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Abstract

A common assumption made by cognitive models is that
lexical semantics can be approximated using randomly
generated representations to stand in for word meaning.
However, the use of random representations contains the
hidden assumption that semantic similarity across randomly
selected words is normally distributed. We evaluated this
assumption by computing similarity distributions for
randomly selected words from a number of well-know
semantic measures and comparing them with the distributions
from random representations commonly used in memory
models.
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Introduction

A model of a cognitive phenomenon typically requires an
account of both representation and process, and how the two
interact (Estes, 1975). These two aspects of a model are
interdependent, with the process requiring a representation
on which to operate, and the representation requiring a
process to simulate behavior. A common practice in
cognitive modeling is to wuse randomly generated
representations if the theorist wishes to evaluate a process
mechanism, but is unsure of the correct psychological
structure or features to use as a representation. This practice
makes it unlikely that the representation is biased towards
supporting the process model, and the process account can
be later refined when further research reveals the correct
representation. Over the history of computational modeling,
emphasis has been placed on processing over representation.

If insufficient research exists to point towards the correct
representation, random representations often provide a
useful alternative or simulation of the process would be
impossible. An excellent example is Hintzman’s (1986) use
of random representations to simulate schema abstraction
using Posner and Keele’s (1968) stimuli. Briefly, stimuli
were random dot patterns, and exemplars of the same
category were random perturbations of a prototype pattern.
Without needing to account for how the human visual
system represents dot patterns, Hintzman was able to create
equivalent structure in his simulation by generating random
prototypes and exemplars.

Random representations have been commonly used in
models of episodic memory, for example, recognition,
recall, and paired-associate learning. In global matching
models of recognition memory (e.g., Hintzman, 1986;
Murdock, 1982; Shiffrin & Steyvers, 1997) decisions are
made by assessing the similarity of the probe word to the
(usually noisy) study items with a particular processing and
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decision mechanism. The use of random representations in
these models produces a hidden assumption that the
distribution of similarity across randomly selected words is
symmetric and approximately Gaussian.

The distributional assumption comes from the design of a
typical memory experiment in which random words are
used. In these experiments, random words are selected from
a word pool (e.g., Friendly, et al., 1982). Because words are
randomly selected, they are assumed to have only random
similarity on dimensions extraneous to the experimental
manipulation (e.g., orthography, phonology, semantics,
etc.); however, this assumption is unlikely to be true. Hence,
it is common to explicitly control extraneous factors such as
frequency. In this examination, we focus on semantics—a
factor often ignored because it is difficult to quantify and
control. In assuming that two randomly selected words have
only a random expected semantic similarity, random
representations seem appropriate.

However, the use of these representations assumes that
semantic similarity is randomly distributed across all
sampled words. We demonstrate in the following analysis
that this is unlikely to be the case with real words, and may
produce consequences for conclusions drawn from process
models that have used random representations.

Analysis

To evaluate the assumption of random similarity,
comparison distributions are needed. Our analysis will
utilize three types of semantic similarity measures to create
distributions—similarity measures computed from: 1) free
association data, 2) a hand-coded lexical ontology
(WordNet), and 3) corpus-based co-occurrence models.

Semantic Measures

1. Word Association Space (WAS). Steyvers, Shiffrin,
and Nelson (2004) developed a method for inferring
semantic representations from free association data.
Steyvers et al. represented the free association data for the
5000 cue words from Nelson, McEvoy, and Schreiber’s
(1999) norms in a word-by-word matrix, where each entry
was the probability of a cue word (the row) eliciting the
response (the column). This matrix was then reduced in
dimensionality using singular value decomposition so that
each word was represented by an abstracted 400-
dimensional vector. Steyvers et al. demonstrated that the
resulting vectors are a good predictor of similarity effects in
recognition, recall, and other behaviors.
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2. WordNet Similarity. WordNet (Miller, 1990) is a
hand-coded lexical database encoded as a network in which
nodes contain one or more synonymous words. These nodes
are then linked together via different types of lexical
relationships (e.g. hypernymy and holonymy) and based on
these relationships it is possible to build a measure of
semantic similarity between two given words using network
statistics. A variety of methods that have proposed to do
compute similarity, but the measure that seems to best map
onto human similarity ratings is the Jiang-Conrath distance
measure (JCN; Maki, McKinely, & Thompson, 2004). JCN
is a network distance measure that basically counts the
number of nodes and edges between two concepts in the
database.

3. Latent Semantic Analysis (LSA). This method (and
those that follow) differs from the WAS of Steyvers, et al.
(2004) in that it does not use human behavioral data to
create a semantic representation but, rather, uses statistical
regularities computed from a large text corpus. In LSA
(Landauer & Dumais, 1997), a word-by-document matrix is
created by tabulating the frequency that each word occurs in
a given document, inversely weighted by the word’s
marginal frequency and entropy over documents. The
dimensionality of this matrix is then reduced using singular
value decomposition so that each word is represented by a
vector containing the 300-400 dimensions with the largest
eigenvalues. Words that frequently co-occur in similar
documents will be represented by similar vectors.

4. BEAGLE. In the BEAGLE model of Jones and
Mewhort (2007), a distributed holographic representation of
a word is built through experience with a text corpus. Words
are initially represented by random Gaussian vectors, and a
word’s semantic representation is created by summing and
convolving (cf. Murdock, 1982) other words that occur in
sentences with a target word. The use of convolution allows
order information to be included (the sentential position of
the word relative to other words), as well as the basic co-
occurrence information in LSA. This associative mechanism
affords inclusion of rudimentary syntactic knowledge in the
vector representation of the word.

5. The COALS model. Unlike the two previous models,
COALS (Rohde, Gonnerman, & Plaut, submitted) is not
designed to explain human learning, but rather to create a
co-occurrence metric that yields the best predictions on a
variety of semantic tasks. The model creates a word-by-
word matrix, with modifications to how values within the
matrix are computed (i.e. correlations are used instead of
pure co-occurrence count). This large, sparse matrix is
subsequently reduced in dimensionality with SVD in the
same way LSA reduces a co-occurrence matrix.

6. Pointwise Mutual Information (PMI). PMI uses a
pure co-occurrence count across a large text corpus to create
a measure of similarity between two words (e.g., Recchia &
Jones, 2009). As with COALS, PMI is not meant to be a
model of human learning or representation, but rather a
scalar measure of similarity between two words. PMI is
essentially computed by taking the probability of observing
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word x and word y together and dividing by the probability
of observing x and y independently. Recchia & Jones
computed PMI values over a very large corpus of Wikipedia
articles (approximately 400,000 articles), and found that
PMI produced a significantly better fit to human rating data
than LSA or other semantic similarity metrics.

Random Representations

To compare to the distributions created by the semantic
measures, we explored five common types of random
vectors that have been used to represent semantics in
influential models of memory.

1. Random Gaussian Vectors. A word’s representation
is created by randomly sampling vector elements from a
Gaussian distribution with a certain mean (typically zero)
and variance (usually 1/N, where N is vector
dimensionality). This type of representation has been used
in a variety of models of recognition (e.g. Murdock, 1982),
and recall, among others. In the following analysis, vectors
were created as in Murdock (1982), with a vector size of

250, a mean of 0 and an SD of (,/1/250).
2. Gamma Vectors. A word vector is created by
sampling integers from a gamma distribution:

PV =jl=(1-g"'g j=1..,.0 )

Where g is a parameter between 0 and 1 that defines the
environmental base rates for the different feature values.
This type of representation has been used in the highly
successful REM model of recognition memory (Shiffrin &
Steyvers, 1997), and related models. We constructed these
vectors as specified in Shiffrin & Steyvers (1997), with a
length of 20, and a g = 0.45 (the parameter used to create
high frequency words).

3. MINERVA vectors. In the influential MINERVA 2
model of memory (Hintzman, 1986), vector elements are
assumed to be randomly selected from the set of {-1, 0, 1}.
A value of 1 is intended to represent a positive link between
the word and that feature, a -1 represents an inhibitory link,
while a 0 is defined as either irrelevant or unknown for that
particular word and feature. Vectors were constructed with a
length of 20. Similarity for these vectors was calculated
with the following equation:

p P-T .
=2~ @
=l n
Where D is the size of the vectors, P is the probe word, T is
a studied memory trace and n is the number of non-zero
items in P. The value is then transformed by cubing it.

4. Sparse Binary Vectors. In this type of distributed
representation, the majority of entries are zero, with some
entries having the value of 1 at random locations. For
instance, in Plaut (1995) items in a word’s semantic
representation had a 10% probability of being non-zero.
Sparse binary vectors have been used to model lexical
priming (Plaut) and recognition memory (Dennis &
Humphreys, 2001), among other domains. Similar to Plaut’s



simulations we generated vectors with a length of 100 and
each item having a 10% probability of being non-zero. In
addition, binomial distributions (with a sparsity of 50%)
will also be tested to examine the effect of sparseness on the
similarity distributions.

5. Dichotomous Vectors. Another common type of
representation used in connectionist modeling is a random
vector composed equally of 1 or -1. These are similar to
MINERVA vectors, but without any zero-valued elements.
Dichotomous vectors have been used in variety of models,
such as connectionist models of semantic priming (e.g.,
Masson, 1995). We use vectors with a length of 100 in the
following simulations.

Method

To calculate similarity distributions using the semantic
measures, 1000 words were selected from the Toronto word
pool (Friendly, et al., 1982), and the similarity between each
word in the pool was computed. Next, 50,000 of these
semantic comparison values were randomly sampled to
examine the distribution of similarity values. In the WAS,
LSA, and BEAGLE models the similarity metric used was a
vector cosine (a normalized dot-product), while in COALS
Pearson’s correlation was used.

For the randomly generated representations, we created a
distribution of 100,000 similarity comparisons for each
representation type. The distribution was constructed by
randomly generating two vectors from the given
representation type and computing the similarity between
them. Similarity was vector cosine for all representations.

Toevaluate distribution shape, two different methods of
assessing normality were employed: 1) skewness, and 2)
normal quantile-quantile (Q-Q) plots. Skewness is the third
moment about the mean, and signals asymmetry in a
distribution. Q-Q plots are used to assess the difference
between an observed distribution and a theoretical (in this
case Gaussian) distribution. The standardized values of the
comparison distribution are plotted against the respective
values for the Gaussian, and any discrepancy signals a
deviation from the theoretical Gaussian distribution.

Results

The skewness values for the similarity distributions of
both the semantic spaces and random representations are
displayed in Figure 1. As the figure shows, all the semantic
spaces create positively skewed similarity distributions.
That is, there tends to be a greater number of low similarity
scores and a small number of high similarity scores in a
given distribution of randomly selected words. Co-
occurrence models (LSA, BEAGLE, and COALS) have the
lowest skew (from 1.06 for BEAGLE to 2.01 for COALS).
The PMI distribution produced the largest skew, likely due
to the fact that this method does not abstract across
documents, but is instead a pure co-occurrence count. Even
with this shortcoming, PMI has been shown to be very
effective in fitting human semantic similarity ratings

57

Skewness

Figure 1. Levels of skewness for the different distributions.

(Recchia & Jones, 2009). In the middle was the JCN
measure with a skewness of 2.61 and the WAS of Steyvers,
et al. (2004) with a skewness of 8.04, which signals a highly
skewed distribution.

In contrast, all of the random representations produced
skewness values of essentially zero (this is expected by their
construction). The only distribution that is mildly positively
skewed is the sparse binomial distribution with a skewness
of 0.21, while the Gamma distribution is actually mildly
negatively skewed with a value of -0.17.

The Q-Q plots are displayed in Figure 2 for the semantic
space distributions (left panel) and the distributions
computed from the random representations (right panel).
Due to space limitations, only 4 graphs were included, but
these are diagnostic of the remaining distributions. Again,
the semantic space distributions show significant deviation
from the expected Gaussian distribution. Specifically, the
semantic space distributions are skewed to the right, with all
of the models having lower than expected number of large
similarity values. They also tend to have greater than
expected low similarity values. Again, the random
representation distributions produce very different results—
there is little deviation from normality.

WAS MINERVA

Expected Normal Value

BEAGLE

Expectad Normal Vahie

Observed Value : Observed Value

Figure 2. Q-Q plots for semantic and random vectors.



This simple analysis demonstrates that the similarity
distributions created by semantic space models and
randomly generated representations are considerably
different. Two randomly selected words are likely to be less
similar (relative to the other values in the distribution) for
semantic models, than for random representations.

Demonstrations

In order to show the potential impact that the use of random
representations may have, two simple demonstrations were
conducted using data from recognition memory tasks.

Demonstration #1: Signal Detection Theory

The purpose of this demonstration is to show what effect
skewed similarity distributions will have on a signal
detection theory (SDT) based process, which is the
dominant decision making process within recognition
memory (Shiffrin & Steyvers, 1997; Dennis & Humphreys,
2001). In order to accomplish this, a recognition process
with SDT is simulated by sampling from both skewed
(semantic) similarity distributions as well as normal
(random) similarity distributions. Recognition is then
simulated by fitting an optimal criterion to separate old and
new items, and the resulting d-prime values for the different
distributions will be compared to behavioral results.

In order to compare the different similarity distributions,
a normalization procedure was necessary. This was done
by taking the distributions from each of the semantic
metrics and random representations and normalizing them
to have a range of 0 and 0.5 and a mean of 0.25. This
procedure allows us to evaluate the shape of the distribution
while centering the distributions on the same mean.

Evidence distributions for new and old items were
simulated for lists of 20 words. The evidence for a probe
was the similarity of the probe to the 20 items on the list.
For ‘new’ probes, this evidence was simply the mean of 20
randomly sampled similarity values (as new probes are
randomly similar to the contents of memory). For ‘old’
probes, this evidence was the average of the similarity of the
item to itself and the other items on the list (simulated as the
mean of 19 randomly sampled similarities and the value of
1, representing the similarity of the word to itself). This
process was repeated 50,000 times for each similarity
distribution.

To compare the resulting evidence values, the
discriminability (measured with d-prime) was calculated for
each simulation—d-prime is a measure of how distinct
studied items are from non-studied items. Figure 3 displays
the d-prime values for the different similarity distributions
compared with the d-prime from a simple recognition
experiment which used a list length of 20 (Dennis, Lee, &
Kinnel, 2008). As the figure illustrates, all of the semantic
distributions have higher d-prime than do the random
distributions. In addition, the d-prime values for the random
representations are much closer to the behavioral data from
Dennis, et al. The difference in magnitude demonstrated for
d-prime values for semantic and random similarity was

statistically reliable, t(11) = 4.75, p < 0.001. To evaluate the
effect of skew in the similarity distributions on the resulting
d-prime values, we computed the partial correlation between
d-prime and skewness (controlling for Kkurtosis and
variance) for the distributions, which resulted in a robust r =
0.913, p < 0.001.

The skewness of the similarity distribution has a large
effect on the calculation of evidence distributions because
the probability of sampling lower similarity values is much
greater than in a symmetric distribution. Hence, with ‘true’
semantic representations an old item tends to be more
distinct from other random items on the list, producing a
greater difference between old and new evidence
distributions. This demonstration is certainly not meant as a
refutation of signal detection theory, but instead
demonstrates that using realistic representations of
semantics will impose significant constraint on a processing
model’s ability to simulate data.
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Figure 3. Levels of discriminability (d-prime) for SDT

simulations; behavioral data from Dennis, et al. (2008).
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Demonstration #2: MINERVA 2 and False Recognition

This demonstration was conducted in order to show that
random representations provide an increase amount of
freedom to fit data. The MINERVA 2 model of Hintzman
(1986) has been used to successfully account for a variety of
categorical false recognition effects (Arndt & Hirshman,
1998). Here, we simulate associative false recognition with
the model, using both random and structured representations
of semantics. Robinson and Roediger (1997) found that as
the number of studied items that are related to a critical lure
is increased, so is the probability of falsely recognizing that
critical lure. The purpose of this demonstration is to
compare the ease with which a simple process model like
MINERVA is able to model this effect when using random
representations versus when it is using representations that
contain knowledge about the similarity structure of the
actual words.

To construct MINERVA vectors that contain plausible
semantic structure, we transformed the WAS representations
from Steyvers et al. (2003). Typical applications of
MINERVA use ternary vectors with a fairly low
dimensionality. Hence, WAS vectors were collapsed from



400 to 20 dimensions by summing every 20 quadrants in the
WAS vector into a single element in the reduced vector.
This reduced vector was then transformed into a ternary
vector with values of the set {-1, 0, 1}; the magnitude of the
summed WAS values were recoded so that the highest third
were assigned +1 (representing a high weighting on that
feature), the middle third 0, and the lowest third -1. To
ensure that the MINERA transformed vectors still reflected
the semantic structure in the original WAS vectors, we
computed the word-by-word cosines between vectors in
both representations, and correlated the two matrices: The
original vectors and their ternary transformed versions were
highly correlated, r = .67, p < .001, indicating that the
transformed vectors contain an arrangement of elements that
reflects the semantic structure in the original WAS vectors.
Using the false recognition lists from Stadtler, Roediger and
McDermott, (1998) and Gallo and Roediger (2002), there
was a high average similarity of the critical word’s
representation to the representations of the list items across
the 52 word lists, r = 0.35, p<.001.

Random representations for critical words and their
corresponding lists were created as in Arndt and Hirshman
(1998), by using prototype and exemplar vectors. A
prototype vector (representing the critical word) is first
generated by randomly sampling elements from the set {1,
0, -1} with equal probability. Each item in the word list is
then created by randomly perturbing elements in the
prototype vector. This process requires a distortion
parameter, which determines the probability of switching
elements from the prototype vector when creating a list item
vector. The distortion parameter determines how similar the
list items are to the critical word. The important point is that
both the semantic and random representations contain the
exact same elements (same number of -1, 0, and 1s). The
difference is that the elements are arranged independently
for the random representations, whereas they are arranged to
respect the inter-word similarity structure from WAS in the
semantic version.

For MINERVA with a semantic representation, the results
of Robinson and Roediger (1997) were modeled by
randomly selecting 3 word lists, and adding 3, 6, or 9 items
from one of the lists into a study list. Because the word lists
in Robinson and Roediger were longer (they also used 12
and 15 associates), 27 words selected randomly from the
Toronto word pool were added into the study list. To
simulate this with MINERVA using random representation,
3, 6, or 9 exemplars were created for 3 random prototypes
and added into the study list. Additionally, 27 random
vectors were added into the study list to make the two
simulations equivalent. Decisions are based on activation
levels of a probe to the studied items (echo intensity:
Hintzman, 1986), calculated by summing the similarity
across all items in the study list.

For the MINERVA with semantic representations, there
are two free parameters: 1) a criterion to make a new-old
decision based on activation levels, and 2) a forgetting
parameter which determines the probability of a non-zero
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element switching to zero during study. The simulation with
random representations includes an additional distortion
parameter (described above) to create the semantic
structure. These parameters were fit to the data from
Robinson & Roediger (1997) data using a Nelder-Mead
simplex algorithm. The results of the simulation are
displayed in Figure 4: the MINERVA model that utilizes
random representations was able to reproduce the overall
trend in the data. However, this was not the case with the
MINERVA model that used semantic representations—this
model tended to falsely recognize critical items over studied
items, which is not the case with the human data. The
random representation version of the model produced an
excellent account of the data, R* = 0.98, p < .001. However,
the version based on the true semantic similarity of the
words used fit no better than chance, R? = 0.05, p = .45.
This simulation provides a simple demonstration of how a
process model that has false representation assumptions may
be incorrectly accepted as a plausible model. The only
difference between the two models is in their representation
structure—the process is identical. While the semantic
version contains the “true” semantic structure for the exact
words used in the experiment, the random version uses the
distortion parameter to create the semantic structure that is
most likely if this process account is correct. It is
exclusively the incorrect inferred semantic structure that
allows the process account to fit these data. If the correct
representational structure were used, the process account
would be rejected. The point is that random representations
allow unnecessary freedom for the model to fit the data.
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Figure 4. Results of false recognition simulation.

General Discussion

The use of randomly generated representations contains the
assumption that semantic similarity is normally distributed
over randomly selected pairs of words. This assumption was
shown to be false across many different semantic metrics
that have demonstrated success at accounting for human
data. In experiments using words, two randomly selected
words are likely to be relatively less similar (compared to
the distribution of all possible pairs) than would be implied



using randomly generated representations for lexical
semantics. Because similarity plays a central role in the
processing mechanisms used by many memory models, the
use of random representations may have consequences for
conclusions drawn from simulations using these models.

As McClelland (2009) has noted, “...simplification is
essential, but it comes at a cost, and real understanding
depends in part on understanding the effects of
simplification.” (p. 18). The use of random representations
in the development of cognitive models has been a
necessary simplification for our understanding of cognitive
processes. In doing so, researchers have made use of
representations whose assumptions may not be entirely
accurate, but through the use of this simplification modelers
have made fundamental discoveries about how memory
processes work. However without this assumption these
results would not have been possible. It has only been
within the last decade that researchers have had access to
realistic representations of lexical semantics. The task for
the future is to integrate semantic representations with
processing models of memory for a fuller understanding of
how they work together to produce observable behavior.

In accordance, recent models have begun to conduct
this type of integration. For example, Monaco, Abbott, &
Kahana (2007) have created a neural network model of the
mirror effect of frequency, utilizing lexical semantic
representations taken from the WAS of Steyvers, et al.
(2004). Ideally, future models will combine a learning
process that builds a representation through exposure to
environmental information, which can then feed into a
processing mechanism. For example, Johns and Jones
(2009) have utilized representations built through a co-
occurrence learning process to drive a processing model of
both false recognition and false recall. These models suggest
that it is no longer necessary to assume random
representations for lexical semantics when modeling
cognitive phenomena, but that item-specific semantic
representations are now freely available and offer additional
modeling constraints about the structure of semantic
similarity that a process mechanism must operate on to
produce behavior in a given task.
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