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Abstract

We present an overview of a model for the co-evolution of
knowledge and event memory. The model, termed SARKAE
(Storing and Retrieving Knowledge and Events), describes
the development of knowledge and event memories as an
interactive process: knowledge is formed through the accrual
of individual events, and the storage of an individual episode
is dependent on prior knowledge. @ We reference two
experiments which provide data to inform our theory: these
studies involve the development of new knowledge, and then
testing in transfer tasks involving episodic memory, retrieval
from knowledge, and perception. The results of the transfer
tasks indicate a substantial role of pure frequency or raw
exposure, in opposition to the contextual diversity accounts of
frequency suggested by Adelman et al (2006). An overview
of the SARKAE model is presented. The model is able to
account for the effects of frequency in the absence of
contextual diversity.

Keywords: episodic memory; semantic memory; learning;
perception; Bayesian models.

Introduction

The processes involved in the accumulation of knowledge
and the formation of event memories are interdependent.
Almost every study since the 1890s has shown that the way
episodic (or event) memories are encoded depends on the
knowledge (or semantic memory) of the individual who is
encoding them. Conversely, an individual’s knowledge
must be formed through the episodes they encounter; this
idea was the basis of the REM model’s account of priming
(Shiffrin & Steyvers, 1997). These interdependent processes
create a feedback loop in which knowledge and episodic
memory formation develop together over lifelong learning.
Studies of memory and perception in the recent past have
provided strong support for the idea that memory processes
are robustly influenced by prior experience with the to-be-
remembered content. Priming studies, for example, have
shown that prior study of a word affects how well that word
is identified in a forced choice perceptual identification task
(Ratcliff & McKoon, 1997). The REMI model of Schooler,
Shiffrin, and Raaijmakers (2001) accounts for these effects
through a process in which the lexical representation (or
knowledge) of the word is changed through prior study (the
“prime”); when a word is studied an event memory is
formed, but in addition, novel features of the event, such as
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the context of the experimental setting, are added to the
lexical representation of the word. When the studied word
is then presented for perceptual identification, the context
tends to be similar to that at study, increasing the match of
the probe cues to the lexical trace, predicting a variety of
measurable effects that match those observed. In other
words, the knowledge that a subject has about a stimulus,
and the inclusion in that knowledge of factors like the
experimental context, affect the way that a stimulus is
perceived.

There are many models of the storage and retrieval of
event memories, and sometimes the addition to existing
knowledge of information from recent events (e.g. -
Raaijmakers & Shiffrin, 1981, Shiffrin & Steyvers, 1997,
Howard & Kahana, 2002, Anderson, 1983). The temporal
context model of Howard & Kahana for example provides
an explanation for recency and contiguity effects through
the storage of both item information and recent contextual
information. Other models, such as the ACT-R model of
Anderson (1983) also provide eloquent representations of
memory storage and retrieval. A few models attempt to
explain aspects of the way events produce knowledge,
especially for aspects of the role played by words in
language (e.g. McClelland & Rumelhart, 1981). However,
most of the prior research has been aimed to explain
memory and learning when knowledge has already formed
(to various degrees). Previous work by Reder et al. has
examined the development of knowledge on a set of
pseudowords, and used the dual-process SAC model to
explain their findings. Although highly relevant and useful
in the development of our research, the training study and
modeling by Reder et al. did not explicitly model the growth
of new knowledge.

Our aim is the development of a model that begins to
explain the interacting growth of event memory and
knowledge, as they influence both memory storage and
retrieval. This co-evolution of the two systems was the
focus of the REM-II model, created by Mueller and Shiffrin
(2006). In this model, knowledge (or semantic memory) is
represented as an accumulation of the co-occurrence of
features: Features that are present in an episodic event are
coded as occurring together in a matrix representation of
semantic memory. REM-II is a quite powerful model, but a
simplified version is sufficient to explain the basic concepts



by which event memory and knowledge co-develop, and is
sufficient to model the empirical results presented in this
paper. However, even a simplified model when applied to
five different tasks spanning the range of learning, memory,
and perception can grow to appear quite complex. The
simplified model uses a representation in which each
(separate) trace, whether an event trace or a knowledge
trace, is a vector of feature values. Rather than term the
model some other variant of REM, we use the terminology
“Storing and Retrieving Knowledge and Events”,
abbreviated SARKAE.

Role of Experience and Frequency in
Cognition
If one hopes to develop a theory in which events accumulate
to form knowledge, then it is critical to understand the role
of event frequency. Such effects are omnipresent in memory
and perception tasks, but the processes responsible for such
effects remain in debate.

Researchers have explored the effects of experience in
various ways, typically by analyzing existing knowledge,
identifying stimuli with different histories of experience,
and using the stimuli with different frequencies in memory
and perception tasks. The great majority of such
investigations use words as stimuli: Words are categorized
based on their frequency. Frequency is defined as normative
occurrence in the environment, and these frequencies are
estimated from various databases of typically textual
materials. Words differing in frequency are then tested and
exhibit a variety of consistent differences. These are termed
the “Word Frequency Effect’, especially when found in
recognition memory (Glanzer & Adams, 1985). In episodic
recognition memory tasks, words that occur rarely in the
environment are recognized better than words that occur
frequently in the environment. Word frequency has also
been shown to have effects on recall performance (high
frequency words are recalled better), and perceptual tasks
such as lexical decision and perceptual identification (forced
choice, etc.).

However, given that word frequency is correlated with so
many other variables (e.g. meaning, regularity of spelling,
length of the word, and virtually every other characteristic
one can measure for words), it is hard to know whether
experience per se is responsible for the observed effects. In
fact, a current debate concerns whether frequency per se or
context effects are the primary cause of the observed
findings.  Adelman, Brown, and Quesada (2006) for
example suggest that the diversity of contexts in which a
word has been seen is a more accurate predictor of word
frequency effects than the actual frequency of the word. By
analyzing a large corpora of texts separated both by word
frequency and contextual diversity (the number of
documents in which a word was present), they concluded
that it was the contextual diversity of an item, not the word
frequency, that affected response times in word naming and
lexical decision for three separate data sets. The difficulty
of assessing the cause of frequency effects for words is one
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reason we chose to vary frequency of training of novel
characters in the present studies. By training novel stimuli
we can control with far greater precision the factors
correlated with frequency and thereby properly constrain the
theory. The studies referenced in this article create
experience differences over a fairly lengthy period of
training in two quite different tasks, one based on visual
search, and the other based on perceptual matching.

In order to control for the confounds produced by word
stimuli, our studies use stimuli that are far less related to
existing language and numeric knowledge, and far less
likely to bring with them existing frequency correlations:
Chinese characters. (We select participants for whom such
stimuli are unfamiliar). The first study used a visual search
task in training. This task was based loosely on that of
Shiffrin and Lightfoot (1997). Different Chinese characters
appeared with widely differing frequencies during training.
Following training, the subjects completed various
recognition memory and perception tasks different from the
training task, using both the trained characters and new
characters as stimuli.

In the interest of space, this first experiment using the
visual search training will not be discussed in detail. It is
sufficient to mention that the crucial finding of this study
was that substantial frequency effects occurred for all
transfer tasks. What is more relevant to the discussion of
the no-context experiment described below (as well as the
SARKAE model) is that the visual search task used for
training varied character frequency, but the randomization
of trials and foils ensured that higher frequency characters
most often occurred in the spatial and temporal vicinity of
other higher frequency characters. Thus frequency per se
was correlated with what could be termed character context,
temporal context, or character diversity. As mentioned
previously, Adelman et al. (2006) proposed that only the
diversity of contexts in which an item occurs is responsible
for most frequency effects. The confounding of frequency
and character context made inference about causal
mechanisms uncertain, and hence led to the design of the
No-Context Experiment described below.

No-Context Experiment

The no-context experiment used a training paradigm not
involving visual search. Participants were trained using a
same vs. different judgment task: A character was presented
briefly twice in succession, and half the time the two
presentations varied slightly in size, rotation, or contrast.
The participant judged whether the two presentations were
exactly the same or varied slightly in one of these three
dimensions. Thus a character was its ‘own’ context. Further,
to remove the possibility that the test character on the
previous trial might provide context for the present trial, one
fixed c‘control’ character, different from any of the
experimental characters, was tested using the same
judgment task between every two experimental character
judgments. This extremely high frequency character was
not subsequently used in the post-training transfer tasks. If



context is carried forward from the previous trial during
training, the context that is carried forward for the
experimental characters of different frequency will be
equated, because the previous character is always the same
one. The no-context experiment used the same frequency
distribution (given below) as the visual search training
experiment. By removing characters that provide context on
any given trial, and by holding constant the character
context on the preceding trial, it is plausible to assume that
the confound between context and frequency is mostly if not
totally eliminated.

Training Methods

Participants. Seven participants, recruited with an email
advertisement, participated in the experiment for monetary
compensation. All participants reported no prior experience
with Chinese characters.

Design and Stimuli. The occurrence of the characters in the
same/different task was manipulated to produce four
frequency conditions which varied in a ratio of 1::3::9::27.
For each subject, a set of 32 characters was selected
randomly from a pool of approximately 200 characters.
From these 32 characters, 8 were assigned to each frequency
condition. In order to keep the complexity of the characters
reasonable, all the characters in the pool were composed of
7 strokes or less. In order to fully eliminate context from
the training, one “super-high frequency” item was also
randomly chosen, making the entire training set 33
characters. This character appeared as a “buffer” item every
other trial, and was not used as a stimulus in the post-
training tasks.

Procedure. Each trial consisted of two brief (500 ms)
presentations of a single Chinese character, which
subtended a visual angle of approximately 4.3 x 4.3 degrees.
The two presentations of the character were either identical
or varied slightly in size, rotation, or contrast of the
character. Only one of these three dimensions varied at a
time. There were three levels of each variable (size: small,
medium, large; rotation: left, straight, right; contrast: dark,
normal, light), and the change between each of these levels
varied based on a staircase algorithm. The staircase rules
were as follows: when the subject answered two rotation-
difference trials correctly, the rotation factor (i.e. — the
difference in angle between the three levels) decreased by a
given amount. If they got a rotation-different trial wrong,
the rotation factor increased by a given amount. This
staircase was done separately for each of the three variables.
In this way, subjects were kept at approximately 75%
accuracy. Subjects completed 12 training sessions,
approximately 3 per week. There were a total of 1060 trials
for sessions 1-11, and 1140 trials for session 12.

Training Results

Since the training paradigm used a staircase algorithm to
keep subjects at approximately 75% accuracy, the results of
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training were analyzed by examining the change factors for
size, rotation, and contrast. If the subjects are showing
improvement at the same/different discrimination, then the
change in variable (size, rotation, or contrast) needed to
keep them at 75% should decrease over session. Figure 1
shows the mean rotation, contrast, and size changes required
(averaged over all subjects) as a function of training session.
The results indicate that subjects were becoming more
efficient at the task as training progressed, as indicated by
the decrease in variable change over session.

Rotation Factor Size Factor Contrast Factor

22

21 0.19

2 0.18
19 0.17
18 0.16
17 0.15

16

15
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15 0 5 10
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Figure 1: Mean change in rotation (panel A) size (panel B)
and contrast (panel C) needed to obtain 75% accuracy as a
function of training session. Rotation factor is measured
in degrees, size factor in percentage size difference, and
contrast factor in percentage contrast difference.

Post-training Tasks

Following the training, the subjects completed three post-
training tasks: pseudo-lexical decision, episodic recognition,
and forced-choice perceptual identification. Testing was
carried out again six weeks after training. A programming
error, discovered after the immediate transfer tasks, caused
the forced choice data to be very noisy and essentially
uninformative. These results are therefore neither reported
nor analyzed. Also, because forced choice results were not
available for immediate test, forced choice testing was
omitted for the delayed testing at six weeks.

Pseudo-lexical Decision

Design and Procedure. Subjects viewed one list, which
contained all 32 trained characters (excluding the buffer
item), as well as 32 new characters. Each of these characters
occurred 3 times throughout the list, making the total length
of the list 192 characters. Subjects were presented with a
single character on the screen, and were asked to decide (by
keypress) as quickly as possible whether they had ever seen
that character during any of the previous training sessions.

Results. Response time and accuracy were measured for
each frequency condition, as well as new items. The results
for the trained items when tested shortly after training was
completed (2-3 days) are shown in Figure 2. A contrast
analysis showed that there was a significant negative
relationship between frequency and response time (t(6)=-
2.97, p=.03) , and a significant positive relationship between
frequency and accuracy (t(6)=2.90, p=.03) .



Response time and accuracy were measured again (for 6
of the 7 subjects) approximately 6 weeks after the previous
test session. The results followed the same qualitative
pattern as they did 6 weeks prior: there was a significant
negative relationship between response time and frequency
(t(5)=-2.45, p=.058), and a significant positive relationship
between accuracy and frequency (t(5)=2.44, p=.059, see
Figure 2). A contrast analysis showed that there was no
significant difference in the magnitude of the effects that
occurred in the shortly after training and those that occurred
after the 6 week delay for either accuracy (t(5)=1.14, p=.31)
or response time (t(5)=.51, p=.63).

Response Time

Accuracy

No delay

After delay

Accuracy

2 6 18

Frequency

54 6 18

Frequency

54

Figure 2: Mean response time (panel A) and accuracy
(panel B) for all subjects in the lexical decision task as a
function of frequency. The solid line shows the results
when the test was administered after a very short delay (2-
3 days), the dashed line corresponds to the data following
a 6 week delay.

Discussion. The results of the lexical decision task showed
that the absence of character-context during training did not
eliminate the effects of frequency on speed and accuracy of
decision. Therefore, it follows that there must be some
mechanism other than the context present during training
that is causing improved recognition that high frequency
characters are present in knowledge. In addition, this
frequency effect showed little signs of reduction over six
weeks.

Episodic Recognition

Design and Procedure. The task consisted of eight pairs of
study and test lists. Each study list contained eight trained
characters (two from each frequency category) and eight
untrained characters. Each test list contained all the items
from the study list as well as 16 unstudied items, which
included eight trained characters (two from each frequency
category) and eight untrained characters. The first four
items on the test list were always untrained characters,
providing a buffer for the items of interest (trained
characters). Subjects viewed each item on the study list for
1000 milliseconds, presented one at a time on the screen.
Following the study list, the subjects were presented with
the items on the test list one by one, and for each item had to
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respond whether the character had been present on the list
they had just studied. Subjects were instructed to ’reset’
their memory in between each list, and answer ’old’ to an
item on the test list only if it had been present on the most
recent study list.

Results. The data from the episodic recognition task were
analyzed by examining the hit rates (correctly identifying a
studied item as old) and false alarm rates (incorrectly
identifying an unstudied item as old). The hit and false
alarm rates (averaged over all subjects) are plotted as a
function of frequency in figure 3. When tested shortly after
the completion of training, false alarms significantly
increased as frequency increased (panel A, t(6) =3.19,
p=.02). There was also a marginally significant decrease in
d’ due to frequency (t(6)=-1.86, p=.11). The hit rate
analysis however showed no significant effect of frequency.

Six of the seven subjects were tested again following a
six-week delay. The results of the delayed test are shown in
panel B of figure 3. Statistical analyses showed no
significant effect of frequency on hit rates, false alarm rates,
or d’. Furthermore, a contrast analysis showed that there
was a significant difference in the magnitude of the false
alarm rate effect found immediately after training compared
to the effect found after a 6 week delay: the increase in false
alarms due to increased frequency was (marginally)
significantly larger immediately after training (t(5)=2.11,
p=.09).

Episodic Recognition Performance

e

Hits
——FAS

Episodic Recognition Performance (after delay
1

H\‘\l

08 08

06 06

p(old)

04 04

02 02

ol 0

2 6 18

Frequency

Figure 3: Episodic Recognition Results soon after training
(Panel A) and after a 6-week delay (Panel B). Hit rates
are shown in blue, false alarm rates in green.

54
Frequency

Discussion. When tested shortly after the completion of
training, the results in the episodic recognition task are
similar to results found in our previous visual search
training experiment and in normative word frequency
studies: as frequency increases, d’ decreases. In the current
study, this is due more to an increase in false alarm rates
than a decrease in hit rates with higher frequency items.
Unlike some previous studies, the no-context training
experiment did not show a significant effect of frequency on
hit rates.

Unlike the lexical decision task which showed a large
persistence of frequency effects after a six week delay, the
d’ effect and false alarm rate effect found in episodic
recognition were largely reduced and possibly absent when



subjects were re-tested after delay. Both the existence of
frequency effects in recognition, and the reduction with
delay call into serious question the modeling processes used
to account for recognition in the one factor model applied to
our visual search training experiment. That model assumed
poorer performance for high frequency test items was due to
increased confusions with traces of list items, because those
traces were more similar to the high frequency test probes.
The present design should have eliminated such similarity
differences. In addition, within list confusions should not
have decreased if a recognition task was carried out at a six
week remove from training, because the relevant episodic
traces should have been those stored in the just seen study
list. Thus the elaborated SARKAE model provides an
explicit role for frequency per se (especially to explain
pseudo-lexical decision findings) and an elaborated model
for recognition. Due to spatial limitations, in this paper we
present only an overview of the theory that is the foundation
of the SARKAE model, with examples of how the theory is
implemented to explain our experimental results.

SARKAE — Theoretical Overview

A fundamental storage assumption in SARKAE allows both
event memories and knowledge to develop in concert: Each
storage episode produces both: 1) an event trace; 2)
additional information added to traces in memory that are
brought to mind due to similarity to the present event. Such
a prior trace can include a previous event trace (the basis for
the start of knowledge accumulation), or a developing or
mature knowledge trace. There is no fundamental
distinction between event traces and knowledge traces in
this view. Instead there is a continuum: traces are stored
initially for each single event; some of these are retrieved
(when a similar new event occurs), gain additional
information, and are re-stored. As this process continues
over successive occurrences of similar events, a rich
knowledge trace results.

In SARKAE, accumulation of knowledge about an item
or concept (e.g. for words, its lexical entry) includes
features of the surrounding context that is present at the time
of learning. Specifically, knowledge traces develop during
learning by storing features that come both from the
physical properties of the item or concept being learned, and
also from the context surrounding the item during learning,
both types of storage being modified and governed by
attentional focus. These context features arise from other
(attended) events nearby in time and the environment, and
from the various components of internal and external
context that numerous investigators have discussed for
many years. For example, during training, when a character
is presented, physical features of that item as well as
surrounding context features (taken from other characters
presented in close temporal proximity) are stored into the
knowledge representation. In a more general sense, the
knowledge trace that represents the concept of “table” will
include information about the physical properties of various
types of tables, information about the contents of events that
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involved tables (e.g. forks, dinners, conversations, replacing
light bulbs), information about thoughts and feelings
experienced at tables, and information about other events
that occurred in the nearby temporal surround of table
events (e.g. dropping of a milk bottle when removing it
from the refrigerator). These features include context
specific events themselves, such as the breakfast event in a
given morning. Knowledge development is therefore built
upon the events that accumulate to form the knowledge. Of
course a mature knowledge trace includes features of
numerous events, so a specific episode tends to be swamped
in the accumulation of many episodes and tends not to be
retrieved (from the knowledge trace—it can be retrieved as
an episodic trace). Thus a knowledge trace in most instances
seems to be context free. What do come to be retrievable
from a mature knowledge trace are features that are
consistent across many episodes, such as the spelling,
pronunciation and meaning of a word.

Conversely, the formation of episodic memory traces is
determined by prior knowledge and experience. Although
certain very primitive features of experience might not
depend upon learning and experience (e.g. a loud sound),
most features of events are encodings based on prior
learning (e.g. encoding and storing a table feature as
‘dinner’). The model therefore creates episodic traces by
choosing features of events from knowledge. Such features
come from several sources: some are directly related to the
central defining elements of the event such as the physical
features of which it is composed (e.g. table physical
features) and the central organizing concept (e.g. dinner);
some come from other knowledge traces that are brought to
mind during encoding of the event (e.g. the illness one
encountered when eating breakfast last Sunday, or one’s
commitment to a new diet); some come from features of
other nearby events still in short-term memory at the time of
the present event. To some degree, the features chosen are
modified by attentional focus. In terms of the experiment
discussed in this paper, an episodic memory consists of a
combination of physical features of the studied item,
features drawn from the knowledge trace of that item, and
features drawn from other items in close temporal
proximity. One key concept is the perhaps non-
controversial idea that the features comprising an event
representation in short-term memory, and thereafter the
stored event trace, are recruited from knowledge (e.g. one’s
prior experience and knowledge regarding tables will
influence the formation of an event trace concerning a
physically present table).

We have been highlighting mechanisms that produce
storage of event memory and knowledge. Very similar
mechanisms also occur in retrieval. We adopt the generally
accepted view that retrieval is cue dependent, and based on
similarity of the retrieval probe to the traces in memory. The
generation of such a probe cue can be clearly defined, as
when one is asked: “What is the capital of South Dakota”?
In other cases retrieval seems more continuous and
automatic, as when information moving through short-term



memory acts as retrieval cues to bring other associations to
mind. However, because modeling continuous retrieval is
quite complex, we will treat all retrieval in terms of discrete
retrieval operations occurring one at a time, each based on
some defined set of retrieval cues. The features that
comprise such a retrieval cue are generated with the same
processes that generate features for storage: They come
from the query (if there is one), or from feature sets
presently in short-term memory and attentional focus, and
include features from the contextual surround at the time
(internal and external context, and nearby events). More
specifically, in the modeling of our experimental results, the
retrieval cue consists of a combination of physical features
of the test item, features drawn from the knowledge trace of
the test item, and features taken from other items in close
temporal proximity to the test item.

An absolutely essential component of storage and
retrieval is noise in the processes. Following the approach in
the REM model, we assume that both storage and retrieval
are probabilistic, incomplete and error prone. When errors
are made, it is natural to assume they are based on
information in the knowledge base, and not completely
random. Thus errors in retrieving and storing features are
assumed to be relevant and consistent, in the sense that they
are feature values for the feature in question (a ‘blue’ color
feature might be retrieved or stored as ‘red’, but not as
‘wet’) and occur in proportion to the base rates of such
values in knowledge.

When a cue is used to probe memory, it is compared in
parallel to the event traces (and/or knowledge traces) in
parallel. It would be unworkable and likely unreasonable to
explicitly consider the match to each of the essentially
uncountable traces in memory. Thus we assume that there is
a probabilistic cutoff, only traces sufficiently similar to the
probe becoming activated and participating in subsequent
retrieval operations.

Similarity plays a role in both storage and retrieval, but
we define similarity operations in such a way that similarity
is measured as a relative construct: For both storage and
retrieval a process based on similarity is defined as
similarity of a given match compared to the similarity of
matches that could have but did not occur. Thus in recent
years we have characterized the match of a probe to an
activated trace as a likelihood ratio: The numerator
expresses the probability that the probe and cue were
generated from the same event, and the denominator the
probability that the two were generated by different events.
These likelihood ratios occupy the theoretical niche played
by ‘strengths of activation’ in various other theories (such as
SAM; Raaijmakers and Shiffrin, 1981).

This brief summary of some of the central tenets of
SARKAE provides hints concerning the theory, but is only
the barest scaffolding upon which the model is constructed.
When the full detailed processes are implemented, the
model produces predictions that fit the results of the various
post-training tasks from both the initial visual search
training experiment as well as the no-context experiment
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described in this paper. We cannot fully describe the
modeling processes and results here due to space; however
the aim of this discussion is not to focus on quantifiable
model fits, but instead to convey the basics of the theory
that inspired both the experiments described in this paper
and the subsequent model development. The SARKAE
model provides plausible mechanisms by which knowledge
grows from events, and knowledge informs the coding and
retrieval of both events and knowledge itself. Based on this
theory, or others of a similar character, we hope that future
research developments will not focus so strongly on
differences among systems as upon the ways they grow
together, in highly dependent fashion.
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