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Abstract 

Accounts of category-based inductive reasoning can be 
distinguished by the emphasis they place on structured versus 
unstructured knowledge. In addition, it has been claimed that 
certain domains of structured knowledge are more available 
than others. Using a speeded task paradigm, participants rated 
the strength of inductive arguments in which the categories 
were either strongly or weakly associated and shared a 
taxonomic or causal relation.. Strongly associated categories 
received higher inductive strength ratings than weakly 
associated category pairs, regardless of the domain by which 
the categories were related. Strength of association was highly 
predictive of inductive strength ratings, but more additional 
variance was accounted for by beliefs about taxonomic and 
causal relations when people were not under time pressure. 
This suggests that, regardless of knowledge domain, 
maximizing inductive potency relies on the use of both 
structured and unstructured knowledge, depending on 
available mental resources.  

Keywords: Category-Based Induction; Knowledge; 
Categorical Inferences; Reasoning. 

Knowledge and Category-Based Induction 

Category-based generalizations cover a class of inferences 

in which an object’s category membership supports people’s 

inferences about properties shared with other category 

members. For example, classifying an animal as a rabbit 

allows us to infer that it probably lives in a burrow. 

Furthermore, if we observe that the animal we have 

classified as a rabbit eats carrots, we are likely to infer that 

other rabbits and, perhaps hares, also eat carrots.  

In order to understand what determines the likelihood that 

a property will be generalized from a known to a novel 

instance, we need to identify which aspects of our 

background knowledge are central to the induction process. 

Whereas some approaches view category-based induction as 

driven solely by associative or unstructured knowledge, 

such as featural overlap (Sloman, 1993), perceptual 

similarity (Sloutsky & Fisher, 2004) or semantic 

associations (Rogers & McClelland, 2004), apparently 

contradictory approaches place theory-based or structured 

knowledge at the centre of the inductive process, such as 

knowledge about stable category-hierarchies (Osherson, et 

al., 1990) and causal relations between categories (Kemp 

&Tenenbaum, 2009). These contrasting types of knowledge 

in turn possess unique processing characteristics which 

differentially affect the reasoning output. 

Unstructured Knowledge and Induction 

Unstructured knowledge cannot be described by a higher 

order structure, abstract interrelationships or theories. It can 

include relations between entities based on contiguity, co-

occurrence, similarity or associations. Several studies 

suggest that early category formation and induction is 

driven by the statistical properties inherent in the 

environment, such as co-occurrence and statistical 

distribution of perceptual features. For example, Sloutsky 

and Fisher’s (2004) model of Similarity, Induction and 

Categorization (SINC) assumes that children perform 

categorization and inductive reasoning on the basis of 

perceptual similarity, in which the category label is simply 

treated as another feature contributing to increased 

similarity between different instances. These researchers 

also claim that there is only a gradual and developmentally 

late transition from exclusive reliance on similarity to the 

use of category membership as a basis for induction. This 

transition is largely seen as the product of explicit 

instruction and learning about general characteristics of 

categories (Fisher & Sloutsky, 2005).  

Some proponents of associative approaches to category-

based induction advocate that adult categorization and 

induction is also heavily influenced by similarity (Sloman, 

1993) and associations in semantic memory (Rogers & 

McClelland, 2004). For example, Sloman’s (1993) feature-

based model explains generalizations purely in associative 

terms as the degree to which the presentation of the premise 

instances activates overlapping features of the conclusion 

instance. Arguments in which premise and conclusion 

categories share more features are stronger than arguments 

with little featural overlap between premise and conclusion. 

Consequently, there is no need to assume a stable category 

hierarchy. Sloman (1998) does not preclude the possibility 

that assessment of similarity can at times reflect a more 

effortful process which draws on knowledge about stable 

category hierarchies. However, he does suggest that the 

default mode of category-based induction reflects a 

predominantly intuitive thought process, requiring no 

processing effort or reference to class inclusion relations, 
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especially when people lack relevant knowledge, are under 

time pressure or have not been explicitly instructed to 

carefully consider their responses.  

Structured Knowledge in Induction 

An opposing approach to explaining inductive reasoning 

focuses on the influence of structured knowledge. The 

justification for assuming that structured knowledge can 

play an important role in category-based induction arises 

from several reasoning phenomena that cannot be explained 

exclusively by the use of unstructured or associative 

knowledge. 

Osherson et al’s (1990) Similarity-Coverage Model posits 

knowledge about stable taxonomic structure as an important 

source of information that people rely on when evaluating 

categorical arguments. Inductive evaluations reflect the 

weighted sum of two primary parameters, similarity and 

coverage. Similarity refers to the maximum average 

similarity between the premise and conclusion categories. 

Coverage refers to the degree to which the premise 

categories cover the featural space of the inclusive 

superordinate category and thus, calculation of coverage 

requires structured knowledge in the form of a stable 

hierarchy of categories. The coverage component of the 

model gives rise to the diversity effect, whereby dissimilar 

premise categories act as stronger evidence than similar 

premise categories. Although this phenomenon can be 

explained by Sloman’s model, the developmental trajectory 

of the diversity effect (Lopez, Gelman, Gutheil & Smith, 

1992) is more compatible with the assumption that people 

draw on structured knowledge about stable category 

hierarchies.  Similarly, if sensitivity to diversity was based 

exclusively on unstructured associative knowledge, it would 

not be related to general cognitive ability (Feeney, 2007).  

Approaches emphasizing the importance of unstructured 

knowledge also have no means of explaining effects that 

arise from considering underlying higher-order 

interrelationships between categories. Tenenbaum and 

Kemp (2009) and Shafto et al. (2008) have demonstrated 

that inductive reasoning about causal transmission can be 

dissociated from inductive inferences about physiological 

properties. Such dissociations suggest that the context or 

property people are reasoning about prompts them to draw 

on different and most relevant sources of structured 

knowledge. Making use of this kind of structured 

knowledge also gives rise to phenomena such as the causal 

asymmetry effect, whereby inferences about the 

transmission of diseases are deemed stronger from prey to 

predator than from predator to prey (Medin, Coley, Storms 

& Hayes, 2003; Shafto, et al., 2008). Again, it is hard to see 

how approaches relying exclusively on nondirectional 

unstructured knowledge might cogently explain such 

effects.  

Processing Differences 

On the surface it appears that approaches placing 

divergent emphasis on different types of knowledge are 

incompatible. However, recent evidence suggests that both 

structured and unstructured types of knowledge play an 

important role in inductive reasoning, and that they may be 

a source of individual differences. One of the major 

distinguishing features appears to be the nature of the 

mental processes that mediate the use of these contrasting 

types of knowledge.  For example, Rehder (2009) explicitly 

suggests that the use of structured knowledge relies on an 

elaborate, analytical thought processes, whereas associative 

knowledge influences inductive reasoning fairly 

automatically and without much cognitive effort. Rehder 

(2009) taught participants about the causal links between 

category features of artificial categories. In line with the 

assumption that people draw on extensive causal 

knowledge, he demonstrated various phenomena, such as a 

causal asymmetry effect. However, he also found that there 

was a substantial minority of people whose patterns of 

inductions did not adhere to those predicted by his causal-

based generalization model. Instead, they seemed to rely 

more on nondirectional associations between the category 

features. 

This suggests that selective inductive reasoning can either 

be driven by structured knowledge based on theoretical 

conceptions about relations between categories within a 

domain, or on unstructured knowledge based on temporal 

contiguity or degree of association between the categories. 

Testing for Effects of Knowledge Type 

To test our hypothesis that category-based induction 

might be driven by different types of knowledge we used a 

paradigm developed by Shafto, Coley & Baldwin (2007) 

who were interested in the effects of knowledge domain on 

induction. Shafto et al (2007) presented participants with 

arguments consisting of taxonomically or ecologically 

related categories and manipulated time to respond.  To test 

our hypothesis about differential effects of knowledge type, 

we also included a manipulation of between-category 

association. As access to structured knowledge seems to 

require slower and more elaborate reasoning, we expected 

people to rely more on unstructured knowledge when under 

time pressure. 

Our design also allowed us to attempt to replicate Shafto 

et al’s finding that whereas people’s inferences about 

taxonomically related categories were unaffected when 

under time pressure, they gave lower inductive strength 

ratings to ecologically related categories when they had to 

respond rapidly. Because Shafto et al.  did not control for 

level of association between their category pairs, it will be 

of interest to examine whether processing differences 

between knowledge domains still emerge when degree of 

association is equated between domains.  
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Methods 

Participants 

40 participants took part in the study. They were 

volunteers from Durham University, who received course 

credit for their participation. Their mean age was 24.2 years 

(SD= 7.8 years). 

Design 

The experiment had a 2 (timing: speeded versus delayed) 

by 2 (property: cells or disease) by 2 (relation: taxonomic or 

causal) by 2 (level of association: high versus low) mixed 

design, with timing as the between-subjects variable.  

Materials and Procedure 

There were 20 reasoning items consisting of a base 

category, a causally related target category and a 

taxonomically related target category. Causally related pairs 

were always from different superordinate categories, for 

example, plants and animals, or mammals and reptiles. In 

contrast, taxonomically related pairs were always from the 

same superordinate taxonomic category 

For each item, there was a causal problem and a matching 

taxonomic induction problem, resulting in a total of 40 

problems.  

In order to control for level of association between the 

base category and its two target categories, 18 Durham 

University students were asked to rate how strongly pairs of 

words were associated on a scale from 1 (unrelated) to 9 

(very strong association). Whilst no specific examples were 

given, when generating each rating participants were 

instructed to consider all kinds of possible relations, such as 

causal, functional, taxonomic etc, and were asked to give 

the first answer that came to mind. We selected only those 

20 items with a similar level of association between the base 

and its alternative causal and taxonomic target categories. 

We then also derived a more objective measure of co-

occurrence against which to verify our notion of association. 

We calculated the frequency with which the two categories 

co-occurred within six words on the World Wide Web by 

using a Google proximity search and used a formula 

suggested by Heylighen (2001) to calculate the conditional 

probability of co-occurrence:   

 

Aw1&w2= P (w1│w2) = 
𝑃(𝑤1&𝑤2)

𝑃(𝑤1)
 = 

𝑁(𝑤1&𝑤2)

𝑁(𝑤1)
 

 

In this equation, 𝑃(𝑤1&𝑤2) represents the probability that 

a text contains both words w1 and w2, 𝑃(𝑤1) represents the 

probability that it contains w1 on its own. To calculate the 

conditional probability, one can simply count the number of 

times w1 and w2 co-occur and divide this by the number of 

times w1 occurs by chance in the same text sample. We then 

took the mean of these two conditional probabilities and 

correlated this with our association strength ratings. These 

two measures were significantly correlated (Spearman’s 

rho= .56, p< .01) supporting our contention that we are 

indeed measuring a construct of associative strength in 

which the activation of one leads to activation of the other, 

irrespective of the nature of relation between the two 

categories. 

To explore the role that level of association plays in the 

availability of knowledge from different domains, a median 

split based on level of association was carried out on the 

selected items. Thus, for 10 items the association between 

the base and its target categories was classed as strong and 

for the remaining 10 items this association was classed as 

weak. For half the strongly and weakly associated items 

participants generalized diseases. For the other half, people 

evaluated inductive conclusions about cells, so whilst 

property was manipulated within-subjects, content was 

counterbalanced across participants in a Latin-square 

design.  

Participants learnt that the base category had either a 

blank disease, such as disease 9T4, or blank cells, such as 

cells Lo8. They then rated the likelihood that the target 

category shared the disease or cells on a 9-point scale. For 

example, participants might be presented with the following 

induction problems:  

 

Carrots have disease 3dfT. 

How likely is it that Rabbits have disease 3dfT?  

(causal/disease) 

 

Carrots have disease ww3T. 

How likely is it that Radishes have disease ww3T?  

(taxonomic/disease)  

 

Acorns have cells T4H. 

How likely is it that Squirrels have cells T4H?  

(causal/cells) 

 

Acorns have cells eR2. 

How likely is it that Walnuts have cells eR2?  

(taxonomic/cells) 

 

The induction problems were presented on a laptop. The 

premise and conclusions were presented simultaneously and 

appeared in a red font. Participants could only enter their 

response once the font changed to green. In the speeded 

condition, the font changed from green to red after one 

second and participants were instructed to read the problem 

and respond as fast as possible without sacrificing accuracy. 

In the delayed condition, the font only changed colour after 

10 seconds and participants were instructed to carefully 

consider their responses. They entered their response on the 

key board by giving a rating between 1 and 9. 

Post-Test 

The post-test assessed people’s beliefs about taxonomic 

and causal relatedness. For each of the 40 category pairs, 

participants were asked two questions, resulting in a total of 

80 questions. One question asked them whether they 

believed that the two categories were from the same 

biological class and the other asked whether the two 
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categories were part of the same food chain. Participants 

could respond with YES, NO or DON’T KNOW, but were 

instructed to use the third option sparingly, as the emphasis 

was on their intuitions and beliefs rather than on factual 

correctness.  The mean proportion of positive responses to 

the two post-test questions about biological group 

membership and food chain relations across the two timing 

conditions did not correlate with our web-based measure of 

co-occurrence (Spearman rho correlation coefficients ranged 

from -.18 to .16, all p’s > .27), nor did it correlate with our 

subjective measure of associative strength (Spearman rho 

correlation coefficients ranged from .1 to .2, all p’s > .18) 

suggesting that these measures did not reflect associative 

strength but represents beliefs based on more structured 

knowledge. 

Results 

To facilitate an initial factorial analysis of the data, mean 

inductive strength scores were calculated for the 5 problems 

representing the unique property by association by relation 

combination, resulting in 8 means for each participant. 

These were subjected to a 2 (property: disease or cell) by 2 

(relation: causal or taxonomic) by association (high versus 

low) by 2 (timing: delayed or speeded) mixed-design 

ANOVA, with timing as the between-subject variable. We 

predicted effects of degree of association in our results. 

However, if association does not play an important role, we 

would expect to observe an interaction between timing and 

relation, with timing affecting causal but not taxonomic 

inferences, thus replicating Shafto et al’s (2007) findings. 

Although the effects of relation, F(1, 38) = 3.39, p = .073, 

effect size d = .66, and timing, F(1, 38) = 3.18, p = .082, effect 

size d = .6, were approaching significance, timing did not 

interact with any of the other variables. Thus, when we 

control for degree of association we do not replicate Shafto 

et al’s finding.  

The only large and reliable significant main effect was 

strength of association, F(1, 38) = 28.82, p < .0001, effect size 

d = 2.0. As expected, inferences about closely associated 

categories (M = 4.52, SE = .14) were rated stronger than 

inferences about weakly associated categories (M= 3.98, 

SE= .14).  

The only significant two-way interaction was between 

property and relation, F(1, 38) = 25.68, p < .0001, effect size d 

= 1.7, suggesting that people showed some context-sensitive 

reasoning. Bonferroni posthoc tests showed that when 

reasoning about cells, people rated taxonomic inferences (M 

= 5.01, SE = .2) significantly stronger than causal inferences 

(M = 3.79, SE = .22, p < .0001, effect size d = .9). When 

reasoning about diseases, people rated causal inferences 

slightly higher (M = 4.32, SE = .26) than taxonomic 

inferences (M = 3.89, SE = .17) although this difference was 

not significant (p = .16, effect size d = .3). This might 

suggest that whereas physiological inferences are 

predominantly supported by taxonomic relations between 

categories, inferences about diseases can be made on the 

basis of external mechanisms, in this case causal 

transmission, but also on the basis of more internal 

mechanisms, in this case taxonomic links and thus genetic 

relatedness.  

None of the other higher-order interactions were 

significant (all p’s > .08) 

Regression Analyses 

To explore how structured and unstructured types of 

knowledge influence category-based inductions under 

different conditions, we calculated mean inductive strength 

ratings for each item separately for the two types of property 

and timing conditions, resulting in 4 inductive strength 

scores for each item. Similarly, for each item we calculated 

the mean proportion of positive responses to the two post-

test questions about biological group membership and food 

chain relations across the two timing conditions.  

Multiple regression analyses were carried out on the mean 

inductive strength scores. We make the theoretical 

assumption that people will be influenced by strength of 

association regardless of timing manipulations. Hence, we 

entered this variable in block 1. In a second block, we added 

proportion of positive responses to the biological group 

question and food chain question as the independent 

predictor variables. This enabled us to evaluate the degree to 

which adding variables reflecting structured knowledge 

accounted for additional variance above and beyond 

strength of association. 

All four regression analyses were significant, but different 

relevant knowledge influenced inductive strength under 

different conditions. Overall, larger multiple correlation 

coefficients were observed in the delayed condition, 

suggesting that people used different types of knowledge to 

inform their inferences when they had time to do so, 

whereas under time pressure, the ability to recruit relevant 

knowledge seemed to be attenuated.  

Inferences about Diseases 

As Figure 1 shows, speeded inductive reasoning about 

diseases (R = .59) was significantly predicted by strength of 

association (beta = .45, t = 3.13,  p = .003). In the second 

block, knowledge about relevant causal food chain relations 

was also a significant predictor (beta = .35, t = 2.04, p = 

.05), whereas taxonomic knowledge was not a significant 

predictor (beta = .08, t = .44, p = .67). Together, adding 

these two structured knowledge variables accounted for a 

nonsignificant amount of additional variance (R
2 

Change: 

9.6%, F (2, 36) = 2.64,  p = .09). 

In contrast, reasoning about diseases under delayed 

conditions (R = .68) was no longer significantly predicted 

by association (beta = .24, t = 1.8, p = .08). However, 

inductive strength was strongly predicted by relevant 

knowledge about food chain relations (beta = .61, t = 4.34, p 

< .001), but also by beliefs about biological relatedness 

(beta = .34, t = 2.33, p = .03). Adding the structured 

knowledge predictors in a second block did account for 

significantly more variance in inductive strength ratings 
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than strength of association on its own (R
2 

Change: 25.8%, 

F(2, 36) = 9.46, p < .001). 

 

 

 

Figure 1: Standardized Regression Coefficients for 

Predictive Relations between Taxonomic and Causal 

Beliefs, Strength of Association and Inductive Strength 

Ratings for Diseases 

 

 

Inferences about Cells 

Reasoning about cells showed a different pattern as 

shown in Figure 2. Under delayed conditions, strength of 

association was not a significant predictor of inductive 

strength (beta = .19, t = .15, p = .14). Inductive inferences 

were however predicted by beliefs about biological 

relatedness (R = .72) (beta = .48, t = 3.48, p = .001), and 

were negatively predicted by beliefs about causal 

relatedness (beta = -.31, t = -2.29, p = .03). Given that we 

had selected causal targets that were always from different 

superordinate categories, it is not surprising that causal 

beliefs were a negative predictor of inferences about cells.  

As when reasoning about diseases, adding  the structured 

knowledge predictors in a second block accounted for 

significantly more variance in inductive strength ratings 

than strength of association on its own when people were 

not under time pressure ( R
2 

Change: 44.2%, F(2, 36) = 16.33,  

p < .001)  

Speeded inductions about cells (R = .64) were predicted 

by strength of association (beta = .51, t = 3.76, p = .001) and 

were negatively predicted by beliefs about causal 

relatedness (beta = -.34, t = -2.5, p = .05). Taxonomic 

beliefs were not a significant predictor of speeded inductive 

strength ratings (beta = .11, t = .65, p = .52). However, 

adding the structured knowledge coefficients did explain 

some additional variance above strength of association on 

its own (R
2 
Change: 16.7%, %, F (2, 36) = 5.09, p = .01). 

 

 

 

 

 

 

 

Figure 2: Standardized Regression Coefficients for 

Predictive Relations between Strength of Association, 

Taxonomic and Causal Beliefs and Inductive Strength 

Ratings for Cells 

Discussion 

Our main proposal was that knowledge effects in 

category-based induction can be distinguished with regards 

to two contrasting types of knowledge: effortlessly 

computable, unstructured knowledge such as strength of 

association (Rogers & McClelland, 2004) or similarity 

(Sloman 1993; Sloutsky & Fisher, 2004) on the one hand, 

and structured knowledge (Kemp & Tenenbaum, 2009, 

Shafto et al, 2008, Rehder, 2009), which requires more time 

and processing effort, on the other. Overall, our results 

strongly support this distinction between different types of 

knowledge that differ in their processing characteristics.  

The response timing paradigm used in the current 

experiment showed that strength of association was a 

stronger predictor of inductive strength ratings when people 

had to respond quickly. In contrast, structured causal and 

taxonomic knowledge became more important when people 

were forced to delay their response and hence had time to 

consider the nature of the relationship between the 

categories.   

A secondary goal of this experiment was to explore 

whether differences in the accessibility of knowledge from 

different domains arises when level of association is 

controlled for. The results showed that once level of 

association was equated across causally and taxonomically 

related category pairs, the previously observed advantage 

for taxonomic knowledge (e.g. Shafto et al., 2007) was no 

longer observed. This suggests that no domain of 

knowledge is more privileged than any other. 

With regards to our main proposal, there are several 

benefits of being able to draw on two types of knowledge 

that differ in their processing characteristics. The potency of 

inductive inferences can be maximized by recruiting 

structured knowledge, making inferences more sensitive to 
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contextual factors and relational constraints. It is difficult to 

see how connectionist models, whose hallmark processes 

are instantiated by nondirectional and automatic spreading 

activation, could explain how additional sources of 

knowledge, such as causal and taxonomic knowledge, 

selectively influence people’s inferences about diseases 

when people have time but not when they have to respond 

rapidly.  

However, people may not always have the time and 

available mental resources to try and draw on elaborate 

background knowledge. Thus, unstructured knowledge 

acquired through associations, temporal contiguity, or co-

occurrence   provides a rich source of ecologically valid 

information at little or no processing cost (Evans, 2008; 

Smith & DeCoster, 2000). As demonstrated by Rogers & 

McClelland’s (2004) PDP model, it is conceivable that 

frequently co-occurring categories would lead to a gradual 

adjustment of their semantic representations in memory, so 

that activation of one would either ‘prime’ or partially 

activate the representation of strongly associated categories.  

Conclusion 

We provide support for the claim that category-based 

inductive reasoning is influenced by two types of 

knowledge, structured and unstructured knowledge, which 

are mediated by two contrasting mental processes (Rehder, 

2009). Use of unstructured knowledge, such as 

nondirectional associative strength (Sloman, 1993; Rogers 

& McClelland; 2004) seems to reflect a relatively effortless 

process, in which inductions are proportional to the degree 

to which activation of the premise and conclusion category 

representations in semantic memory overlap. However, this 

can be supplemented by the use of more elaborate structured 

knowledge (Kemp & Tenenbaum, 2009; Shafto et al., 

2008). Structured knowledge encodes intuitive theories 

about the structural relationships between categories, such 

as knowledge about taxonomic connections or causal 

interactions. Use of this type of knowledge is constrained by 

cognitive resources but can maximize inductive potency of 

inferences beyond mere associative strength between 

categories.  
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