver individualized instruction
to large numbers of students (Corbett, Anderson, Graesser,
Koedinger, & VanLehn, 1999; Graesser, Person, &
Magliano, 1995; Koedinger & Corbett, 2006).

It is generally acknowledged that all students do not
benefit equally from learning sessions with ITSs (VanLehn
et al., 2007). Some learners show dramatic improvements in
learning gains from pre to post tests, while tutoring has a
negligible impact on others. Some learners actively attend
the session by carefully listening to the tutor, taking
initiative by asking questions, and providing verbose
responses to the tutor’s questions (Graesser et al., 1995).
However, other non-critical learners, socially attend the
session, and are comfortable being passive information
receivers rather than active problem solvers. Who are these
learners? Can they be discriminated from standard
individual difference measures? What are the individual
differences that are predictive of engagement and learning
gains? These are the questions that motivated the present
study.

The present study investigated whether trait measures of
individual differences in (a) motivation, engagement, and
burnout, (b) cognitive abilities, and (c) task related
measures, could predict state measures consisting of
engagement levels and learning gains in a one-on-one
tutoring session with an ITS. Our focus on trait measures of
motivation, engagement, and burnout is motivated by
numerous studies that have related these measures to
engagement and learning (Bartels & Magun-Jackson, 2009;
Pekrun, Elliot, & Maier, 2006). For example, learners with
mastery-approach motivation orientations are expected to be
absorbed in the learning process (i.e., more engaged) and
process the material deeply, presumably resulting in higher
learning gains (Elliot & McGregor, 2001). In contrast,
learners with performance-approach characteristics process
the material at relatively shallow levels and do not
demonstrate impressive learning gains. Similarly, some
research has linked trait measures of engagement and
burnout to performance outcomes (Schaufeli, Martinez,
Pinto, Salanova, & Bakker, 2002).



Individual differences in cognitive abilities have
previously been related to a variety of outcomes, hence, we
expect them to be predictive of both engagement and
learning with ITSs. For example, working memory capacity
has been linked to performance on tests of fluid intelligence
(Yuan, Steedle, Shavelson, Alonzo, & Oppezzo, 2006).
Sustained attention has been related to academic
achievement in school contexts (Steinmayr, Ziegler, &
Tréuble, 2010). In general, existing research has empirically
demonstrated interactions between affect, working memory
capacity, attention, intelligence, and performance outcomes
(Linnenbrink, Ryan, & Pintrich, 1999; Steinmayr et al.,
2010; Vergus & Boeck, 2002; Yuan et al., 2006). Hence, the
present study focused on working memory capacity,
selective and sustained attention, and general intelligence as
predictors of engagement and learning gains.

In addition to the motivation, engagement, burnout, and
cognitive variables, there is reason to suspect that individual
differences pertaining to the learning task itself might be
predictive of both engagement and learning gains. For
example, task interest is likely to trigger curiosity and
promote engagement (Berlyne, 1978), while prior
knowledge is expected to be predictor of learning gains
(VanLehn et al., 2007). More interestingly, there is some
recent evidence that suggests that students’ confidence of
learning from a computer can be a better predictor of
learning gains that other variables (e.g., initial motivation,
prior knowledge) (Jackson, Graesser, & McNamara, 2009).

The present study investigated whether engagement and
learning gains from a tutoring session in biology could be
inferred from the aforementioned individual differences
measures. More specifically, our analyses focused on (a)
comparing the predictive power of three banks of predictors
(motivation/engagement/burnout versus cognitive versus
task), (b) assessing the predictive power of combined
models that simultaneously include predictors from all three
banks, (c) deriving principal components from the
individual difference measures, and (d) correlating the
derived components with engagement and learning gains.

Methods

Participants

Participants were 90 college students (non biology majors)
who participated for course credit.

Description of Learning Environment

The study used a dialogue-based ITS that tutored students
on eight topics in biology (e.g., cellular respiration, mitosis,
ecological succession) via natural language dialogues. The
ITS was designed to mirror the pedagogical and
motivational strategies of lectures delivered by expert
human tutors (D'Mello et al., in review).

Participants were randomly assigned to one of three
versions of the ITS. In the dialogue version, the tutor
primarily transmitted information (68% of the time) but
occasionally provided cues for acknowledgements (e.g.,
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“Right?”, “ok?”), asked comprehension gauging questions
(e.g., “Do you understand?”’), and prompted the student for
answers (e.g., “X is a type of what?”). Alternatively, in the
monologue version, the tutor did all the talking and the
student was a passive recipient. The third version consisted
of vicarious dialogues, where the discourse patterns were
structurally similar to the dialogue condition, but with one
important exception. Here, it was a virtual student, instead
of the learner, that answered the tutor’s comprehension
gauging questions and prompts. The virtual student always
provided the correct answer (via simulated keystrokes) and
the human learner simply watched the interaction.

The lectures were delivered via a simple conversational
interface that consisted of an animated conversational agent
that delivered the content of the lectures by means of
synthesized speech, a media panel that displayed images
relevant to the lectures, and an input box for students to type
their responses for the dialogue condition. In the vicarious
dialogue condition, the virtual student’s responses were
provided in the input box with simulated keystrokes. The
simulated keystrokes were carefully calibrated in order to
mirror the temporal dynamics of actual typing (i.e., onset
delay, variable interstroke delay, and delay before hitting
enter key to submit response).

Dependent Measures

Engagement Measures. Participants engagement levels
were tracked at multiple points in the tutorial session with
the affect grid (Russell, Weiss, & Mendelsohn, 1989) and
through post-lecture questionnaires. The affect grid is a
validated single item affect measurement instrument
consisting of a 9 x 9 (valence x arousal) grid. Valence and
arousal are the primary dimensions that underlie affective
experiences. The arousal dimension ranges from sleepiness
to high-arousal, while the valence dimension ranges from
unpleasant feelings to pleasant feelings. Participants indicate
their affective state by marking an X at the appropriate
location on the grid.

The post-lecture questionnaire asked participants to self-
report their engagement levels after each lecture. There were
three questions which asked the participant to rate their
engagement at the beginning, middle, and end of each
lecture. Participants indicated their ratings on a six-point
scale ranging from very bored to very engaged.

Knowledge Tests. The knowledge tests (used to measure
prior knowledge and learning gains) were 24-item multiple-
choice tests with three questions for each lecture. Prompt
questions tested participants on content for which the tutor
explicitly prompted the student in the dialogue and vicarious
conditions. Although there were no explicit prompts in the
monologue condition, we verified that the content of the
prompts was explicitly covered in the monologue. Assertion
questions tested participants on content that the tutor
explicitly asserted to the student via direct instruction.
Finally, there were deep reasoning questions that required
causal reasoning, inference, etc. rather than recall of shallow



facts. Participants completed alternate test versions for
pretest and posttest that were counterbalanced across
participants.

Individual Difference Measures

Motivation, Engagement, and Burnout. These measures
consisted of: the Achievement Goals Questionnaire (AGQ)
for motivation, the Utrecht Work Engagement Scale for
Students (UWES-S) for trait engagement, and the Maslach
Burnout Inventory Student Survey (MBI-SS) for burnout
(Elliot & McGregor, 2001; Schaufeli et al., 2002).

The AGQ, a validated 12 item questionnaire, was used to
classify participants’ motivation levels as performance-
approach, performance-avoidance, mastery-approach, and
mastery-avoidance (Elliot & McGregor, 2001).

The UWES-S is a validated 14-item self-report measure
of three dimensions of student engagement: vigor,
dedication, and absorption (Schaufeli et al., 2002).

The MBI-SS is a validated 15-item self-report measure of
three dimensions of student burnout: exhaustion, cynicism,
and professional efficacy (Schaufeli et al., 2002).

Task Related Individual Differences. These measures
consisted of pretest scores as a measure of prior knowledge
in biology (see above) and a locally created Perceptions of
Learning Biology Questionnaire (PLB). The PLB consisted
of three questions that were designed to gauge participants’
interest in learning biology, their perceived usefulness of
learning biology, and their confidence that they could learn
biology from a computer tutor.

Cognitive Measures. The cognitive measures consisted of:
self-reported ACT or SAT scores as a measure of aptitude
(these are standardized tests required for admission to
universities in the US; SAT scores were converted to ACT
scores in the present study), the validated Reading Span test
(RSpan) to measure working memory capacity (Daneman &
Carpenter, 1980), and the validated Ruff 2 and 7 Selective
Attention test (Ruff 2 and 7) which measures selective and
sustained attention (Ruff, Neimann, Allen, Farrow, &
Wylie, 1992).

In each trial of RSpan, participants are presented with a
logical or nonsensical sentence and an arbitrary letter that
appears at the end of the sentence. They have to read the
sentence out loud, determine if it was logical or nonsensical,
and try to remember the unrelated letter. At recall, the
participant typed the letters from the current set of trials in
the correct order. The set sizes ranged from 2 to 5 letter
strings (there were 3 trials of 2 character strings, 3 trials of 3
character strings, 4 trials of 4 character strings, and 2 trials
of 5 character strings).

The measures from the RSpan include the absolute span,
which is the highest set size (i.e., 2, 3, 4, or 5) that the
participant recalled correctly, the weighted span (i.e., a
score computed by weighting set size and items recalled),
and the total recalled (i.e., the total number of items that the
participant recalled correctly).
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The Ruff 2 and 7 is a measure of selective and sustained
attention (Ruff et al., 1992). It is a five-minute timed task
with 20 trials (each trial is 15 seconds). For each trial, 30
targets (2’s and 7’s) were embedded in either a string of
alphabetical capital letters (known as the automatic
detection trials), or among strings of digits (known as the
controlled search trials). Participants are required to spot the
2’s and 7’s from the distracters and click on them.

Selective attention was measured by the automatic
detection speed and accuracy (the 10 letter trials) and by the
controlled search speed and accuracy (the 10 digit trials).
Sustained attention is measured by the total speed and total
accuracy in the 20 trials.

Procedure

Participants were tested individually over a two hour
session. They first completed an informed consent followed
by the pretest and the Perceptions of Learning Biology
questionnaire. Next, they read instructions on how to use the
affect grid. On the basis of random assignment, participants
then completed a tutorial session with either the monologue,
dialogue, or vicarious version of the tutor. There were 30
participants in each condition. The tutoring session
consisted of eight lectures that were randomly ordered for
each participant. Random ordering was permissible because
there was no major content overlap across lectures.
Participants completed the affect grid and the post-lecture
questionnaire after each lecture. They completed the posttest
after the completion of all eight lectures. Finally, they
completed the battery of individual difference measures
after which they were fully debriefed.

Results and Discussion

We analyzed the data with multiple regression (MLR) and
exploratory factor analysis techniques. The goal of the MLR
analyses was to assess the predictive power of the three
banks of predictors by comparing each bank separately, as
well as building combined models that collectively
considered all three banks. The factor analysis was used to
extract principal components from the individual difference
measures and to correlate the extracted components to the
dependent measures (engagement and learning gains).

It is important to highlight some important points before
describing the results. First, there were seven dependent
variables: four learning gains measures and three
engagement measures. The four learning gains measures
were the corrected learning gains [(post — pre)/(1-pre)] for
the prompt, assertion, and deep-reasoning questions, and an
overall learning gains score (gains computed on all the items
without segregating them into the different categories).

The three measures for engagement consisted of valence
and arousal scores from the Affect Grid and a composite
engagement score, which was the average engagement from
the post lecture questionnaire (i.e., mean for each lecture of
beginning engagement, middle engagement, and end
engagement). Since the Affect Grid and post lecture
questionnaires were administered eight times, once after



each lecture, an aggregate value for valence, arousal, and
composite engagement was computed for each participant
by averaging the scores across lectures.

It is important to emphasize that the goal of the present
paper is to identify the individual difference measures that
predict learning and engagement and not to assess the
impact of the tutor version (i.e., dialogue, monologue,
vicarious). Previous analyses have compared our dependent
measures as a function of tutor type (D'Mello et al., in
review). Hence, the present analyses collectively analyzed
all participants without considering tutor version.

Comparing Individual Predictor Banks

The goal of this analysis was to compare the predictive
power of the different banks of predictors. This was
accomplished by constructing 21 multiple regression models
for the seven dependent variables and the three predictor
banks. There were ten motivation and engagement
predictors, four task related measures, and ten cognitive
predictors.

Prior to constructing the regression models, we performed
a correlational analysis to identify the most diagnostic set of
predictors. In particular, any predictor that marginally-
significantly correlated (p < .10) with at least one of the
seven dependent measures was preserved for the subsequent
analyses. This reduced the predictor set to four motivation
and engagement predictors  (performance-approach,
performance-avoidance, vigor, and exhaustion), three task
related predictors (prior knowledge, confidence, and
interest), and seven cognitive predictors (ACT; absolute
span, weighted span, total recalled from the RSpan test;
automatic detection speed, controlled search speed, and total
speed from the Ruff 2 and 7). Multicollinearity problems
among these predictor sets were diagnosed and corrected
with tolerance analyses prior to constructing the regression
models.

Space constraints preclude an extensive discussion of the
regression models constructed by examining each predictor
set independently. Hence, the current discussion is limited
to comparison of the predictive power of the three feature
sets (coefficients will be examined in the subsequent
analysis). R? adj. values as a measure of goodness of fit for
regression models are presented in Table 1.

It appears that on average the cognitive predictors
explained 10.2% of the variance for the learning gains
measures, which is consistent with a small to medium sized
effect (Cohen, 1992). Variance explained by the cognitive
set was also quantitatively greater than the variance
explained by the motivation/engagement/burnout and task
related predictors, which were on par with each other (mean
R? adj. = .044 and .053, respectively). In contrast, the three
predictor sets were equally effective in predicting the
engagement measures.

Multiple Predictor Sets

The next set of regression models were constructed from the
predictors that were significant in the previous set of

analyses. Here, predictors from all three feature sets were
simultaneously considered and the significant predictors
were identified via stepwise regression.

Table 1. R? adj. for regression models

Dependent Measure Individual Banks

M,EB  Task Cog Combined
Learning

Prompt 0° 0° 085 113
Assertion 111 .027° 039 122
Deep 0° .053 129 194
Overall 0° .062 .156 149
Mean .028 .036 .102 .145

Engagement
Valence .047 .030 .067 .082
Arousal .066 A11° 061 197
Composite .081 .086 .136 .169
Mean .065 .076 .088 149

Notes. All models significant at p < .05 unless noted otherwise. ® significant
at p < .10, ° not significant (p > .10). M,E,B = motivation, engagement,
burnout. Cog = Cognitive.

Learning Gains. There were statistically significant models
for learning gains on prompt questions, assertion questions,
deep reasoning questions, as well as for total learning gains
(see Table 1). On average, the combined feature sets
explained .145 of the variance, which approaches a medium
sized effect (Cohen, 1992) and represents a 43%
improvement in the variance explained by considering the
best feature set independently (i.e., cognitive features).

Turning our focus to the significant predictors of the
regression models (see Table 2), it appears that students
with higher working memory abilities performed well on
prompt questions. Surprisingly, self-reported exhaustion
scores positively predicted performance on assertion
questions; this finding warrants further analysis.

Deep reasoning questions, however, were predicted by a
combination of self-reported interest in learning biology as
well as a high ability to sustain attention. Total learning
gains, however, were predicted by a combination of
working memory capacity and sustained attention,
indicating that the cognitive variables are the most relevant.

Table 2. Direction (+, -) of significant predictors

Learning Gains
P R D

Engagement

Predictor 0 A vV C

Perf-Approach
Exhaustion

Interest

Absolute Span
Weighted Span
Total Recalled
Total Speed

Contrl. Srch. Speed +8
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Notes. # p = .056; p < .05 for other predictors; P, R, D = gains for prompt,
assertions, and deep questions, respectively. O = overall learning gains. A,
V, C = arousal, valence, and composite engagement, respectively.



Engagement. Statistically significant models were obtained
for arousal, valence, and the composite engagement score.
These models explained an average of 14.9% of the
variance, which is consistent with a 70% improvement over
the best individual model (cognitive features; see Table 1).

An examination of the significant coefficients of the
regression models for engagement indicated that task
interest and working memory capacity were the most
diagnostic predictors (see Table 2). In particular, arousal
was predicted by task interest and absolute span. Valence
was predicted by task interest, weighted span, and with a
performance-approach motivational orientation. Finally,
composite engagement was predicted by task interest, total
items recalled during the RSpan test, and controlled search
speed (an important characteristic of selective attention).
Simply put, being interested in the learning session and
having the requisite cognitive ability (working memory span
and attention) to handle the difficulties and demands of the
session were the major predictors of engagement.

Factor Analysis

We analyzed the individual differences with an exploratory
factor analysis (principal components analysis with varimax
rotation and Kaiser normalization). The analysis was
conducted on 18 out of the 24 predictors because the
inclusion of some of the predictors from the RSpan and Ruff
2 and 7 tests posed problems with respect to the factorability
of the data. Specifically, only the absolute span measure
from the RSpan test and the total speed and total accuracy
scores from the Ruff 2 and 7 test were included.

Several indicators of factorability on the model with 18
predictors indicated that the data were in fact factorable. In
particular, (2) the Kaiser-Meyer-Olkin measure of sampling
adequacy was .72, which is above the recommended value
of .6, (b) Bartlett’s test of sphericity was significant ()(2
(153) = 287.16, p <.05), (c) the diagonals of the anti-image
correlation matrix were all above .5, which supports the
inclusion of each item in the factor analysis, and (d) the
commonalities were above .3, which indicates that each
item shared a degree of common variance with the other
items.

The analysis yielded six components with eigen values
greater than 1 that collectively accounted for 63.4% of the
variance (see Table 3). It appears that Component 1, which
consists of a combination of predictors from the UWESS-S,
MBI-SS, and AGQ represents highly engaged, low burnout,
and mastery-approach oriented learners. This component
accounted for 18.9% of the wvariance. In contrast,
Component 2 (10.3% variance) represents learners with
mastery and performance-approach tendencies. Component
3 (9.5% variance) represents learners that have some prior
knowledge in biology and they find it interesting and useful,
while Component 4 (9.4% variance) is consistent with
learners that are intelligent and have high attention abilities.
Component 5 (8% variance) represents learners have a large
working memory and are confident that they can learn
biology from a computer tutor. Finally, Component 6 (7.2%

variance) consists of learners that are absorbed, but have a
performance-avoidance motivational orientation.

Our analyses proceeded by correlating the individual
difference measures with the six extracted components (see
Table 4). As evident from the table, components 4 and 5 are
the major predictors. In particular, component 5 correlates
with six out of the seven dependent measures, thereby
indicating that confidence in learning biology from a
computer tutor coupled with large working memory
capacity and attentional ability is the individual difference
component that predicts engagement and learning.

Table 3. Factor loadings

Components

Item 2 3 4

.83
-.80
.76
-.68
.61
.61

Dedication
Cynicism

Pro Efficacy
Exhaustion
Vigor

Mast Approach
Mast Avoid
Perf Approach
Interest

Useful

Prior Knowledge
ACT

Total Accuracy
Total Speed
Absolute Span
Confidence

Perf Avoid
Absorption

40
.50
73
.68
.75
73
.60 42
.84
.67
.39 40 .36
73

.73

-.33

.35
48 71

.36 .62

Note. Items sorted by size and values < .3 are suppressed

Table 4. Correlations between dv’s and components

Dependent Components
Measure 1 2 3 4 5 6
Learning
Prompt -111  -018 -008 .183" 200"  -.036
Assertion .016 -041 .128 .030 131 -.133
Deep 133 -.017  .160 .302°¢ .264%  -.055
Total 035 -049 .162 .316° .288%  -.059
Engagement
Valence 052 209" .259*  .028 202° 108
Arousal .047 -.041 113 101 .252% .062
Mean E. .075 .136 .242° 2142 .291% 101
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Notes. ? significant at p < .05, ® significant at p < .10

General Discussion

The present study investigated the possibility of predicting
students’ engagement and learning gains during a tutoring
session with an ITS on the basis of individual differences in
motivation, engagement, burnout, cognitive abilities, and
task related measures. The results supported the conclusion
that the cognitive factors reigned supreme when it comes to
predicting learning outcomes; however, all three predictor
banks were equivalent for predicting engagement. When



models were combined, the individual difference measures
explained 15% of the variance in engagement and learning
gains, which is consistent with a medium effect (Cohen,
1992). In general, interest in the task, confidence in learning
from a computer tutor, large working memory capacity, and
heightened attentional abilities were the major predictors of
both engagement and learning.

Our findings have important implications for the design of
ITSs that aspire to be dynamically adaptive to individual
learners. These ITSs construct sophisticated student models
and utilize them to tailor the instruction to each students
zone of proximal development (Koedinger & Corbett,
2006). The models are usually constructed on the basis of
how students’ knowledge in a particular domain meshes
with the material that the tutor is expected to cover. In our
view, a brief pretesting session on some of the individual
difference measures coupled with the existing student
modeling approaches will yield more accurate models that
can guide individualized instruction. How these models are
utilized to heighten engagement and enhance learning gains
awaits further research and technological development.
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