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Abstract 
This study examines the temporal and directional 
characteristics of child-adult vocal exchanges in day-long 
naturalistic recordings of autism and typical control groups. In 
both populations, adults responded frequently (on average 
about 40% of responses) within 1s or less, a time thought to 
be conducive for contingency learning by the child. However, 
the time to adult response tended to be longer for the autism 
population. In the autism group, children also tended to 
follow more and lead less relative to the control group, as 
measured by differences in diagonal recurrence profiles 
computed based on cross recurrence plots. The results inform 
on the dynamics of naturalistic communicative interaction in 
normal development and therefore on the social context in 
which language develops. They also illustrate how large 
datasets and modern interaction analyses can expand our 
understanding of differences in children with autism, a 
population with both social and language deficits. 

Keywords: Social interaction; autism; temporal dynamics; 
cross recurrence; language development; naturalistic 
recording; response time; social contingency 

Introduction 
In this paper, we examine fundamental issues related to the 
fine-grained temporal organization of vocal interaction 
between children and their social environment, primarily, 
caregivers. Recent years have seen an abundance of interest 
in joint action and coordinative processes in both children 
and adults (Galantucci & Sebanz, 2009). In the current 
study, we make use of latency response measures as well as 
the technique of cross recurrence analysis to identify leading 
and following patterns in the vocal exchanges between 
children and adults. We find a distinct signature of leading 
in normal children and find that a distinct breakdown of this 
signature is identifiable in children with autism. These 
results show that analysis of naturalistic recordings may 
reveal socio-dynamic indicators of at-risk children. We 
conclude with a brief discussion of the relevance of our 
findings to models of language acquisition in normal and 
disordered individuals. 

Interaction and Contingency in Language 
Development 
The fact that language learning occurs in a dynamic and 
interactive social context is becoming increasingly 
appreciated. Children are not passive information processors 
nor do they learn language purely on the basis of contingent 
reinforcement. They are, rather, actively engaged in 
perceptual learning and responding to communicative acts 
produced by others as well as being engaged in behavioral 
and motor exploration for which they at least sometimes 
receive feedback in the form of communicative response by 
adults and other children in their environment.  

For example, in a video-recording study performed in the 
participants’ homes, Keller et al. (1999) found that mothers 
often respond within one second to their three-month-old 
infants’ communicative acts. Relating this to the fact that 
one second had been previously shown to be about the 
amount of time within which a contingent response must 
occur in order for the infant to detect that contingency, the 
authors concluded that mothers’ communicative responses 
to their infants’ communicative attempts tend to occur 
within the necessary window of time for the infant to 
perceive them as contingent. In other words, their results 
support the notion that caregivers’ responses to their 
children support infant communicative development by 
serving as contingent reinforcers for the infant’s own 
communicative acts. 

In a more recent study, Gros-Louis et al. (2006) observed 
naturalistic interactions in a laboratory setting and found 
that mothers responded contingently to their infant’s 
vocalizations over 70% of the time and that the type of 
response they gave depended on the phonological 
characteristics of the infant’s vocalizations. Furthermore, 
Goldstein, King, and West (2003) and Goldstein and 
Schwade (2008) have found experimentally that mothers’ 
contingent responses do appear to shape the infant’s speech-

121



related vocal development as measured through follow-up 
tests. 

Recently, cross recurrence analysis of time series has 
allowed for additional quantitative measures of interactive 
contingency to be measured in naturalistic child-caregiver 
interaction. For example, patterns of leading and following 
by interlocuters can be examined at multiple timescales 
concurrently. Dale and Spivey (2006) examined diagonal 
cross recurrence profiles calculated on syntactic patterns 
(specifically, part of speech bigrams) for three well-known 
child-caregiver conversation corpora. They found individual 
differences among the three children in their tendency to 
lead versus follow their caregiver. Abe (Kucjaz, 1976), who 
had the most advanced language out of the three children 
also had the greatest tendency to lead rather than follow the 
caregiver. This work lays foundations for application of 
cross recurrence analysis to other vocal interaction 
phenomena, to larger naturalistic datasets, and, as carried 
out here, to the study of populations with autism. 

Autism Spectrum Disorders (ASD) 
Impaired social interaction and language learning are two 
components of the DSM autism diagnostic criteria. With 
regard to social interaction, children with ASD have 
exhibited differences in initiation, turn-taking, imitation, 
and joint attention behaviors.  

In recent years, technology has become available to 
permit day-long naturalistic recording of infant’s acoustic 
environments, including their own vocalizations and the 
speech and other environmental sounds in the infant’s 
vicinity. Warren et al. (2009) evaluated social interaction in 
all-day recordings (5,256 hours over 438 sessions) in ASD 
and control groups. The authors discovered differences 
between typically developing and autistic children in the 
frequencies of both conversational turns and child 
vocalizations. These results, based on summary measures, 
encourage analysis at a more fine-grained level of temporal 
detail in order to address such issues as the directionality of 
the conversational exchanges and temporal characteristics of 
adult-child interactions. Both latency to response and 
diagonal cross recurrence profiles can be automatically 
calculated, making them suitable for application to large-
scale naturalistic recordings. 

This Study 
In the present study, we first looked at response latencies in 
a way that was similar to Keller et al. (1999). However, we 
evaluated much more data and used more naturalistic 
recordings (collected at home, daycare, and therapy as 
opposed to only at home in a single post-sleep, post-feeding 
context with experimenters present and videotaping). Other 
differences are that we looked at the vocal modality only, 
and that we evaluated age, autism, gender, and maternal 
education as predictive factors. We also applied cross 
recurrence analysis to the data and investigate leading and 
following tendencies in the recordings. The application of 
this method with large-scale recordings of adult-child 

speech is unique as is its application to the autism 
population. 

Method 

Participants 
The participant recruitment, recordings and the automated 
labeling of them were conducted as part of previous studies. 
Warren et al. (2009) provide more detailed information on 
the procedures. The present study includes data from 26 
children between 16-48 months who have been diagnosed 
under the classic autism subtype except for two who 
received Pervasive Developmental Disorder-Not Otherwise 
Specified subtype diagnoses; documentation of ASD 
diagnoses by trained professionals was provided by the 
children’s parents. No child was reported to have a 
diagnosis that included echolalia (pathological repetition of 
previously heard speech). The study also includes data from 
78 typically developing (TD) children who were selected 
form a larger normative database such that for each child 
with ASD there were three TD controls of the same gender 
and socioeconomic status (SES), as measured by the 
mother’s education level, and collectively across the three 
controls spanning the same range of ages as the ASD child.  

Recording 
Recordings were made using LENA digital language 
processor devices. These recorders fit into a pocket sewn 
into the front of custom-designed clothing and record a 
single channel of audio for up to 16 hours at a time. The 
device records the child’s voice as well as other sounds 
within approximately a 6-10’ radius of the child. Parents 
were mailed the devices and were instructed to begin 
recording when the child awoke in the morning and left the 
recorder on throughout the day. Recordings contexts 
included the home, preschool, and speech-language therapy. 
There were 438 recordings in total, each lasting at least 12 
hours. The present study is thus based on over 5,256 hours 
of naturalistic recording. 

Automated Labeling 
Each recording was processed using the professional version 
of the LENA analysis software. The software analyzes and 
time segments the entire recording according to the likely 
source of the signal, e.g., the child wearing the recorder, 
another child, an adult, a television or radio, silence; every 
part of the recording is given a label. Within child segments 
it also labels some sub-segments (termed vocalizations by 
the system) as speech-like or as cry/vegetative/fixed. 
Reliability for the automated labeling compared to human 
raters on TD child recordings is approximately 82% correct 
for adult speaker, 76% correct for key child, 75% correct for 
child speech-like, and 84% for child cry/vegetative/fixed 
(Xu et al., 2009). The software allows for exporting these 
sound source and child vocalization type segmentations 
along with other information in XML format. 
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We developed a set of Perl scripts to extract the specific 
information of interest for this study from the XML files 
(exported as .its files by the LENA software). Specifically, 
we extracted the start and end times of each segment labeled 
with relatively high confidence as coming from the child 
wearing the recorder (child near, CHN, segments, labeled as 
such because they fell near the maximum of the Gaussian 
mixture model that gave the likelihood that a segment was 
produced by the child) and of each segment labeled as 
coming from an adult with relatively high confidence 
(female adult near, FAN, or male adult near, MAN). Note 
that loudness and nearness to the child increase the 
confidence of segment coding and therefore increase the 
likelihood of a sound being included in the present study. 
Also, there were minimum duration thresholds for each 
segment label type; thus, a long string of vocalization by the 
same speaker could only be split if there was an intervening 
silence, TV, or other-speaker vocalization meeting the 
minimum duration requirement. We also identified child 
segments that contained only speech-like sub-segments as 
well as those that contained only cry/vegetative sub-
segments. All the subsequent response time and cross 
recurrence calculations were made using only those child 
segments that contained no cry/vegetative sub-segments and 
at least one speech-like sub-segment.  

Response Time Analysis 
We developed a set of programs written in Perl and R that 
automatically extracted and calculated response time 
information from the speaker labels. First, adult response 
times were calculated according to the following procedure. 
For each child segment, we determined whether an adult 
segment followed without any child segment intervening. 
Other sound source labels were permitted to intervene 
between the child segment and the subsequent adult 
segment. Then the time between the offset of the child 
segment and the onset of the adult segment was calculated. 
Child response times were calculated in exactly the same 
manner, except with the speaker labels reversed. Based on 
these response times, the median adult response time and 
the median child response time were calculated as well as 
the proportion of adult responses occurring within 1s and 
the proportion of child responses occurring within 1s. 

Cross Recurrence Analysis 
Cross Recurrence Plots Cross recurrence plots (Marwan et 
al., 2007; Richardson et al., 2007) are matrices that indicate 
correspondence or lack of correspondence for every possible 
combination of events or times in one event time series and 
the events or times in another series. In our case, the vertical 
dimension of the matrix corresponds to the presence and 
absence of child segments and the horizontal dimension of 
the matrix corresponds to the presence and absence of adult 
segments (Fig. 1). Each element in the plot matrix is 
assigned a value of 1 (marked in black in the figure) if there 
is a child segment at the row corresponding to the element’s 

row number as well as an adult segment at the segment 
corresponding to the element’s column number.  

The time series that were used for making these charts 
were broken into 1s chunks. When either the child or an 
adult was speaking, a 1s chunk was coded as 1 in the 
speaker’s series and as null value in the non-speaker’s 
series. Regardless of the actual length of the segment, it was 
coded as lasting 1s so that long speaker segments would not 
be treated as having long lags to segments by the other 
speaker. When neither child nor adult were speaking, both 
time series were coded as null values for the duration of the 
no-speaker time, rounded down to the nearest second. The 
recurrence plot is square since both the vertical and the 
horizontal dimensions have length equal to the total number 
of 1s chunks in the recording. 

 

Figure 1: On the top is the cross recurrence plot for the 
first 200s of one of the recordings. The gray region 

indicates the portion from which the diagonal recurrence 
profile is calculated. On the bottom is the diagonal 

recurrence profile for the entire recording. 
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Diagonal Cross Recurrence Profiles A number of 
measures, such as recurrence rate, determinism, etc. can be 
extracted directly from the cross recurrence plot (Marwan et 
al., 2007). However, in this study we focused on measures 
that were extracted from the plot’s diagonal recurrence 
profile (explained below) after it had been derived from the 
recurrence plot. In the physical sciences, this is sometimes 
referred to as the recurrence probability or the recurrence 
spectrum (Marwan et al., 2007). Richardson and Dale 
(2005) and Richardson et al. (2007) have used this measure 
in analyses of linguistic coordination. It can be interpreted 
as a lag profile that reflects co-occurrence patterns between 
utterances at varying relative lags. We provide some further 
description here. 

The diagonal on the recurrence plot running from the 
origin to the final event on both axes reflects when the child 
and caregiver are speaking at the same time. Sometimes this 
main line is referred to as the “line of synchronization,” 
since any points on this line reflect matching on/off states 
for the child and the adult(s). However, since the automatic 
labeling procedure does not allow overlapping speaker 
labels, there will never be a match along this diagonal.  

The next diagonal line just below-right of the primary 
diagonal contains the matches between the child’s on/off 
states and those of the adult series one step into the future. 
In other words, the elements of this adjacent below-right 
diagonal are given a point on the plot when a given child 
segment was immediately followed by an adult segment 
(i.e., the adult spoke one time step later during the 
interaction). Conversely, the elements of the adjacent above-
left diagonal line have a point when a given adult segment 
was immediately followed by a child segment Moving to 
diagonals further below-right or above-left give indication 
of when the adult followed the child at larger lags and when 
the child followed the adult at larger lags, respectively. 

For each diagonal line parallel to the primary diagonal, 
the number of 1’s can be added and divided by the total 
number of elements in that diagonal to give the proportion 
cross recurrence for the speaker order and lag amount 
corresponding to that diagonal. These proportions can then 
be plotted to create a diagonal recurrence profile (Fig. 1). 
By randomly shuffling the speaker labels and recalculating 
the diagonal recurrence profile, and by repeatedly doing this 
and averaging across the shuffled label profiles, one can 
obtain a bootstrapped estimate of the baseline diagonal 
recurrence profile that would be expected if were no 
systematic leading-following relationship between the 
speakers. Dividing the actual diagonal recurrence profile by 
the baseline estimate gives a normalized diagonal recurrence 
profile that represents proportion above chance 
leading/following tendencies. 

In this study, we measured three characteristics of the 
normalized diagonal recurrence profile for a given 
recording. The first was the height of the profile at the point 
immediately right from center. This gives an indication of 
how often the adult vocalized immediately after a child 
vocalization. The second was the height at the point 

immediately left of center; it tells how often the child’s 
vocalizations immediately followed the adult’s. The third 
measure is the ratio of the sum of values on the right side of 
the profile (which is higher when the adult tended to follow 
the child) to the sum of values on the left side of the profile 
(higher when the child tended to follow the adult). This 
gives a measure of the general balance between leading and 
following across the two speakers. 

Results 

Response Time Results 
The adult response times and child response times for the 
ASD and control groups are plotted as averaged histograms 
in Figure 2.  

For each of the four response time independent measures 
(adult median response time, adult proportion within 1s, 
child median response time, and child proportion within 1 s) 
we ran a mixed model regression with participant ID as a 
random effect and ASD status, age in weeks, gender, and 
mother’s education level (a measure of the family’s 
socioeconomic status) as fixed effects. 

Adult median response time was significantly longer for 
children with ASD (M = 2.32s, SD = 1.22) than for the 
controls (M = 1.65s, SD = 0.78), p < 0.001, β = 0.331, and 
was significantly shorter as maternal education increased, p 
< 0.001, β = -0.234. Adult proportion of responses within 1s 
was significantly smaller for children with ASD (M =  0.37, 
SD = 0.10) than for the controls (M = 0.43, SD = 0.08), p < 
0.001, β = -0.348, and was significantly larger as maternal 
education increased (p < 0.001, β = 0.284). 

Child median response time was longer for children with 
ASD (M = 2.70s, SD = 1.38) than for the controls (M = 
2.37s, SD = 0.92) though this did not reach statistical 
significance, p = 0.063, β = 0.161, and was significantly 
shorter as maternal education increased, p = 0.016, β = -
0.153. Child proportion of responses within 1s was 
significantly larger as maternal education increased, p = 
0.010, β = 0.174.  

Age and gender did not significantly predict any of the 
four independent variables. 

Cross Recurrence Results 
The averaged diagonal recurrence profiles for the ASD and 
control groups are plotted in Figure 3. As with the response 
time measures, each of the three dependent variables (height 
immediately right of center, height immediately left of 
center, and ratio of right side to left side) was regressed on 
participant ID as a random effect and ASD status, age in 
weeks, gender, and mother’s education level as fixed 
effects. 

The height at the point immediately right of center was 
only significantly predicted by age, decreasing as age 
increased, p < 0.001, β = -0.228.  

The height at the point immediately left of center, which 
represents the frequency with which the child immediately 
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followed the adult, was significantly higher for the ASD 
group (M = 1.73, SD = 0.91) than for the control group (M = 
1.53, SD = 1.09), p < 0.001, β = 0.207. The height at this 
point was also significantly lower as maternal education 
increased, p = 0.017, β = -0.183, and was lower as age 
increased, p = 0.002, β = -0.214.  

The ratio of the right side (from lag 1 through lag 10) to 
the left side (from lag 1 through lag 10) of the diagonal 
cross recurrence profile was smaller for the ASD group (M 
= 1.06, SD = 0.18) than for the TD group (M = 1.25, SD = 
0.30), p < 0.001, β = -0.398, indicating that the general 
tendency for the child to lead and for the adult to follow was 
lessened in the autism group. A small but significant 
increase was accounted for by age, p = 0.01, β = 0.136. 

Discussion 
This study provides new information from automated 
analysis over large naturalistic recordings in support of the 
idea that social interaction is impaired in ASD. 
Interestingly, the strongest trend concerned the adult’s 
responses to the child rather than the child’s responses to the 
adult. There were differences in both the dynamics and the 
directionality of adult-child interaction in ASD. The length 
of time before an adult responded to an ASD child’s speech 
or speech-like vocalization was larger in ASD than for TD 
children with a smaller percentage of responses occurring 
within the 1s window considered ideal for contingency 
detection. In addition, ASD children’s speech and speech-
like vocalizations were more  of a tendency to 
follow the adult vocalizations than TD children’s.  

The shift of the balance toward child following (and 
adults leading) and increased latency of adult responses to 
the child when they did occur could be due to less initiation 
of communication on the part of the ASD children and/or to 

Figure 2: Histograms of adult response latencies for 
children with and without ASD.  

 

Figure 3. Diagonal recurrence profiles averaged across 
all recordings in the TD group (top) and all recordings in 

the ASD group (bottom). In each profile, the red line 
indicates the mean values across recordings. Blue lines 
indicate 95% confidence intervals. Displacement from 

diagonal is in seconds. 
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reduced communicative content or other deficiencies in the 
vocalizations of children with ASD. It could also be due to 
adults’ reduced attentiveness to the vocalizations of children 
with the disorder. This pattern of following vs. being 
followed may have feedback effects on the child’s language 
development, reducing the quality of the contingency-based 
input available to the child with ASD as they acquire 
speech, language, and other communication skills. At 
present, there are very few computational models that 
attempt to capture the interplay among cognitive agents in a 
realistic way (one exception may be language evolutionary 
models; see Cangelosi & Parisi, 2002, for examples). The 
dynamic interplay between cognitive agents during 
development, such as speech-contingency patterns, may 
produce feedback loops that substantially impact learning 
within an individual system. 

The present work is relevant to theoretical, including 
computational, modeling of speech-language development. 
Language learning occurs in the context of social 
interactions during which the child hears what other 
speakers say but also receives contingent reinforcement for 
their own vocalizations. Understanding the typical dynamics 
of these interactions may help guide the development of 
models that take into account the dynamic interactive social 
context of language learning. They may also help inform 
models of autism. Some of the deficits present in autism 
may be the result of a negative feedback loop in which 
children with autism produce fewer or lower-quality 
conversation initiations, leading to adults’ responding with 
lower frequency and more latency, which in turn leads to  
poorer learning of language and communication-related 
skills by the child. 

From a practical standpoint, measures of conversational 
dynamics, both at short and long timescales could 
potentially be applied for early identification of autism or 
other communicative disorders. Being a disorder that 
involves profound social and cognitive impairments, 
differences in patterns of communicative interaction, such 
as in leading-following and elicitation of quick responses, 
might indicate risk for autism. For example, automatically 
computed interaction-based measures (such as the ones used 
in the present study) could supplement the acoustic 
measures used in an existing autism screening tool (Xu et 
al., 2009) 
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