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Abstract 

A common assumption made by cognitive models is that 
lexical semantics can be approximated using randomly 
generated representations to stand in for word meaning. 
However, the use of random representations contains the 
hidden assumption that semantic similarity across randomly 
selected words is normally distributed.  We evaluated this 
assumption by computing similarity distributions for 
randomly selected words from a number of well-know 
semantic measures and comparing them with the distributions 
from random representations commonly used in memory 
models.  
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Introduction 

A model of a cognitive phenomenon typically requires an 

account of both representation and process, and how the two 

interact (Estes, 1975). These two aspects of a model are 

interdependent, with the process requiring a representation 

on which to operate, and the representation requiring a 

process to simulate behavior. A common practice in 

cognitive modeling is to use randomly generated 

representations if the theorist wishes to evaluate a process 

mechanism, but is unsure of the correct psychological 

structure or features to use as a representation. This practice 

makes it unlikely that the representation is biased towards 

supporting the process model, and the process account can 

be later refined when further research reveals the correct 

representation. Over the history of computational modeling, 

emphasis has been placed on processing over representation.  

If insufficient research exists to point towards the correct 

representation, random representations often provide a 

useful alternative or simulation of the process would be 

impossible. An excellent example is Hintzman‘s (1986) use 

of random representations to simulate schema abstraction 

using Posner and Keele‘s (1968) stimuli. Briefly, stimuli 

were random dot patterns, and exemplars of the same 

category were random perturbations of a prototype pattern. 

Without needing to account for how the human visual 

system represents dot patterns, Hintzman was able to create 

equivalent structure in his simulation by generating random 

prototypes and exemplars. 

Random representations have been commonly used in 

models of episodic memory, for example, recognition, 

recall, and paired-associate learning. In global matching 

models of recognition memory (e.g., Hintzman, 1986; 

Murdock, 1982; Shiffrin & Steyvers, 1997) decisions are 

made by assessing the similarity of the probe word to the 

(usually noisy) study items with a particular processing and 

decision mechanism. The use of random representations in 

these models produces a hidden assumption that the 

distribution of similarity across randomly selected words is 

symmetric and approximately Gaussian.  

The distributional assumption comes from the design of a 

typical memory experiment in which random words are 

used. In these experiments, random words are selected from 

a word pool (e.g., Friendly, et al., 1982). Because words are 

randomly selected, they are assumed to have only random 

similarity on dimensions extraneous to the experimental 

manipulation (e.g., orthography, phonology, semantics, 

etc.); however, this assumption is unlikely to be true. Hence, 

it is common to explicitly control extraneous factors such as 

frequency. In this examination, we focus on semantics—a 

factor often ignored because it is difficult to quantify and 

control. In assuming that two randomly selected words have 

only a random expected semantic similarity, random 

representations seem appropriate.  

However, the use of these representations assumes that 

semantic similarity is randomly distributed across all 

sampled words. We demonstrate in the following analysis 

that this is unlikely to be the case with real words, and may 

produce consequences for conclusions drawn from process 

models that have used random representations.  

Analysis 

To evaluate the assumption of random similarity, 

comparison distributions are needed. Our analysis will 

utilize three types of semantic similarity measures to create 

distributions—similarity measures computed from: 1) free 

association data, 2) a hand-coded lexical ontology 

(WordNet), and 3) corpus-based co-occurrence models.  

 

Semantic Measures 

1. Word Association Space (WAS). Steyvers, Shiffrin, 

and Nelson (2004) developed a method for inferring 

semantic representations from free association data. 

Steyvers et al. represented the free association data for the 

5000 cue words from Nelson, McEvoy, and Schreiber‘s 

(1999) norms in a word-by-word matrix, where each entry 

was the probability of a cue word (the row) eliciting the 

response (the column). This matrix was then reduced in 

dimensionality using singular value decomposition so that 

each word was represented by an abstracted 400-

dimensional vector. Steyvers et al. demonstrated that the 

resulting vectors are a good predictor of similarity effects in 

recognition, recall, and other behaviors. 
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2. WordNet Similarity. WordNet (Miller, 1990) is a 

hand-coded lexical database encoded as a network in which 

nodes contain one or more synonymous words. These nodes 

are then linked together via different types of lexical 

relationships (e.g. hypernymy and holonymy) and based on 

these relationships it is possible to build a measure of 

semantic similarity between two given words using network 

statistics. A variety of methods that have proposed to do 

compute similarity, but the measure that seems to best map 

onto human similarity ratings is the Jiang-Conrath distance 

measure (JCN; Maki, McKinely, & Thompson, 2004). JCN 

is a network distance measure that basically counts the 

number of nodes and edges between two concepts in the 

database.  

3. Latent Semantic Analysis (LSA). This method (and 

those that follow) differs from the WAS of Steyvers, et al. 

(2004) in that it does not use human behavioral data to 

create a semantic representation but, rather, uses statistical 

regularities computed from a large text corpus. In LSA 

(Landauer & Dumais, 1997), a word-by-document matrix is 

created by tabulating the frequency that each word occurs in 

a given document, inversely weighted by the word‘s 

marginal frequency and entropy over documents. The 

dimensionality of this matrix is then reduced using singular 

value decomposition so that each word is represented by a 

vector containing the 300-400 dimensions with the largest 

eigenvalues. Words that frequently co-occur in similar 

documents will be represented by similar vectors.  

4. BEAGLE. In the BEAGLE model of Jones and 

Mewhort (2007), a distributed holographic representation of 

a word is built through experience with a text corpus. Words 

are initially represented by random Gaussian vectors, and a 

word‘s semantic representation is created by summing and 

convolving (cf. Murdock, 1982) other words that occur in 

sentences with a target word. The use of convolution allows 

order information to be included (the sentential position of 

the word relative to other words), as well as the basic co-

occurrence information in LSA. This associative mechanism 

affords inclusion of rudimentary syntactic knowledge in the 

vector representation of the word.  

5. The COALS model. Unlike the two previous models, 

COALS (Rohde, Gonnerman, & Plaut, submitted) is not 

designed to explain human learning, but rather to create a 

co-occurrence metric that yields the best predictions on a 

variety of semantic tasks. The model creates a word-by-

word matrix, with modifications to how values within the 

matrix are computed (i.e. correlations are used instead of 

pure co-occurrence count). This large, sparse matrix is 

subsequently reduced in dimensionality with SVD in the 

same way LSA reduces a co-occurrence matrix.  

6. Pointwise Mutual Information (PMI). PMI uses a 

pure co-occurrence count across a large text corpus to create 

a measure of similarity between two words (e.g., Recchia & 

Jones, 2009). As with COALS, PMI is not meant to be a 

model of human learning or representation, but rather a 

scalar measure of similarity between two words. PMI is 

essentially computed by taking the probability of observing 

word x and word y together and dividing by the probability 

of observing x and y independently. Recchia & Jones 

computed PMI values over a very large corpus of Wikipedia 

articles (approximately 400,000 articles), and found that 

PMI produced a significantly better fit to human rating data 

than LSA or other semantic similarity metrics. 

 

Random Representations 

To compare to the distributions created by the semantic 

measures, we explored five common types of random 

vectors that have been used to represent semantics in 

influential models of memory. 

1. Random Gaussian Vectors. A word‘s representation 

is created by randomly sampling vector elements from a 

Gaussian distribution with a certain mean (typically zero) 

and variance (usually 1/N, where N is vector 

dimensionality). This type of representation has been used 

in a variety of models of recognition (e.g. Murdock, 1982), 

and recall, among others. In the following analysis, vectors 

were created as in Murdock (1982), with a vector size of 

250, a mean of 0 and an SD of ( 1/250). 

2. Gamma Vectors. A word vector is created by 

sampling integers from a gamma distribution: 
 



P[V  j] (1 g) j1g, j 1,..., (1) 

 

Where g is a parameter between 0 and 1 that defines the 

environmental base rates for the different feature values. 

This type of representation has been used in the highly 

successful REM model of recognition memory (Shiffrin & 

Steyvers, 1997), and related models. We constructed these 

vectors as specified in Shiffrin & Steyvers (1997), with a 

length of 20, and a g = 0.45 (the parameter used to create 

high frequency words). 

3. MINERVA vectors. In the influential MINERVA 2 

model of memory (Hintzman, 1986), vector elements are 

assumed to be randomly selected from the set of {-1, 0, 1}.  

A value of 1 is intended to represent a positive link between 

the word and that feature, a -1 represents an inhibitory link, 

while a 0 is defined as either irrelevant or unknown for that 

particular word and feature. Vectors were constructed with a 

length of 20. Similarity for these vectors was calculated 

with the following equation: 
 



si 
Pi Ti, j

nj1

D

  
 

(2) 

 

Where D is the size of the vectors, P is the probe word, T is 

a studied memory trace and n is the number of non-zero 

items in P. The value is then transformed by cubing it. 

4. Sparse Binary Vectors. In this type of distributed 

representation, the majority of entries are zero, with some 

entries having the value of 1 at random locations. For 

instance, in Plaut (1995) items in a word‘s semantic 

representation had a 10% probability of being non-zero. 

Sparse binary vectors have been used to model lexical 

priming (Plaut) and recognition memory (Dennis & 

Humphreys, 2001), among other domains. Similar to Plaut‘s 
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simulations we generated vectors with a length of 100 and 

each item having a 10% probability of being non-zero. In 

addition, binomial distributions (with a sparsity of 50%) 

will also be tested to examine the effect of sparseness on the 

similarity distributions. 

5. Dichotomous Vectors. Another common type of 

representation used in connectionist modeling is a random 

vector composed equally of 1 or -1. These are similar to 

MINERVA vectors, but without any zero-valued elements. 

Dichotomous vectors have been used in variety of models, 

such as connectionist models of semantic priming (e.g., 

Masson, 1995). We use vectors with a length of 100 in the 

following simulations. 

 

Method 

To calculate similarity distributions using the semantic 

measures, 1000 words were selected from the Toronto word 

pool (Friendly, et al., 1982), and the similarity between each 

word in the pool was computed. Next, 50,000 of these 

semantic comparison values were randomly sampled to 

examine the distribution of similarity values. In the WAS, 

LSA, and BEAGLE models the similarity metric used was a 

vector cosine (a normalized dot-product), while in COALS 

Pearson‘s correlation was used.  

For the randomly generated representations, we created a 

distribution of 100,000 similarity comparisons for each 

representation type. The distribution was constructed by 

randomly generating two vectors from the given 

representation type and computing the similarity between 

them. Similarity was vector cosine for all representations.  

Toevaluate distribution shape, two different methods of 

assessing normality were employed: 1) skewness, and 2) 

normal quantile-quantile (Q-Q) plots. Skewness is the third 

moment about the mean, and signals asymmetry in a 

distribution. Q-Q plots are used to assess the difference 

between an observed distribution and a theoretical (in this 

case Gaussian) distribution. The standardized values of the 

comparison distribution are plotted against the respective 

values for the Gaussian, and any discrepancy signals a 

deviation from the theoretical Gaussian distribution. 

 

Results 

The skewness values for the similarity distributions of 

both the semantic spaces and random representations are 

displayed in Figure 1. As the figure shows, all the semantic 

spaces create positively skewed similarity distributions. 

That is, there tends to be a greater number of low similarity 

scores and a small number of high similarity scores in a 

given distribution of randomly selected words. Co-

occurrence models (LSA, BEAGLE, and COALS) have the 

lowest skew (from 1.06 for BEAGLE to 2.01 for COALS). 

The PMI distribution produced the largest skew, likely due 

to the fact that this method does not abstract across 

documents, but is instead a pure co-occurrence count. Even 

with this shortcoming, PMI has been shown to be very 

effective in fitting human semantic similarity ratings 

 

(Recchia & Jones, 2009). In the middle was the JCN 

measure with a skewness of 2.61 and the WAS of Steyvers, 

et al. (2004) with a skewness of 8.04, which signals a highly 

skewed distribution.  

In contrast, all of the random representations produced 

skewness values of essentially zero (this is expected by their 

construction). The only distribution that is mildly positively 

skewed is the sparse binomial distribution with a skewness 

of 0.21, while the Gamma distribution is actually mildly 

negatively skewed with a value of -0.17.  

The Q-Q plots are displayed in Figure 2 for the semantic 

space distributions (left panel) and the distributions 

computed from the random representations (right panel). 

Due to space limitations, only 4 graphs were included, but 

these are diagnostic of the remaining distributions. Again, 

the semantic space distributions show significant deviation 

from the expected Gaussian distribution. Specifically, the 

semantic space distributions are skewed to the right, with all 

of the models having lower than expected number of large 

similarity values. They also tend to have greater than 

expected low similarity values. Again, the random 

representation distributions produce very different results—

there is little deviation from normality.  

 

 
 

 

Figure 1. Levels of skewness for the different distributions. 

Figure 2. Q-Q plots for semantic and random vectors. 
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This simple analysis demonstrates that the similarity 

distributions created by semantic space models and 

randomly generated representations are considerably 

different. Two randomly selected words are likely to be less 

similar (relative to the other values in the distribution) for 

semantic models, than for random representations.  

 

Demonstrations 

In order to show the potential impact that the use of random 

representations may have, two simple demonstrations were 

conducted using data from recognition memory tasks. 

 

Demonstration #1: Signal Detection Theory 

The purpose of this demonstration is to show what effect 

skewed similarity distributions will have on a signal 

detection theory (SDT) based process, which is the 

dominant decision making process within recognition 

memory (Shiffrin & Steyvers, 1997; Dennis & Humphreys, 

2001). In order to accomplish this, a recognition process 

with SDT is simulated by sampling from both skewed 

(semantic) similarity distributions as well as normal 

(random) similarity distributions. Recognition is then 

simulated by fitting an optimal criterion to separate old and 

new items, and the resulting d-prime values for the different 

distributions will be compared to behavioral results.   

In order to compare the different similarity distributions, 

a normalization procedure was necessary.  This was done 

by taking the distributions from each of the semantic 

metrics and random representations and normalizing them 

to have a range of 0 and 0.5 and a mean of 0.25. This 

procedure allows us to evaluate the shape of the distribution 

while centering the distributions on the same mean.  

Evidence distributions for new and old items were 

simulated for lists of 20 words. The evidence for a probe 

was the similarity of the probe to the 20 items on the list. 

For ‗new‘ probes, this evidence was simply the mean of 20 

randomly sampled similarity values (as new probes are 

randomly similar to the contents of memory). For ‗old‘ 

probes, this evidence was the average of the similarity of the 

item to itself and the other items on the list (simulated as the 

mean of 19 randomly sampled similarities and the value of 

1, representing the similarity of the word to itself). This 

process was repeated 50,000 times for each similarity 

distribution.  

To compare the resulting evidence values, the 

discriminability (measured with d-prime) was calculated for 

each simulation—d-prime is a measure of how distinct 

studied items are from non-studied items. Figure 3 displays 

the d-prime values for the different similarity distributions 

compared with the d-prime from a simple recognition 

experiment which used a list length of 20 (Dennis, Lee, & 

Kinnel, 2008). As the figure illustrates, all of the semantic 

distributions have higher d-prime than do the random 

distributions. In addition, the d-prime values for the random 

representations are much closer to the behavioral data from 

Dennis, et al. The difference in magnitude demonstrated for 

d-prime values for semantic and random similarity was 

statistically reliable, t(11) = 4.75, p < 0.001. To evaluate the 

effect of skew in the similarity distributions on the resulting 

d-prime values, we computed the partial correlation between 

d-prime and skewness (controlling for kurtosis and 

variance) for the distributions, which resulted in a robust r = 

0.913, p < 0.001.  

The skewness of the similarity distribution has a large 

effect on the calculation of evidence distributions because 

the probability of sampling lower similarity values is much 

greater than in a symmetric distribution. Hence, with ‗true‘ 

semantic representations an old item tends to be more 

distinct from other random items on the list, producing a 

greater difference between old and new evidence 

distributions. This demonstration is certainly not meant as a 

refutation of signal detection theory, but instead 

demonstrates that using realistic representations of 

semantics will impose significant constraint on a processing 

model‘s ability to simulate data. 

Demonstration #2: MINERVA 2 and False Recognition 

This demonstration was conducted in order to show that 

random representations provide an increase amount of 

freedom to fit data. The MINERVA 2 model of Hintzman 

(1986) has been used to successfully account for a variety of 

categorical false recognition effects (Arndt & Hirshman, 

1998). Here, we simulate associative false recognition with 

the model, using both random and structured representations 

of semantics. Robinson and Roediger (1997) found that as 

the number of studied items that are related to a critical lure 

is increased, so is the probability of falsely recognizing that 

critical lure. The purpose of this demonstration is to 

compare the ease with which a simple process model like 

MINERVA is able to model this effect when using random 

representations versus when it is using representations that 

contain knowledge about the similarity structure of the 

actual words. 

To construct MINERVA vectors that contain plausible 

semantic structure, we transformed the WAS representations 

from Steyvers et al. (2003). Typical applications of 

MINERVA use ternary vectors with a fairly low 

dimensionality. Hence, WAS vectors were collapsed from 

Figure 3. Levels of discriminability (d-prime) for SDT 

simulations; behavioral data from Dennis, et al. (2008). 
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400 to 20 dimensions by summing every 20 quadrants in the 

WAS vector into a single element in the reduced vector. 

This reduced vector was then transformed into a ternary 

vector with values of the set {-1, 0, 1}; the magnitude of the 

summed WAS values were recoded so that the highest third 

were assigned +1 (representing a high weighting on that 

feature), the middle third 0, and the lowest third -1. To 

ensure that the MINERA transformed vectors still reflected 

the semantic structure in the original WAS vectors, we 

computed the word-by-word cosines between vectors in 

both representations, and correlated the two matrices: The 

original vectors and their ternary transformed versions were 

highly correlated, r = .67, p < .001, indicating that the 

transformed vectors contain an arrangement of elements that 

reflects the semantic structure in the original WAS vectors. 

Using the false recognition lists from Stadtler, Roediger and 

McDermott, (1998) and Gallo and Roediger (2002), there 

was a high average similarity of the critical word‘s 

representation to the representations of the list items across 

the 52 word lists, r = 0.35, p< .001.  

Random representations for critical words and their 

corresponding lists were created as in Arndt and Hirshman 

(1998), by using prototype and exemplar vectors. A 

prototype vector (representing the critical word) is first 

generated by randomly sampling elements from the set {1, 

0, -1} with equal probability. Each item in the word list is 

then created by randomly perturbing elements in the 

prototype vector. This process requires a distortion 

parameter, which determines the probability of switching 

elements from the prototype vector when creating a list item 

vector. The distortion parameter determines how similar the 

list items are to the critical word. The important point is that 

both the semantic and random representations contain the 

exact same elements (same number of -1, 0, and 1s). The 

difference is that the elements are arranged independently 

for the random representations, whereas they are arranged to 

respect the inter-word similarity structure from WAS in the 

semantic version.  

For MINERVA with a semantic representation, the results 

of Robinson and Roediger (1997) were modeled by 

randomly selecting 3 word lists, and adding 3, 6, or 9 items 

from one of the lists into a study list. Because the word lists 

in Robinson and Roediger were longer (they also used 12 

and 15 associates), 27 words selected randomly from the 

Toronto word pool were added into the study list. To 

simulate this with MINERVA using random representation, 

3, 6, or 9 exemplars were created for 3 random prototypes 

and added into the study list. Additionally, 27 random 

vectors were added into the study list to make the two 

simulations equivalent. Decisions are based on activation 

levels of a probe to the studied items (echo intensity: 

Hintzman, 1986), calculated by summing the similarity 

across all items in the study list.  

 For the MINERVA with semantic representations, there 

are two free parameters: 1) a criterion to make a new-old 

decision based on activation levels, and 2) a forgetting 

parameter which determines the probability of a non-zero 

element switching to zero during study. The simulation with 

random representations includes an additional distortion 

parameter (described above) to create the semantic 

structure. These parameters were fit to the data from 

Robinson & Roediger (1997) data using a Nelder-Mead 

simplex algorithm. The results of the simulation are 

displayed in Figure 4: the MINERVA model that utilizes 

random representations was able to reproduce the overall 

trend in the data. However, this was not the case with the 

MINERVA model that used semantic representations—this 

model tended to falsely recognize critical items over studied 

items, which is not the case with the human data. The 

random representation version of the model produced an 

excellent account of the data, R
2
 = 0.98, p < .001. However, 

the version based on the true semantic similarity of the 

words used fit no better than chance, R
2
 = 0.05, p = .45.  

This simulation provides a simple demonstration of how a 

process model that has false representation assumptions may 

be incorrectly accepted as a plausible model. The only 

difference between the two models is in their representation 

structure—the process is identical. While the semantic 

version contains the ―true‖ semantic structure for the exact 

words used in the experiment, the random version uses the 

distortion parameter to create the semantic structure that is 

most likely if this process account is correct. It is 

exclusively the incorrect inferred semantic structure that 

allows the process account to fit these data. If the correct 

representational structure were used, the process account 

would be rejected. The point is that random representations 

allow unnecessary freedom for the model to fit the data.  

General Discussion 

The use of randomly generated representations contains the 

assumption that semantic similarity is normally distributed 

over randomly selected pairs of words. This assumption was 

shown to be false across many different semantic metrics 

that have demonstrated success at accounting for human 

data. In experiments using words, two randomly selected 

words are likely to be relatively less similar (compared to 

the distribution of all possible pairs) than would be implied 

Figure 4. Results of false recognition simulation. 

59



using randomly generated representations for lexical 

semantics. Because similarity plays a central role in the 

processing mechanisms used by many memory models, the 

use of random representations may have consequences for 

conclusions drawn from simulations using these models.  

As McClelland (2009) has noted, ―…simplification is 

essential, but it comes at a cost, and real understanding 

depends in part on understanding the effects of 

simplification.‖ (p. 18). The use of random representations 

in the development of cognitive models has been a 

necessary simplification for our understanding of cognitive 

processes. In doing so, researchers have made use of 

representations whose assumptions may not be entirely 

accurate, but through the use of this simplification modelers 

have made fundamental discoveries about how memory 

processes work. However without this assumption these 

results would not have been possible. It has only been 

within the last decade that researchers have had access to 

realistic representations of lexical semantics. The task for 

the future is to integrate semantic representations with 

processing models of memory for a fuller understanding of 

how they work together to produce observable behavior. 

In accordance, recent models have begun to conduct 

this type of integration. For example, Monaco, Abbott, & 

Kahana (2007) have created a neural network model of the 

mirror effect of frequency, utilizing lexical semantic 

representations taken from the WAS of Steyvers, et al. 

(2004). Ideally, future models will combine a learning 

process that builds a representation through exposure to 

environmental information, which can then feed into a 

processing mechanism. For example, Johns and Jones 

(2009) have utilized representations built through a co-

occurrence learning process to drive a processing model of 

both false recognition and false recall. These models suggest 

that it is no longer necessary to assume random 

representations for lexical semantics when modeling 

cognitive phenomena, but that item-specific semantic 

representations are now freely available and offer additional 

modeling constraints about the structure of semantic 

similarity that a process mechanism must operate on to 

produce behavior in a given task.  
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