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Abstract 

We present an overview of a model for the co-evolution of 
knowledge and event memory.  The model, termed SARKAE 
(Storing and Retrieving Knowledge and Events), describes 
the development of knowledge and event memories as an 
interactive process: knowledge is formed through the accrual 
of individual events, and the storage of an individual episode 
is dependent on prior knowledge.  We reference two 
experiments which provide data to inform our theory: these 
studies involve the development of new knowledge, and then 
testing in transfer tasks involving episodic memory, retrieval 
from knowledge, and perception.  The results of the transfer 
tasks indicate a substantial role of pure frequency or raw 
exposure, in opposition to the contextual diversity accounts of 
frequency suggested by Adelman et al (2006). An overview 
of the SARKAE model is presented.  The model is able to 
account for the effects of frequency in the absence of 
contextual diversity.  

Keywords: episodic memory; semantic memory; learning; 
perception; Bayesian models. 

Introduction 
The processes involved in the accumulation of knowledge 
and the formation of event memories are interdependent.   
Almost every study since the 1890s has shown that the way 
episodic (or event) memories are encoded depends on the 
knowledge (or semantic memory) of the individual who is 
encoding them.  Conversely, an individual’s knowledge 
must be formed through the episodes they encounter; this 
idea was the basis of the REM model’s account of priming 
(Shiffrin & Steyvers, 1997). These interdependent processes 
create a feedback loop in which knowledge and episodic 
memory formation develop together over lifelong learning. 

Studies of memory and perception in the recent past have 
provided strong support for the idea that memory processes 
are robustly influenced by prior experience with the to-be-
remembered content.  Priming studies, for example, have 
shown that prior study of a word affects how well that word 
is identified in a forced choice perceptual identification task 
(Ratcliff & McKoon, 1997).  The REMI model of Schooler, 
Shiffrin, and Raaijmakers (2001) accounts for these effects 
through a process in which the lexical representation (or 
knowledge) of the word is changed through prior study (the 
“prime”); when a word is studied an event memory is 
formed, but in addition, novel features of the event, such as 

the context of the experimental setting, are added to the 
lexical representation of the word.  When the studied word 
is then presented for perceptual identification, the context 
tends to be similar to that at study, increasing the match of 
the probe cues to the lexical trace, predicting a variety of 
measurable effects that match those observed.  In other 
words, the knowledge that a subject has about a stimulus, 
and the inclusion in that knowledge of factors like the 
experimental context, affect the way that a stimulus is 
perceived. 

There are many models of the storage and retrieval of 
event memories, and sometimes the addition to existing 
knowledge of information from recent events (e.g. -
Raaijmakers & Shiffrin, 1981, Shiffrin & Steyvers, 1997, 
Howard & Kahana, 2002, Anderson, 1983). The temporal 
context model of Howard & Kahana for example provides 
an explanation for recency and contiguity effects through 
the storage of both item information and recent contextual 
information.  Other models, such as the ACT-R model of 
Anderson (1983) also provide eloquent representations of 
memory storage and retrieval. A few models attempt to 
explain aspects of the way events produce knowledge, 
especially for aspects of the role played by words in 
language (e.g. McClelland & Rumelhart, 1981). However, 
most of the prior research has been aimed to explain 
memory and learning when knowledge has already formed 
(to various degrees).   Previous work by Reder et al. has 
examined the development of knowledge on a set of 
pseudowords, and used the dual-process SAC model to 
explain their findings.  Although highly relevant and useful 
in the development of our research, the training study and 
modeling by Reder et al. did not explicitly model the growth 
of new knowledge. 

Our aim is the development of a model that begins to 
explain the interacting growth of event memory and 
knowledge, as they influence both memory storage and 
retrieval. This co-evolution of the two systems was the 
focus of the REM-II model, created by Mueller and Shiffrin 
(2006).  In this model, knowledge (or semantic memory) is 
represented as an accumulation of the co-occurrence of 
features: Features that are present in an episodic event are 
coded as occurring together in a matrix representation of 
semantic memory. REM-II is a quite powerful model, but a 
simplified version is sufficient to explain the basic concepts 
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by which event memory and knowledge co-develop, and is 
sufficient to model the empirical results presented in this 
paper. However, even a simplified model when applied to 
five different tasks spanning the range of learning, memory, 
and perception can grow to appear quite complex. The 
simplified model uses a representation in which each 
(separate) trace, whether an event trace or a knowledge 
trace, is a vector of feature values. Rather than term the 
model some other variant of REM, we use the terminology 
“Storing and Retrieving Knowledge and Events”, 
abbreviated SARKAE. 

Role of Experience and Frequency in 
Cognition 

If one hopes to develop a theory in which events accumulate 
to form knowledge, then it is critical to understand the role 
of event frequency. Such effects are omnipresent in memory 
and perception tasks, but the processes responsible for such 
effects remain in debate.  

Researchers have explored the effects of experience in 
various ways, typically by analyzing existing knowledge, 
identifying stimuli with different histories of experience, 
and using the stimuli with different frequencies in memory 
and perception tasks.  The great majority of such 
investigations use words as stimuli: Words are categorized 
based on their frequency. Frequency is defined as normative 
occurrence in the environment, and these frequencies are 
estimated from various databases of typically textual 
materials. Words differing in frequency are then tested and 
exhibit a variety of consistent differences. These are termed 
the ‘Word Frequency Effect’, especially when found in 
recognition memory (Glanzer & Adams, 1985).  In episodic 
recognition memory tasks, words that occur rarely in the 
environment are recognized better than words that occur 
frequently in the environment. Word frequency has also 
been shown to have effects on recall performance (high 
frequency words are recalled better), and perceptual tasks 
such as lexical decision and perceptual identification (forced 
choice, etc.).  

However, given that word frequency is correlated with so 
many other variables (e.g. meaning, regularity of spelling, 
length of the word, and virtually every other characteristic 
one can measure for words), it is hard to know whether 
experience per se is responsible for the observed effects. In 
fact, a current debate concerns whether frequency per se or 
context effects are the primary cause of the observed 
findings.  Adelman, Brown, and Quesada (2006) for 
example suggest that the diversity of contexts in which a 
word has been seen is a more accurate predictor of word 
frequency effects than the actual frequency of the word.  By 
analyzing a large corpora of texts separated both by word 
frequency and contextual diversity (the number of 
documents in which a word was present), they concluded 
that it was the contextual diversity of an item, not the word 
frequency, that affected response times in word naming and 
lexical decision for three separate data sets.  The difficulty 
of assessing the cause of frequency effects for words is one 

reason we chose to vary frequency of training of novel 
characters in the present studies. By training novel stimuli 
we can control with far greater precision the factors 
correlated with frequency and thereby properly constrain the 
theory. The studies referenced in this article create 
experience differences over a fairly lengthy period of 
training in two quite different tasks, one based on visual 
search, and the other based on perceptual matching.   

In order to control for the confounds produced by word 
stimuli, our studies use stimuli that are far less related to 
existing language and numeric knowledge, and far less 
likely to bring with them existing frequency correlations: 
Chinese characters. (We select participants for whom such 
stimuli are unfamiliar). The first study used a visual search 
task in training. This task was based loosely on that of 
Shiffrin and Lightfoot (1997). Different Chinese characters 
appeared with widely differing frequencies during training. 
Following training, the subjects completed various 
recognition memory and perception tasks different from the 
training task, using both the trained characters and new 
characters as stimuli. 

In the interest of space, this first experiment using the 
visual search training will not be discussed in detail.  It is 
sufficient to mention that the crucial finding of this study 
was that substantial frequency effects occurred for all 
transfer tasks.  What is more relevant to the discussion of 
the no-context experiment described below (as well as the 
SARKAE model) is that the visual search task used for 
training varied character frequency, but the randomization 
of trials and foils ensured that higher frequency characters 
most often occurred in the spatial and temporal vicinity of 
other higher frequency characters. Thus frequency per se 
was correlated with what could be termed character context, 
temporal context, or character diversity.  As mentioned 
previously, Adelman et al. (2006) proposed that only the 
diversity of contexts in which an item occurs is responsible 
for most frequency effects. The confounding of frequency 
and character context made inference about causal 
mechanisms uncertain, and hence led to the design of the 
No-Context Experiment described below. 

No-Context Experiment 
The no-context experiment used a training paradigm not 
involving visual search. Participants were trained using a 
same vs. different judgment task: A character was presented 
briefly twice in succession, and half the time the two 
presentations varied slightly in size, rotation, or contrast.  
The participant judged whether the two presentations were 
exactly the same or varied slightly in one of these three 
dimensions. Thus a character was its ‘own’ context. Further, 
to remove the possibility that the test character on the 
previous trial might provide context for the present trial, one 
fixed ‘control’ character, different from any of the 
experimental characters, was tested using the same 
judgment task between every two experimental character 
judgments.  This extremely high frequency character was 
not subsequently used in the post-training transfer tasks. If 
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context is carried forward from the previous trial during 
training, the context that is carried forward for the 
experimental characters of different frequency will be 
equated, because the previous character is always the same 
one. The no-context experiment used the same frequency 
distribution (given below) as the visual search training 
experiment. By removing characters that provide context on 
any given trial, and by holding constant the character 
context on the preceding trial, it is plausible to assume that 
the confound between context and frequency is mostly if not 
totally eliminated. 
 
Training Methods 
Participants. Seven participants, recruited with an email 
advertisement, participated in the experiment for monetary 
compensation.  All participants reported no prior experience 
with Chinese characters.  
 
Design and Stimuli. The occurrence of the characters in the 
same/different task was manipulated to produce four 
frequency conditions which varied in a ratio of 1::3::9::27.  
For each subject, a set of 32 characters was selected 
randomly from a pool of approximately 200 characters.  
From these 32 characters, 8 were assigned to each frequency 
condition.  In order to keep the complexity of the characters 
reasonable, all the characters in the pool were composed of 
7 strokes or less.  In order to fully eliminate context from 
the training, one “super-high frequency” item was also 
randomly chosen, making the entire training set 33 
characters.  This character appeared as a “buffer” item every 
other trial, and was not used as a stimulus in the post-
training tasks. 
 
Procedure. Each trial consisted of two brief (500 ms) 
presentations of a single Chinese character, which 
subtended a visual angle of approximately 4.3 x 4.3 degrees.  
The two presentations of the character were either identical 
or varied slightly in size, rotation, or contrast of the 
character.  Only one of these three dimensions varied at a 
time.  There were three levels of each variable (size: small, 
medium, large; rotation: left, straight, right; contrast: dark, 
normal, light), and the change between each of these levels 
varied based on a staircase algorithm.  The staircase rules 
were as follows: when the subject answered two rotation-
difference trials correctly, the rotation factor (i.e. – the 
difference in angle between the three levels) decreased by a 
given amount.  If they got a rotation-different trial wrong, 
the rotation factor increased by a given amount.  This 
staircase was done separately for each of the three variables.  
In this way, subjects were kept at approximately 75% 
accuracy.  Subjects completed 12 training sessions, 
approximately 3 per week.  There were a total of 1060 trials 
for sessions 1-11, and 1140 trials for session 12. 
 
Training Results 
Since the training paradigm used a staircase algorithm to 
keep subjects at approximately 75% accuracy, the results of 

training were analyzed by examining the change factors for 
size, rotation, and contrast.  If the subjects are showing 
improvement at the same/different discrimination, then the 
change in variable (size, rotation, or contrast) needed to 
keep them at 75% should decrease over session.  Figure 1 
shows the mean rotation, contrast, and size changes required 
(averaged over all subjects) as a function of training session.  
The results indicate that subjects were becoming more 
efficient at the task as training progressed, as indicated by 
the decrease in variable change over session.  
 
 

 
Figure 1: Mean change in rotation (panel A) size (panel B) 
and contrast (panel C) needed to obtain 75% accuracy as a 
function of training session.  Rotation factor is measured 
in degrees, size factor in percentage size difference, and 
contrast factor in percentage contrast difference. 
 

Post-training Tasks 
Following the training, the subjects completed three post-
training tasks: pseudo-lexical decision, episodic recognition, 
and forced-choice perceptual identification.  Testing was 
carried out again six weeks after training. A programming 
error, discovered after the immediate transfer tasks, caused 
the forced choice data to be very noisy and essentially 
uninformative. These results are therefore neither reported 
nor analyzed. Also, because forced choice results were not 
available for immediate test, forced choice testing was 
omitted for the delayed testing at six weeks.  
 
Pseudo-lexical Decision 
Design and Procedure.  Subjects viewed one list, which 
contained all 32 trained characters (excluding the buffer 
item), as well as 32 new characters. Each of these characters 
occurred 3 times throughout the list, making the total length 
of the list 192 characters. Subjects were presented with a 
single character on the screen, and were asked to decide (by 
keypress) as quickly as possible whether they had ever seen 
that character during any of the previous training sessions.  
 
Results. Response time and accuracy were measured for 
each frequency condition, as well as new items.  The results 
for the trained items when tested shortly after training was 
completed (2-3 days) are shown in Figure 2.  A contrast 
analysis showed that there was a significant negative 
relationship between frequency and response time (t(6)=-
2.97, p=.03) , and a significant positive relationship between 
frequency and accuracy (t(6)=2.90, p=.03) . 
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Response time and accuracy were measured again (for 6 
of the 7 subjects) approximately 6 weeks after the previous 
test session.  The results followed the same qualitative 
pattern as they did 6 weeks prior: there was a significant 
negative relationship between response time and frequency 
(t(5)=-2.45, p=.058), and a  significant positive relationship 
between accuracy and frequency (t(5)=2.44, p=.059, see 
Figure 2).  A contrast analysis showed that there was no 
significant difference in the magnitude of the effects that 
occurred in the shortly after training and those that occurred 
after the 6 week delay for either accuracy (t(5)=1.14, p=.31) 
or response time (t(5)=.51, p=.63). 

 
 

 
 
Figure 2: Mean response time (panel A) and accuracy 
(panel B) for all subjects in the lexical decision task as a 
function of frequency.  The solid line shows the results 
when the test was administered after a very short delay (2-
3 days), the dashed line corresponds to the data following 
a 6 week delay. 

 
Discussion. The results of the lexical decision task showed 
that the absence of character-context during training did not 
eliminate the effects of frequency on speed and accuracy of 
decision.  Therefore, it follows that there must be some 
mechanism other than the context present during training 
that is causing improved recognition that high frequency 
characters are present in knowledge.  In addition, this 
frequency effect showed little signs of reduction over six 
weeks.  
 
Episodic Recognition 
Design and Procedure. The task consisted of eight pairs of 
study and test lists. Each study list contained eight trained 
characters (two from each frequency category) and eight 
untrained characters.  Each test list contained all the items 
from the study list as well as 16 unstudied items, which 
included eight trained characters (two from each frequency 
category) and eight untrained characters.  The first four 
items on the test list were always untrained characters, 
providing a buffer for the items of interest (trained 
characters).  Subjects viewed each item on the study list for 
1000 milliseconds, presented one at a time on the screen. 
Following the study list, the subjects were presented with 
the items on the test list one by one, and for each item had to 

respond whether the character had been present on the list 
they had just studied. Subjects were instructed to ’reset’ 
their memory in between each list, and answer ’old’ to an 
item on the test list only if it had been present on the most 
recent study list. 
 
Results. The data from the episodic recognition task were 
analyzed by examining the hit rates (correctly identifying a 
studied item as old) and false alarm rates (incorrectly 
identifying an unstudied item as old).  The hit and false 
alarm rates (averaged over all subjects) are plotted as a 
function of frequency in figure 3.  When tested shortly after 
the completion of training, false alarms significantly 
increased as frequency increased (panel A, t(6) =3.19, 
p=.02). There was also a marginally significant decrease in 
d’ due to frequency (t(6)=-1.86, p=.11).  The hit rate 
analysis however showed no significant effect of frequency.  

Six of the seven subjects were tested again following a 
six-week delay.  The results of the delayed test are shown in 
panel B of figure 3.  Statistical analyses showed no 
significant effect of frequency on hit rates, false alarm rates, 
or d’.  Furthermore, a contrast analysis showed that there 
was a significant difference in the magnitude of the false 
alarm rate effect found immediately after training compared 
to the effect found after a 6 week delay: the increase in false 
alarms due to increased frequency was (marginally) 
significantly larger immediately after training (t(5)=2.11, 
p=.09).  

 

 
Figure 3: Episodic Recognition Results soon after training 
(Panel A) and after a 6-week delay (Panel B).  Hit rates 
are shown in blue, false alarm rates in green. 
 

Discussion. When tested shortly after the completion of 
training, the results in the episodic recognition task are 
similar to results found in our previous visual search 
training experiment and in normative word frequency 
studies: as frequency increases, d’ decreases.  In the current 
study, this is due more to an increase in false alarm rates 
than a decrease in hit rates with higher frequency items.  
Unlike some previous studies, the no-context training 
experiment did not show a significant effect of frequency on 
hit rates.  

Unlike the lexical decision task which showed a large 
persistence of frequency effects after a six week delay, the 
d’ effect and false alarm rate effect found in episodic 
recognition were largely reduced and possibly absent when 
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subjects were re-tested after delay.  Both the existence of 
frequency effects in recognition, and the reduction with 
delay call into serious question the modeling processes used 
to account for recognition in the one factor model applied to 
our visual search training experiment. That model assumed 
poorer performance for high frequency test items was due to 
increased confusions with traces of list items, because those 
traces were more similar to the high frequency test probes. 
The present design should have eliminated such similarity 
differences. In addition, within list confusions should not 
have decreased if a recognition task was carried out at a six 
week remove from training, because the relevant episodic 
traces should have been those stored in the just seen study 
list.  Thus the elaborated SARKAE model provides an 
explicit role for frequency per se (especially to explain 
pseudo-lexical decision findings) and an elaborated model 
for recognition.  Due to spatial limitations, in this paper we 
present only an overview of the theory that is the foundation 
of the SARKAE model, with examples of how the theory is 
implemented to explain our experimental results. 

SARKAE – Theoretical Overview 
A fundamental storage assumption in SARKAE allows both 
event memories and knowledge to develop in concert: Each 
storage episode produces both: 1) an event trace; 2) 
additional information added to traces in memory that are 
brought to mind due to similarity to the present event. Such 
a prior trace can include a previous event trace (the basis for 
the start of knowledge accumulation), or a developing or 
mature knowledge trace. There is no fundamental 
distinction between event traces and knowledge traces in 
this view. Instead there is a continuum: traces are stored 
initially for each single event; some of these are retrieved 
(when a similar new event occurs), gain additional 
information, and are re-stored. As this process continues 
over successive occurrences of similar events, a rich 
knowledge trace results.  

In SARKAE, accumulation of knowledge about an item 
or concept (e.g. for words, its lexical entry) includes 
features of the surrounding context that is present at the time 
of learning.  Specifically, knowledge traces develop during 
learning by storing features that come both from the 
physical properties of the item or concept being learned, and 
also from the context surrounding the item during learning, 
both types of storage being modified and governed by 
attentional focus. These context features arise from other 
(attended) events nearby in time and the environment, and 
from the various components of internal and external 
context that numerous investigators have discussed for 
many years. For example, during training, when a character 
is presented, physical features of that item as well as 
surrounding context features (taken from other characters 
presented in close temporal proximity) are stored into the 
knowledge representation. In a more general sense, the 
knowledge trace that represents the concept of “table” will 
include information about the physical properties of various 
types of tables, information about the contents of events that 

involved tables (e.g. forks, dinners, conversations, replacing 
light bulbs), information about thoughts and feelings 
experienced at tables, and information about other events 
that occurred in the nearby temporal surround of table 
events (e.g. dropping of a milk bottle when removing it 
from the refrigerator). These features include context 
specific events themselves, such as the breakfast event in a 
given morning.  Knowledge development is therefore built 
upon the events that accumulate to form the knowledge. Of 
course a mature knowledge trace includes features of 
numerous events, so a specific episode tends to be swamped 
in the accumulation of many episodes and tends not to be 
retrieved (from the knowledge trace—it can be retrieved as 
an episodic trace). Thus a knowledge trace in most instances 
seems to be context free. What do come to be retrievable 
from a mature knowledge trace are features that are 
consistent across many episodes, such as the spelling, 
pronunciation and meaning of a word. 

Conversely, the formation of episodic memory traces is 
determined by prior knowledge and experience.  Although 
certain very primitive features of experience might not 
depend upon learning and experience (e.g. a loud sound), 
most features of events are encodings based on prior 
learning (e.g. encoding and storing a table feature as 
‘dinner’). The model therefore creates episodic traces by 
choosing features of events from knowledge. Such features 
come from several sources: some are directly related to the 
central defining elements of the event such as the physical 
features of which it is composed (e.g. table physical 
features) and the central organizing concept (e.g. dinner); 
some come from other knowledge traces that are brought to 
mind during encoding of the event (e.g. the illness one 
encountered when eating breakfast last Sunday, or one’s 
commitment to a new diet); some come from features of 
other nearby events still in short-term memory at the time of 
the present event. To some degree, the features chosen are 
modified by attentional focus. In terms of the experiment 
discussed in this paper, an episodic memory consists of a 
combination of physical features of the studied item, 
features drawn from the knowledge trace of that item, and 
features drawn from other items in close temporal 
proximity.  One key concept is the perhaps non-
controversial idea that the features comprising an event 
representation in short-term memory, and thereafter the 
stored event trace, are recruited from knowledge (e.g. one’s 
prior experience and knowledge regarding tables will 
influence the formation of an event trace concerning a 
physically present table).    

We have been highlighting mechanisms that produce 
storage of event memory and knowledge. Very similar 
mechanisms also occur in retrieval. We adopt the generally 
accepted view that retrieval is cue dependent, and based on 
similarity of the retrieval probe to the traces in memory. The 
generation of such a probe cue can be clearly defined, as 
when one is asked: “What is the capital of South Dakota”? 
In other cases retrieval seems more continuous and 
automatic, as when information moving through short-term 
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memory acts as retrieval cues to bring other associations to 
mind. However, because modeling continuous retrieval is 
quite complex, we will treat all retrieval in terms of discrete 
retrieval operations occurring one at a time, each based on 
some defined set of retrieval cues. The features that 
comprise such a retrieval cue are generated with the same 
processes that generate features for storage: They come 
from the query (if there is one), or from feature sets 
presently in short-term memory and attentional focus, and 
include features from the contextual surround at the time 
(internal and external context, and nearby events).  More 
specifically, in the modeling of our experimental results, the 
retrieval cue consists of a combination of physical features 
of the test item, features drawn from the knowledge trace of 
the test item, and features taken from other items in close 
temporal proximity to the test item. 

An absolutely essential component of storage and 
retrieval is noise in the processes. Following the approach in 
the REM model, we assume that both storage and retrieval 
are probabilistic, incomplete and error prone. When errors 
are made, it is natural to assume they are based on 
information in the knowledge base, and not completely 
random. Thus errors in retrieving and storing features are 
assumed to be relevant and consistent, in the sense that they 
are feature values for the feature in question (a ‘blue’ color 
feature might be retrieved or stored as ‘red’, but not as 
‘wet’) and occur in proportion to the base rates of such 
values in knowledge. 

When a cue is used to probe memory, it is compared in 
parallel to the event traces (and/or knowledge traces) in 
parallel. It would be unworkable and likely unreasonable to 
explicitly consider the match to each of the essentially 
uncountable traces in memory. Thus we assume that there is 
a probabilistic cutoff, only traces sufficiently similar to the 
probe becoming activated and participating in subsequent 
retrieval operations.  

Similarity plays a role in both storage and retrieval, but 
we define similarity operations in such a way that similarity 
is measured as a relative construct: For both storage and 
retrieval a process based on similarity is defined as 
similarity of a given match compared to the similarity of 
matches that could have but did not occur. Thus in recent 
years we have characterized the match of a probe to an 
activated trace as a likelihood ratio: The numerator 
expresses the probability that the probe and cue were 
generated from the same event, and the denominator the 
probability that the two were generated by different events. 
These likelihood ratios occupy the theoretical niche played 
by ‘strengths of activation’ in various other theories (such as 
SAM; Raaijmakers and Shiffrin, 1981). 

This brief summary of some of the central tenets of 
SARKAE provides hints concerning the theory, but is only 
the barest scaffolding upon which the model is constructed. 
When the full detailed processes are implemented, the 
model produces predictions that fit the results of the various 
post-training tasks from both the initial visual search 
training experiment as well as the no-context experiment 

described in this paper. We cannot fully describe the 
modeling processes and results here due to space; however 
the aim of this discussion is not to focus on quantifiable 
model fits, but instead to convey the basics of the theory 
that inspired both the experiments described in this paper 
and the subsequent model development. The SARKAE 
model provides plausible mechanisms by which knowledge 
grows from events, and knowledge informs the coding and 
retrieval of both events and knowledge itself. Based on this 
theory, or others of a similar character, we hope that future 
research developments will not focus so strongly on 
differences among systems as upon the ways they grow 
together, in highly dependent fashion. 
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