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Abstract

Generalizing a property from a set of objects to a new object
is a fundamental problem faced by the human cognitive sys-
tem, and a long-standing topic of investigation in psychology.
Classic analyses suggest that the probability with which peo-
ple generalize a property from one stimulus to another depends
on the distance between those stimuli in psychological space.
This raises the question of how people identify an appropri-
ate metric for determining the distance between novel stim-
uli. In particular, how do people determine if two dimensions
should be treated as separable, with distance measured along
each dimension independently (as in anL1 metric), or integral,
supporting Euclidean distance (as in anL2 metric)? We build
on an existing Bayesian model of generalization to show that
learning a metric can be formalized as a problem of learning
a hypothesis space for generalization, and that both ideal and
human learners can learn appropriate hypothesis spaces for a
novel domain by learning concepts expressed in that domain.
Keywords: generalization; categorization; Bayesian model-
ing; similarity; integral and separable dimensions

Introduction
Almost every two objects, events, or situations (or the sen-
sory data for thesame object at two different moments) that
we encounter are unique. Despite this fact, when people (and
animals) learn that one stimulus has a property, they reli-
ably and systematically believe certain other stimuli havethat
property and others do not (Shepard, 1987). For example, if
you learn a dark, large circle is agnarble, how likely is a
dark, slightly smaller circle or a dark very small circle to be
a gnarble? This is the problem ofgeneralization, which is
pervasive across cognitive science. It occurs in many forms
from higher-level cognition (e.g., concept learning, Tenen-
baum, 2000) to linguistics (e.g., word learning, Xu & Tenen-
baum, 2007) to perception (e.g., color categorization, Kay&
McDaniel, 1978). How should an ideal learner generalize a
property from a group of stimuli observed to have the prop-
erty to other stimuli?

One of the most celebrated theoretical results of cogni-
tive psychology provides a deceptively simple answer to this
question, indicating that we should generalize a property from
one object to another object when the two objects are simi-
lar, or equivalently, close in some psychological space (Shep-
ard, 1987). However, this establishes a new problem: How
should the distance between objects be measured? More
formally, the problem is one of identifying ametric on a
space, a basic challenge that also arises when using machine
learning methods that rely on computing distances, such as
nearest-neighbor classification (Xing, Ng, Jordan, & Russell,
2002; Davis, Kulis, Jain, Sra, & Dhillon, 2007). Cognitive
psychologists have determined that people use two different
kinds of metrics when forming generalizations about multi-
dimensional stimuli: separable dimensions are associated

with “city-block” distance or theL1 metric, while integral
dimensions are associated with Euclidean distance or theL2

metric (Garner, 1974). These different metrics also have con-
sequences beyond generalization behavior, influencing how
people categorize objects varying along different dimensions
(Handel & Imai, 1972) and whether people can selectively
attend to each dimension (Garner & Felfoldy, 1970).

Analyses of human generalization have tended to treat the
metric as a fixed property of stimuli. However, determining
the appropriate metric on a psychological space is an impor-
tant step towards developing an appropriate representation for
the properties of novel objects. If two dimensions are sepa-
rable, then those dimensions form privileged axes for repre-
senting locations in the psychological space, and it is easier
to learn categories defined by rules that align with those axes
(Kruschke, 1993). This is qualitatively different from an inte-
gral representation, in which there are no natural axes for rep-
resenting the space. Identifying whether dimensions should
be separable or integral is thus just as basic a step towards
forming a representation for a novel domain as determining
the number of dimensions, or the locations of each stimulus
in the resulting space.

In this paper, we consider how a learner could identify the
appropriate metric for representing a novel domain, compar-
ing an ideal Bayesian learner with human judgments. The
starting point for this investigation is an existing Bayesian
model of generalization, introduced by Shepard (1987) and
extended by Tenenbaum and Griffiths (2001). In this model,
the property of interest is possessed by all stimuli within an
unknown region of psychological space, and the probabil-
ity of generalizing to a new stimulus is computed by sum-
ming over all candidate regions containing the new stimu-
lus and the previous stimuli observed to have some property,
weighted by the posterior probability of that region. The dif-
ference between separable and integral dimensions emerges
as the result of probabilistic inference with different hypoth-
esis spaces of regions (Shepard, 1987, 1991; Davidenko &
Tenenbaum, 2001). The hypothesis spaces that produce gen-
eralization corresponding to separable and integral dimen-
sions consist of axis-aligned and axis-indifferent regions in
the space, respectively (see Figure 1). Axis-aligned regions
produce stronger generalization along the axes, while axis-
indifferent regions produce generalization that depends only
on the Euclidean distance between stimuli.

This analysis of separable and integral dimensions lays the
groundwork for our account of how people learn an appro-
priate metric for a novel space. Learning a metric thus be-
comes a matter of inferring an appropriate hypothesis space
on which to base generalization. We define a hierarchical
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Bayesian model that makes this inference from a set of ob-
served concepts. We demonstrate that this model infers a city-
block or Euclidean generalization metric when given axis-
aligned or axis-indifferent concepts, respectively, and that
people infer a hypothesis space for generalization based on
the concepts they learn in a way that is consistent with this
ideal observer analysis. This extends previous results by
Goldstone (1994) who changed dimensions from being in-
tegral to separable via repeated training of a single concept.

The plan of the paper is as follows. The next section pro-
vides the theoretical background for our approach, summariz-
ing the basic generalization model, revisiting some of the lit-
erature on separable and integral dimensions, and laying out
our approach to hypothesis space learning. We then present a
test of the predictions of this model with human learners. Fi-
nally, we conclude the paper with a discussion of our results
and possible future directions.

Theoretical Framework
Our theoretical framework builds directly on the Bayesian
generalization model introduced in Shepard (1987) and
Tenenbaum and Griffiths (2001), so we begin by summariz-
ing the key ideas behind this approach. We then show how
this approach produces separable and integral generalization,
and how it can be extended to allow an ideal learner to infer
an appropriate representation for novel stimuli.

The Bayesian Generalization Model
Let X be the stimulus space andH be the hypothesis space,
whereh ∈ H is a hypothesis as to which objects have and
do not have the property of interest (i.e., a hypothesis is a
set of x ∈ X ). After observing that a set of stimuliX =
{x1, . . . ,xn},xi ∈ X , stimuli have some property, how should
you update your belief in: (1) which property it is and (2)
which other stimuli have that property? Assuming that stim-
uli are generated uniformly and independently under the true
hypothesis at random for the property (p(X |h) = ∏i p(xi|h) =
|h|−n for a hypothesis containing all stimuli in the given set;
p(X |h) = 0 otherwise) and taking some prior over hypothe-
sesp(h), the posterior probability that a hypothesish is the
property thatn given stimuli share is

p(h|X) =
p(h)∏n

i=1 p(xi|h)

∑h′∈H p(h′)∏n
i=1 p(xi|h′)

(1)

which is simply Bayes’ rule. Using Equation 1, we can derive
the probability of generalizing fromX to some other stimu-
lus y as the sum over the posterior probability of hypotheses
containingy

p(y|X) = ∑
h:y∈h

P(h|X) (2)

which constitutes a form ofhypothesis averaging (Robert,
2007). The predictions of the model depends intimately on
the nature of the hypotheses under consideration, with dif-
ferent hypothesis spaces leading to different generalization
patterns.

Separable and Integral Dimensions
Psychological explorations of human similarity metrics of
multidimensional stimuli discovered two different ways in
which people use these dimensions: separable and integral
(Shepard, 1987). Separable dimensions can be interpreted in-
dependently and form natural axes for representing a space,
while integral dimensions are difficult to perceive indepen-
dently. The dimensional structure of stimuli affects many as-
pects of human information processing, including the ease
of categorizing objects into groups and perceived distance
between objects (Garner, 1974). For example, Garner and
Felfoldy (1970) found that categorization time was facili-
tated for objects with integral dimensions (e.g., saturation and
lightness of a color) into groups where the values of the di-
mensions of the objects in each group are correlated (light and
desaturated vs. dark and saturated). However, there was inter-
ference for objects categorized into groups of objects where
the values of the dimensions are orthogonal (light and satured
vs. dark and desaturated). Conversely, there were no major
differences in categorization time for these types of catego-
rization structures when the dimensions were separable.

Dimensional structure also affects the perceived distances
between objects (Shepard, 1991). The perceived distance
metric for objects with separable dimensions is the “city-
block” distance, also known as theL1 metric, with the dis-
tance between two stimulixi andx j beingd(xi,x j) = ∑k |xik−
x jk|, wherek ranges over dimensions andxk is the value of
stimulusx on dimensionk. The perceived distance metric for
objects with integral dimensions is the Euclidean distance,
or L2 metric, with d(xi,x j) =

√

∑k(xik − x jk)2. The use of
these different distance metrics is consistent with the different
properties of separable and integral dimensions: city-block
distance sums the distance along each axis separately for all
points in the space, while Euclidean distance is insensitive to
whether a point is located along an axis, and is thus invariant
to changes in the axes used to represent the space. Recent ex-
tensions of classic multidimensional scaling techniques bear
out these results, and provide a way to identify whether peo-
ple seem to use separable or integral dimensions in their rep-
resentation of a set of stimuli (Lee, 2008).

In the Bayesian generalization model introduced in the pre-
vious section, the difference between integral and separa-
ble dimensions emerges from using two different hypothesis
spaces (Shepard, 1987). Using a hypothesis space in which
regions are aligned with the axes results in behavior consis-
tent with separable dimensions, while a hypothesis space in
which regions are indifferent to the axes results in behav-
ior consistent with integral dimensions. Figure 1 shows a
schematic of two such hypothesis spaces, restricted to rect-
angular regions in two dimensions, together with the general-
ization gradient for a single exemplar concept in each space.1

1We calculated the generalization gradients by sampling from
the prior distribution over hypotheses for the axis-aligned and axis-
indifferent hypothesis spaces, then weighting each hypothesis by the
likelihood given the single exemplarE5. The gradients were evalu-
ated on a discretized 9×9 grid.
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Figure 1: Hypothesis spaces and generalization gradients.(a)
Axis-aligned (separable) and axis-indifferent (integral) hy-
pothesis spaces. (b) Resulting generalization gradients for
each hypothesis space given a single exemplar of a concept.

The generalization gradient resulting from the axis-aligned
hypothesis space given a single exemplar of a concept de-
creases with distance under a city-block metric, while the gra-
dient resulting from the axis-indifferent hypothesis space de-
creases with Euclidean distance. Models using the appropri-
ate hypothesis spaces capture generalization judgments well
for concept learning tasks using separable and integral dimen-
sions for both single and multiple exemplars (Davidenko &
Tenenbaum, 2001; Tenenbaum, 1999).

Learning a Hypothesis Space
The Bayesian generalization framework naturally extends to
learning an appropriate hypothesis space by introducing the
hypothesis space itself as a higher-level random variable in
a hierarchical Bayesian model. Given an enumerable set of
hypothesis spacesM = {H1, . . . ,HM}, the probability that
an ideal observer generalizes to a new stimulusy given a set
of stimuli X have a property and a set of previously observed
conceptsC (where each concept itself is a set of stimuli) is

P(y|X ,C ) =
M

∑
m=1

P(y|Hm,X)P(Hm|C ,X) (3)

where the first term is the probability of generalizing fromX
to y under hypothesis spaceHm (as specified by Equation 2),
and the second term is the posterior probability of hypothe-
sis spaceHm given the previous conceptsC and the observed
stimuli of the current concept of interest. This posterior prob-
ability can be computed by applying Bayes’ rule

P(Hm|C ,X) =
P(C ,X |Hm)P(Hm)

∑M
m=1 P(C ,X |Hm)P(Hm)

(4)

whereP(C ,X |Hm) is the probability of observing a set of con-
ceptsC and the currently observed stimuli under hypothesis

spaceHm and P(Hm) is the prior probability of hypothesis
spaceHm. The probability of conceptsC and current stimuli
X under hypothesis spaceHm is

P(C ,X |Hm) = ∏
C∈(C∪X)

∑
h∈Hm

P(h|Hm)∏
x∈C

P(x|h) (5)

whereC plays the same role asX , but for the previously ob-
served concepts.

Intuitively, the model can be thought as being composed of
m Bayesian generalization “submodels” (each with their own
hypothesis space). The model’s generalization judgments are
made by averaging over the generalizations made by the indi-
vidual submodels (given the current stimulusX) weighted by
how well the submodel explains the previously and currently
observed stimuli. Thus, the model “learns” to use hypothesis
spaces that explain the observed concepts well.

Human Learning of Hypothesis Spaces
The model presented in the previous section predicts that a
learner should be able to infer whether dimensions are inte-
gral or separable for a novel domain after seeing some ex-
amples of concepts expressed in that domain. Preliminary
support for this idea is provided by the results of Goldstone
(1994), who showed that teaching people a novel axis-aligned
concept could affect generalization along that axis in bothin-
tegral and separable spaces. However, shifting a represen-
tation all the way towards integral or separable dimensions
will require learning more than one concept. To test whether
human learners behaved in this way, we conducted an exper-
iment in which we examined how the generalization judg-
ments that people produce depend on the concepts they have
learned. We used rectangles varying in width and height as
our set of stimuli, and participants learned 20 concepts that
were either aligned with or orthogonal to these dimensions
(rectangles with the same aspect ratio or area). The key pre-
diction was that participants observing axis-aligned concepts
should show a generalization gradient consistent with a city-
block metric, whereas participants observing concepts indif-
ferent to these axes should show a generalization gradient
consistent with a Euclidean metric. This prediction results
from the different hypothesis spaces the two groups of partic-
ipants should infer are appropriate for these domains.

Stimuli and Methods
The stimuli for this experiment were rectangles where the two
manipulated dimensions were the width and height (ranging
from 13 to 115 pixels in increments of approximately 25 pix-
els). The stimulus set is shown in Figure 2. We chose rectan-
gles because it is easy to think of concepts on our two manip-
ulated dimensions (same width or height) and the diagonals
of the dimensions (same aspect ratio or area). Previously,
Krantz and Tversky (1975) found people weakly favor using
area and aspect ratio as separable dimensions (the diagonals
of separable dimension space). However, people can use any
of the four potential dimensions for generalization depend-
ing on the context rectangles are in. This natural flexibility
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Figure 2: Stimuli used in our experiment (not to scale).

makes rectangles an ideal candidate for training participants
to represent rectangles using different dimensional structures.

There were two phases to the experiment: training and test.
For the training phase, there were two between-subjects con-
ditions: theseparable condition (n = 15), in which people
observed axis-aligned concepts, and theintegral condition
(n = 18)2 in which people observed axis-indifferent concepts.
The test phase was the same for all participants. The cover
story for the experiment was:

On a small island in the Pacific Ocean, scientists found the an-
cient ruins of a small civilization. While excavating the ruins,
they discovered objects on the doors of particular houses. They
believe that the objects carry information about the people in
the houses. Some of the objects the scientists found had names
written under them.

Stimuli were then presented as objects with names, and peo-
ple guessed what other objects would share the same name.

The 20 concepts shown to the training groups are shown in
Figure 3 (each concept is a straight line picking out several
points, corresponding to stimuli). The concepts for the two
conditions were chosen such that each condition saw each
object an equal number of times, there were two to four ob-
jects in each concept, and the concepts spanned the space of
objects. The 20 concepts were presented to participants in a
random order as examples of objects that were called different
nonsense names randomly chosen from a standardized list.
While the objects in each concept were on the screen, partici-
pants were asked whether or not they thought every object in
{A,C,E,G, I}× {1,3,5,7,9} shown individually below the
objects in the concept could be called that name.

The test phase of the experiment was identical to the first
phase except participants’ generalizations were tested for

2The different number of participants in each group was due to
the computer crashing mid-experiment.
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Figure 3: The 20 concepts for each training condition. Each
concept is the collection of objects on a straight line on the
grid. The separable concepts are axis aligned and the integral
concepts are indifferent to axes.

concepts consisting of single objects ({B2,B8,E5,H2,H8}
were tested) over the total 9×9 set of objects.

Results

Figure 4 shows averaged results for single exemplar gener-
alization for the test phase in the two conditions. The single
exemplar concept results were re-aligned to{E,5} and then
averaged over the five concepts per participant and over par-
ticipants. We then took the difference between the general-
ization gradients for the two conditions, and compared them
with the difference between the generalization gradients pro-
duced by the Bayesian model. The integral group generalizes
more on the diagonals and less on the axes than the separable
group as predicted if the integral and separable groups used
Euclidean and city-block distance metrics respectively.

To test quantitatively that the two groups learn integral
and separable dimensions, we found that the integral train-
ing group generalized significantly more often on diago-
nals than axes (averaging over{C,D,F,G}× {3,4,6,7} vs.
C5,D5,F5,G5, t(32) = 3.23, p < 0.005). Within the separa-
ble group, the generalization judgments on the axes were sig-
nificantly greater than the diagonals (t(34) = 2.66, p < 0.05);
however, the integral group did not differentiate between
changes on the axes and the diagonals (t(30) = 0.43, p =
0.43). Interestingly, both groups of participants treated the
positive diagonal (F3,F4,G3,G4,C6,C7,D6,D7) differently
than the negative diagonal (C3,C4,D3,D4,F6,F7,G6,G7)
(t(34) = 2.58, p < 0.05 for separable andt(30) = 2.63, p <

0.05 for integral). This replicates Krantz and Tversky
(1975)’s finding that people tend to generalize rectangles
based on constant aspect ratio. This is not surprising as con-
stant aspect ratio is an important invariance of an object’s
projection on the retina as it changes in depth (keeping the
viewpoint orientation constant) due to perspective projection
(Palmer, 1999).

Finally, we calculated a mixed effect 2× 2 ANOVA that
corrobrates the conclusions of our other statistical tests. It
identified a main effect of generalizing on the diagonal vs. the
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Figure 4: Predictions of the difference between the two Bayesian models formed by model averaging given the separable and
integral concepts, and difference between the human generalization results from the two conditions. The results are presented
as bubble plots where the size of the bubble represents the degree of generalization. Solid and open bubbles represent positive
and negative values respectively. Each single exemplar concept results were re-aligned toE5 and then averaged over the five
concepts per participant and over participants. Notice howthe differences on the axes aligned with the given stimulus (E5) are
negative and the differences on the diagonals are positive.

axes (F(1,32) = 44.258, p < 0.001) and an interaction be-
tween generalizing on the diagonal vs. the axes and the train-
ing group (F(1,32) = 10.453, p < 0.005). This suggests that
in the future we should include a hypothesis space into our
hierarchy that includes regions varying on the axes and the
positive diagonal (but not the negative diagonal).

Discussion
Generalization is an essential problem that basically every
cognitive system needs to solve in virtually every domain.
Previous analyses of the generalization problem (Shepard,
1987; Tenenbaum & Griffiths, 2001) indicated how an ideal
learner should act assuming that an appropriate representa-
tion of the stimuli and hypothesis space for generalizations
is known. However, how people arrive at a representation
and hypothesis space has been left as an open question. As
it seems unlikely that people would be born with the appro-
priate representation and hypothesis space for all possible do-
mains, people need to be able to infer this information from
their observations of the properties of stimuli. Using the prob-
lem of learning a metric as an example, our analysis shows
how an ideal learner would go about inferring such hypoth-
esis spaces, and our experimental results suggest that people
do so in a way that is consistent with this model.

To our knowledge, our results provide the first behavioral
evidence that people can learn whether stimuli should be rep-
resented with separable or integral dimensions. Our results
also provide compelling support for the idea that the dif-
ference between separable and integral dimensions can be
thought of as the result of different hypothesis spaces for gen-
eralization, building on (Shepard, 1987, 1991; Davidenko &
Tenenbaum, 2001). In future work, it would be interesting to

further test this account of separable and integral dimensions
by exploring if after training participants show other conse-
quences of having separable or integral dimensions, such as
classification and attentional effects. Additionally, this would
address a potential confound that the training affects the at-
tention participants pay to each dimension. Fortunately, our
larger conclusion that people use the concepts they are given
to learn the appropriate hypothesis space for a domain holds
regardless of the potential confound (as this conclusion isag-
nostic to the exact mechanism affecting generalization).

One attractive aspect of this analysis (over using a differ-
ent solution, like model selection) is that it provides a way
to explain why the empirical literature suggests that integral-
ity has been found to be a fuzzy rather than a binary dis-
tinction (Garner, 1974). Such fuzzy boundaries emerge as a
consequence of Bayesian inference when there is uncertainty
to which hypothesis space is appropriate for generalization.
We would predict that the “integrality” of natural dimensions
are a consequence of how real world objects are categorized
along those dimensions. For example, the reason why the
saturation and brightness of a color are integral is becausein
our environment we do not make distinctions between col-
ors at different saturations and brightnesses. “Light” green
is a typical color word; however, “saturated” green is an es-
oteric word, reserved only for artists, designers, and percep-
tual psychologists. In fact, Goldstone (1994) and Burns and
Shepp (1988) found that these dimensions are separable in
people who regularly distinguish between the two (color ex-
perts and participants trained to distinguish between the two),
which implies that they have concepts aligned with the axes
of brightness and saturation.
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Another important implication of our results is that humans
learn the metric appropriate for generalization in a particu-
lar domain from the concepts they observe. It would be in-
teresting to compare how metric learning algorithms devel-
oped in machine learning (e.g., Xing et al., 2002; Davis et
al., 2007) compare to human metric learning on this task,
and after learning other types of concepts. This could pave
the way towards new machine learning algorithms that auto-
matically infer dimensions intuitive to people from a given
set of concepts. Dimensionality reduction techniques like
multi-dimensional scaling and principal component analysis
are some of the most widely used tools for scientific data anal-
ysis, but only produce the equivalent of integral dimensions.
An algorithm that determines whether a space is better rep-
resented by separable or integral dimensions, and produces
interpretable separable dimensions, would be a valuable ad-
dition to any data analysis toolkit.

Though Bayesian models have become very popular
and successful at explaining different cognitive phenomena
(Chater, Tenenbaum, & Yuille, 2006), the hypothesis spaces
used in the models are handpicked by the modeler and usu-
ally specific to the particular investigated phenomenon. This
leaves open the question of how people choose the hypothe-
ses for a set of observed stimuli. Our framework presents
an answer to this problem – a hypothesis space is used for
a set of observed stimuli depending on how well it explains
the observed stimuli and its prior probability. We provide
behavioral evidence for our framework in the case study of
learning whether or not two dimensions should be separable
or integral. Futhermore, this introduces an interesting equiv-
alence between learning the structure of dimensions used to
represent stimuli and the set of candidate hypotheses for gen-
eralization, which we plan to investigate in future research.
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