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Abstract

Accounts of category-based inductive reasoning can be
distinguished by the emphasis they place on structured versus
unstructured knowledge. In addition, it has been claimed that
certain domains of structured knowledge are more available
than others. Using a speeded task paradigm, participants rated
the strength of inductive arguments in which the categories
were either strongly or weakly associated and shared a
taxonomic or causal relation.. Strongly associated categories
received higher inductive strength ratings than weakly
associated category pairs, regardless of the domain by which
the categories were related. Strength of association was highly
predictive of inductive strength ratings, but more additional
variance was accounted for by beliefs about taxonomic and
causal relations when people were not under time pressure.
This suggests that, regardless of knowledge domain,
maximizing inductive potency relies on the use of both
structured and unstructured knowledge, depending on
available mental resources.
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Knowledge and Category-Based Induction

Category-based generalizations cover a class of inferences
in which an object’s category membership supports people’s
inferences about properties shared with other category
members. For example, classifying an animal as a rabbit
allows us to infer that it probably lives in a burrow.
Furthermore, if we observe that the animal we have
classified as a rabbit eats carrots, we are likely to infer that
other rabbits and, perhaps hares, also eat carrots.

In order to understand what determines the likelihood that
a property will be generalized from a known to a novel
instance, we need to identify which aspects of our
background knowledge are central to the induction process.
Whereas some approaches view category-based induction as
driven solely by associative or unstructured knowledge,
such as featural overlap (Sloman, 1993), perceptual
similarity (Sloutsky & Fisher, 2004) or semantic
associations (Rogers & McClelland, 2004), apparently
contradictory approaches place theory-based or structured
knowledge at the centre of the inductive process, such as
knowledge about stable category-hierarchies (Osherson, et
al., 1990) and causal relations between categories (Kemp
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&Tenenbaum, 2009). These contrasting types of knowledge
in turn possess unique processing characteristics which
differentially affect the reasoning output.

Unstructured Knowledge and Induction

Unstructured knowledge cannot be described by a higher
order structure, abstract interrelationships or theories. It can
include relations between entities based on contiguity, co-
occurrence, similarity or associations. Several studies
suggest that early category formation and induction is
driven by the statistical properties inherent in the
environment, such as co-occurrence and statistical
distribution of perceptual features. For example, Sloutsky
and Fisher’s (2004) model of Similarity, Induction and
Categorization (SINC) assumes that children perform
categorization and inductive reasoning on the basis of
perceptual similarity, in which the category label is simply
treated as another feature contributing to increased
similarity between different instances. These researchers
also claim that there is only a gradual and developmentally
late transition from exclusive reliance on similarity to the
use of category membership as a basis for induction. This
transition is largely seen as the product of explicit
instruction and learning about general characteristics of
categories (Fisher & Sloutsky, 2005).

Some proponents of associative approaches to category-
based induction advocate that adult categorization and
induction is also heavily influenced by similarity (Sloman,
1993) and associations in semantic memory (Rogers &
McClelland, 2004). For example, Sloman’s (1993) feature-
based model explains generalizations purely in associative
terms as the degree to which the presentation of the premise
instances activates overlapping features of the conclusion
instance. Arguments in which premise and conclusion
categories share more features are stronger than arguments
with little featural overlap between premise and conclusion.
Consequently, there is no need to assume a stable category
hierarchy. Sloman (1998) does not preclude the possibility
that assessment of similarity can at times reflect a more
effortful process which draws on knowledge about stable
category hierarchies. However, he does suggest that the
default mode of category-based induction reflects a
predominantly intuitive thought process, requiring no
processing effort or reference to class inclusion relations,



especially when people lack relevant knowledge, are under
time pressure or have not been explicitly instructed to
carefully consider their responses.

Structured Knowledge in Induction

An opposing approach to explaining inductive reasoning
focuses on the influence of structured knowledge. The
justification for assuming that structured knowledge can
play an important role in category-based induction arises
from several reasoning phenomena that cannot be explained
exclusively by the use of unstructured or associative
knowledge.

Osherson et al’s (1990) Similarity-Coverage Model posits
knowledge about stable taxonomic structure as an important
source of information that people rely on when evaluating
categorical arguments. Inductive evaluations reflect the
weighted sum of two primary parameters, similarity and
coverage. Similarity refers to the maximum average
similarity between the premise and conclusion categories.
Coverage refers to the degree to which the premise
categories cover the featural space of the inclusive
superordinate category and thus, calculation of coverage
requires structured knowledge in the form of a stable
hierarchy of categories. The coverage component of the
model gives rise to the diversity effect, whereby dissimilar
premise categories act as stronger evidence than similar
premise categories. Although this phenomenon can be
explained by Sloman’s model, the developmental trajectory
of the diversity effect (Lopez, Gelman, Gutheil & Smith,
1992) is more compatible with the assumption that people
draw on structured knowledge about stable category
hierarchies. Similarly, if sensitivity to diversity was based
exclusively on unstructured associative knowledge, it would
not be related to general cognitive ability (Feeney, 2007).

Approaches emphasizing the importance of unstructured
knowledge also have no means of explaining effects that
arise  from  considering  underlying  higher-order
interrelationships between categories. Tenenbaum and
Kemp (2009) and Shafto et al. (2008) have demonstrated
that inductive reasoning about causal transmission can be
dissociated from inductive inferences about physiological
properties. Such dissociations suggest that the context or
property people are reasoning about prompts them to draw
on different and most relevant sources of structured
knowledge. Making use of this kind of structured
knowledge also gives rise to phenomena such as the causal
asymmetry effect, whereby inferences about the
transmission of diseases are deemed stronger from prey to
predator than from predator to prey (Medin, Coley, Storms
& Hayes, 2003; Shafto, et al., 2008). Again, it is hard to see
how approaches relying exclusively on nondirectional
unstructured knowledge might cogently explain such
effects.

Processing Differences

On the surface it appears that approaches placing
divergent emphasis on different types of knowledge are
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incompatible. However, recent evidence suggests that both
structured and unstructured types of knowledge play an
important role in inductive reasoning, and that they may be
a source of individual differences. One of the major
distinguishing features appears to be the nature of the
mental processes that mediate the use of these contrasting
types of knowledge. For example, Rehder (2009) explicitly
suggests that the use of structured knowledge relies on an
elaborate, analytical thought processes, whereas associative
knowledge influences inductive  reasoning fairly
automatically and without much cognitive effort. Rehder
(2009) taught participants about the causal links between
category features of artificial categories. In line with the
assumption that people draw on extensive causal
knowledge, he demonstrated various phenomena, such as a
causal asymmetry effect. However, he also found that there
was a substantial minority of people whose patterns of
inductions did not adhere to those predicted by his causal-
based generalization model. Instead, they seemed to rely
more on nondirectional associations between the category
features.

This suggests that selective inductive reasoning can either
be driven by structured knowledge based on theoretical
conceptions about relations between categories within a
domain, or on unstructured knowledge based on temporal
contiguity or degree of association between the categories.

Testing for Effects of Knowledge Type

To test our hypothesis that category-based induction
might be driven by different types of knowledge we used a
paradigm developed by Shafto, Coley & Baldwin (2007)
who were interested in the effects of knowledge domain on
induction. Shafto et al (2007) presented participants with
arguments consisting of taxonomically or ecologically
related categories and manipulated time to respond. To test
our hypothesis about differential effects of knowledge type,
we also included a manipulation of between-category
association. As access to structured knowledge seems to
require slower and more elaborate reasoning, we expected
people to rely more on unstructured knowledge when under
time pressure.

Our design also allowed us to attempt to replicate Shafto
et al’s finding that whereas people’s inferences about
taxonomically related categories were unaffected when
under time pressure, they gave lower inductive strength
ratings to ecologically related categories when they had to
respond rapidly. Because Shafto et al. did not control for
level of association between their category pairs, it will be
of interest to examine whether processing differences
between knowledge domains still emerge when degree of
association is equated between domains.



Methods

Participants

40 participants took part in the study. They were
volunteers from Durham University, who received course
credit for their participation. Their mean age was 24.2 years
(SD= 7.8 years).

Design

The experiment had a 2 (timing: speeded versus delayed)
by 2 (property: cells or disease) by 2 (relation: taxonomic or
causal) by 2 (level of association: high versus low) mixed
design, with timing as the between-subjects variable.

Materials and Procedure

There were 20 reasoning items consisting of a base
category, a causally related target category and a
taxonomically related target category. Causally related pairs
were always from different superordinate categories, for
example, plants and animals, or mammals and reptiles. In
contrast, taxonomically related pairs were always from the
same superordinate taxonomic category

For each item, there was a causal problem and a matching
taxonomic induction problem, resulting in a total of 40
problems.

In order to control for level of association between the
base category and its two target categories, 18 Durham
University students were asked to rate how strongly pairs of
words were associated on a scale from 1 (unrelated) to 9
(very strong association). Whilst no specific examples were
given, when generating each rating participants were
instructed to consider all kinds of possible relations, such as
causal, functional, taxonomic etc, and were asked to give
the first answer that came to mind. We selected only those
20 items with a similar level of association between the base
and its alternative causal and taxonomic target categories.
We then also derived a more objective measure of co-
occurrence against which to verify our notion of association.
We calculated the frequency with which the two categories
co-occurred within six words on the World Wide Web by
using a Google proximity search and used a formula
suggested by Heylighen (2001) to calculate the conditional
probability of co-occurrence:

P(wi&wy) _ N(w1&wy)
P(w1) N(wq)

AwgW,= P (W | W) =

In this equation, P(w; &w,) represents the probability that
a text contains both words w; and w, P(w;) represents the
probability that it contains w; on its own. To calculate the
conditional probability, one can simply count the number of
times w; and w, co-occur and divide this by the number of
times w; occurs by chance in the same text sample. We then
took the mean of these two conditional probabilities and
correlated this with our association strength ratings. These
two measures were significantly correlated (Spearman’s
rho= .56, p< .01) supporting our contention that we are
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indeed measuring a construct of associative strength in
which the activation of one leads to activation of the other,
irrespective of the nature of relation between the two
categories.

To explore the role that level of association plays in the
availability of knowledge from different domains, a median
split based on level of association was carried out on the
selected items. Thus, for 10 items the association between
the base and its target categories was classed as strong and
for the remaining 10 items this association was classed as
weak. For half the strongly and weakly associated items
participants generalized diseases. For the other half, people
evaluated inductive conclusions about cells, so whilst
property was manipulated within-subjects, content was
counterbalanced across participants in a Latin-square
design.

Participants learnt that the base category had either a
blank disease, such as disease 9T4, or blank cells, such as
cells Lo8. They then rated the likelihood that the target
category shared the disease or cells on a 9-point scale. For
example, participants might be presented with the following
induction problems:

Carrots have disease 3dfT.
How likely is it that Rabbits have disease 3dfT?
(causal/disease)

Carrots have disease ww3T.
How likely is it that Radishes have disease ww3T?
(taxonomic/disease)

Acorns have cells T4H.
How likely is it that Squirrels have cells T4H?
(causal/cells)

Acorns have cells eR2.
How likely is it that Walnuts have cells eR2?
(taxonomic/cells)

The induction problems were presented on a laptop. The
premise and conclusions were presented simultaneously and
appeared in a red font. Participants could only enter their
response once the font changed to green. In the speeded
condition, the font changed from green to red after one
second and participants were instructed to read the problem
and respond as fast as possible without sacrificing accuracy.
In the delayed condition, the font only changed colour after
10 seconds and participants were instructed to carefully
consider their responses. They entered their response on the
key board by giving a rating between 1 and 9.

Post-Test

The post-test assessed people’s beliefs about taxonomic
and causal relatedness. For each of the 40 category pairs,
participants were asked two questions, resulting in a total of
80 questions. One question asked them whether they
believed that the two categories were from the same
biological class and the other asked whether the two



categories were part of the same food chain. Participants
could respond with YES, NO or DON’T KNOW, but were
instructed to use the third option sparingly, as the emphasis
was on their intuitions and beliefs rather than on factual
correctness. The mean proportion of positive responses to
the two post-test questions about biological group
membership and food chain relations across the two timing
conditions did not correlate with our web-based measure of
co-occurrence (Spearman rho correlation coefficients ranged
from -.18 to .16, all p’s > .27), nor did it correlate with our
subjective measure of associative strength (Spearman rho
correlation coefficients ranged from .1 to .2, all p’s > .18)
suggesting that these measures did not reflect associative
strength but represents beliefs based on more structured
knowledge.

Results

To facilitate an initial factorial analysis of the data, mean
inductive strength scores were calculated for the 5 problems
representing the unique property by association by relation
combination, resulting in 8 means for each participant.
These were subjected to a 2 (property: disease or cell) by 2
(relation: causal or taxonomic) by association (high versus
low) by 2 (timing: delayed or speeded) mixed-design
ANOVA, with timing as the between-subject variable. We
predicted effects of degree of association in our results.
However, if association does not play an important role, we
would expect to observe an interaction between timing and
relation, with timing affecting causal but not taxonomic
inferences, thus replicating Shafto et al’s (2007) findings.

Although the effects of relation, F, 35 = 3.39, p = .073,
effect size d = .66, and timing, F, 35 = 3.18, p = .082, effect
size d = .6, were approaching significance, timing did not
interact with any of the other variables. Thus, when we
control for degree of association we do not replicate Shafto
et al’s finding.

The only large and reliable significant main effect was
strength of association, F 35y = 28.82, p < .0001, effect size
d = 2.0. As expected, inferences about closely associated
categories (M = 4.52, SE = .14) were rated stronger than
inferences about weakly associated categories (M= 3.98,
SE=.14).

The only significant two-way interaction was between
property and relation, F; 35 = 25.68, p < .0001, effect size d
= 1.7, suggesting that people showed some context-sensitive
reasoning. Bonferroni posthoc tests showed that when
reasoning about cells, people rated taxonomic inferences (M
=5.01, SE = .2) significantly stronger than causal inferences
(M = 3.79, SE = .22, p < .0001, effect size d = .9). When
reasoning about diseases, people rated causal inferences
slightly higher (M 4.32, SE .26) than taxonomic
inferences (M = 3.89, SE =.17) although this difference was
not significant (p = .16, effect size d = .3). This might
suggest that whereas physiological inferences are
predominantly supported by taxonomic relations between
categories, inferences about diseases can be made on the

70

basis of external mechanisms, in this case causal
transmission, but also on the basis of more internal
mechanisms, in this case taxonomic links and thus genetic
relatedness.

None of the other
significant (all p’s >.08)

higher-order interactions were

Regression Analyses

To explore how structured and unstructured types of
knowledge influence category-based inductions under
different conditions, we calculated mean inductive strength
ratings for each item separately for the two types of property
and timing conditions, resulting in 4 inductive strength
scores for each item. Similarly, for each item we calculated
the mean proportion of positive responses to the two post-
test questions about biological group membership and food
chain relations across the two timing conditions.

Multiple regression analyses were carried out on the mean
inductive strength scores. We make the theoretical
assumption that people will be influenced by strength of
association regardless of timing manipulations. Hence, we
entered this variable in block 1. In a second block, we added
proportion of positive responses to the biological group
question and food chain question as the independent
predictor variables. This enabled us to evaluate the degree to
which adding variables reflecting structured knowledge
accounted for additional variance above and beyond
strength of association.

All four regression analyses were significant, but different
relevant knowledge influenced inductive strength under
different conditions. Overall, larger multiple correlation
coefficients were observed in the delayed condition,
suggesting that people used different types of knowledge to
inform their inferences when they had time to do so,
whereas under time pressure, the ability to recruit relevant
knowledge seemed to be attenuated.

Inferences about Diseases

As Figure 1 shows, speeded inductive reasoning about
diseases (R = .59) was significantly predicted by strength of
association (beta = .45, t = 3.13, p = .003). In the second
block, knowledge about relevant causal food chain relations
was also a significant predictor (beta = .35, t = 2.04, p =
.05), whereas taxonomic knowledge was not a significant
predictor (beta = .08, t = .44, p = .67). Together, adding
these two structured knowledge variables accounted for a
nonsignificant amount of additional variance (R? Change:
9.6%, F (2, 35)= 2.64, p =.09).

In contrast, reasoning about diseases under delayed
conditions (R = .68) was no longer significantly predicted
by association (beta = .24, t = 1.8, p = .08). However,
inductive strength was strongly predicted by relevant
knowledge about food chain relations (beta = .61, t =4.34, p
< .001), but also by beliefs about biological relatedness
(beta = .34, t = 2.33, p = .03). Adding the structured
knowledge predictors in a second block did account for
significantly more variance in inductive strength ratings



than strength of association on its own (R? Change: 25.8%,
Fe, 36 = 9.46, p <.001).
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Figure 1. Standardized Regression Coefficients for

Predictive Relations between Taxonomic and Causal
Beliefs, Strength of Association and Inductive Strength
Ratings for Diseases

Inferences about Cells

Reasoning about cells showed a different pattern as
shown in Figure 2. Under delayed conditions, strength of
association was not a significant predictor of inductive
strength (beta = .19, t = .15, p = .14). Inductive inferences
were however predicted by beliefs about biological
relatedness (R = .72) (beta = .48, t = 3.48, p = .001), and
were negatively predicted by beliefs about causal
relatedness (beta = -.31, t = -2.29, p = .03). Given that we
had selected causal targets that were always from different
superordinate categories, it is not surprising that causal
beliefs were a negative predictor of inferences about cells.

As when reasoning about diseases, adding the structured
knowledge predictors in a second block accounted for
significantly more variance in inductive strength ratings
than strength of association on its own when people were
not under time pressure ( R? Change: 44.2%, F2, 36 = 16.33,
p <.001)

Speeded inductions about cells (R = .64) were predicted
by strength of association (beta = .51, t = 3.76, p = .001) and
were negatively predicted by beliefs about causal
relatedness (beta = -.34, t = -2.5, p = .05). Taxonomic
beliefs were not a significant predictor of speeded inductive
strength ratings (beta = .11, t = .65, p = .52). However,
adding the structured knowledge coefficients did explain
some additional variance above strength of association on
its own (R*Change: 16.7%, %, F (2, 3= 5.09, p = .01).
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Figure 2: Standardized Regression Coefficients for

Predictive Relations between Strength of Association,
Taxonomic and Causal Beliefs and Inductive Strength
Ratings for Cells

Discussion

Our main proposal was that knowledge effects in
category-based induction can be distinguished with regards
to two contrasting types of knowledge: effortlessly
computable, unstructured knowledge such as strength of
association (Rogers & McClelland, 2004) or similarity
(Sloman 1993; Sloutsky & Fisher, 2004) on the one hand,
and structured knowledge (Kemp & Tenenbaum, 20009,
Shafto et al, 2008, Rehder, 2009), which requires more time
and processing effort, on the other. Overall, our results
strongly support this distinction between different types of
knowledge that differ in their processing characteristics.
The response timing paradigm used in the current
experiment showed that strength of association was a
stronger predictor of inductive strength ratings when people
had to respond quickly. In contrast, structured causal and
taxonomic knowledge became more important when people
were forced to delay their response and hence had time to
consider the nature of the relationship between the
categories.

A secondary goal of this experiment was to explore
whether differences in the accessibility of knowledge from
different domains arises when level of association is
controlled for. The results showed that once level of
association was equated across causally and taxonomically
related category pairs, the previously observed advantage
for taxonomic knowledge (e.g. Shafto et al., 2007) was no
longer observed. This suggests that no domain of
knowledge is more privileged than any other.

With regards to our main proposal, there are several
benefits of being able to draw on two types of knowledge
that differ in their processing characteristics. The potency of
inductive inferences can be maximized by recruiting
structured knowledge, making inferences more sensitive to



contextual factors and relational constraints. It is difficult to
see how connectionist models, whose hallmark processes
are instantiated by nondirectional and automatic spreading
activation, could explain how additional sources of
knowledge, such as causal and taxonomic knowledge,
selectively influence people’s inferences about diseases
when people have time but not when they have to respond
rapidly.

However, people may not always have the time and
available mental resources to try and draw on elaborate
background knowledge. Thus, unstructured knowledge
acquired through associations, temporal contiguity, or co-
occurrence  provides a rich source of ecologically valid
information at little or no processing cost (Evans, 2008;
Smith & DeCoster, 2000). As demonstrated by Rogers &
McClelland’s (2004) PDP model, it is conceivable that
frequently co-occurring categories would lead to a gradual
adjustment of their semantic representations in memory, so
that activation of one would either ‘prime’ or partially
activate the representation of strongly associated categories.

Conclusion

We provide support for the claim that category-based
inductive reasoning is influenced by two types of
knowledge, structured and unstructured knowledge, which
are mediated by two contrasting mental processes (Rehder,
2009). Use of unstructured knowledge, such as
nondirectional associative strength (Sloman, 1993; Rogers
& McClelland; 2004) seems to reflect a relatively effortless
process, in which inductions are proportional to the degree
to which activation of the premise and conclusion category
representations in semantic memory overlap. However, this
can be supplemented by the use of more elaborate structured
knowledge (Kemp & Tenenbaum, 2009; Shafto et al.,
2008). Structured knowledge encodes intuitive theories
about the structural relationships between categories, such
as knowledge about taxonomic connections or causal
interactions. Use of this type of knowledge is constrained by
cognitive resources but can maximize inductive potency of
inferences beyond mere associative strength between
categories.
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