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Abstract

This study examines the temporal and directional
characteristics of child-adult vocal exchanges in day-long
naturalistic recordings of autism and typical control groups. In
both populations, adults responded frequently (on average
about 40% of responses) within 1s or less, a time thought to
be conducive for contingency learning by the child. However,
the time to adult response tended to be longer for the autism
population. In the autism group, children also tended to
follow more and lead less relative to the control group, as
measured by differences in diagonal recurrence profiles
computed based on cross recurrence plots. The results inform
on the dynamics of naturalistic communicative interaction in
normal development and therefore on the social context in
which language develops. They also illustrate how large
datasets and modern interaction analyses can expand our
understanding of differences in children with autism, a
population with both social and language deficits.
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Introduction

In this paper, we examine fundamental issues related to the
fine-grained temporal organization of vocal interaction
between children and their social environment, primarily,
caregivers. Recent years have seen an abundance of interest
in joint action and coordinative processes in both children
and adults (Galantucci & Sebanz, 2009). In the current
study, we make use of latency response measures as well as
the technique of cross recurrence analysis to identify leading
and following patterns in the vocal exchanges between
children and adults. We find a distinct signature of leading
in normal children and find that a distinct breakdown of this
signature is identifiable in children with autism. These
results show that analysis of naturalistic recordings may
reveal socio-dynamic indicators of at-risk children. We
conclude with a brief discussion of the relevance of our
findings to models of language acquisition in normal and
disordered individuals.
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Interaction and Contingency in Language
Development

The fact that language learning occurs in a dynamic and
interactive social context is becoming increasingly
appreciated. Children are not passive information processors
nor do they learn language purely on the basis of contingent
reinforcement. They are, rather, actively engaged in
perceptual learning and responding to communicative acts
produced by others as well as being engaged in behavioral
and motor exploration for which they at least sometimes
receive feedback in the form of communicative response by
adults and other children in their environment.

For example, in a video-recording study performed in the
participants’ homes, Keller et al. (1999) found that mothers
often respond within one second to their three-month-old
infants’ communicative acts. Relating this to the fact that
one second had been previously shown to be about the
amount of time within which a contingent response must
occur in order for the infant to detect that contingency, the
authors concluded that mothers’ communicative responses
to their infants’ communicative attempts tend to occur
within the necessary window of time for the infant to
perceive them as contingent. In other words, their results
support the notion that caregivers’ responses to their
children support infant communicative development by
serving as contingent reinforcers for the infant’s own
communicative acts.

In a more recent study, Gros-Louis et al. (2006) observed
naturalistic interactions in a laboratory setting and found
that mothers responded contingently to their infant’s
vocalizations over 70% of the time and that the type of
response they gave depended on the phonological
characteristics of the infant’s vocalizations. Furthermore,
Goldstein, King, and West (2003) and Goldstein and
Schwade (2008) have found experimentally that mothers’
contingent responses do appear to shape the infant’s speech-



related vocal development as measured through follow-up
tests.

Recently, cross recurrence analysis of time series has
allowed for additional quantitative measures of interactive
contingency to be measured in naturalistic child-caregiver
interaction. For example, patterns of leading and following
by interlocuters can be examined at multiple timescales
concurrently. Dale and Spivey (2006) examined diagonal
cross recurrence profiles calculated on syntactic patterns
(specifically, part of speech bigrams) for three well-known
child-caregiver conversation corpora. They found individual
differences among the three children in their tendency to
lead versus follow their caregiver. Abe (Kucjaz, 1976), who
had the most advanced language out of the three children
also had the greatest tendency to lead rather than follow the
caregiver. This work lays foundations for application of
cross recurrence analysis to other vocal interaction
phenomena, to larger naturalistic datasets, and, as carried
out here, to the study of populations with autism.

Autism Spectrum Disorders (ASD)

Impaired social interaction and language learning are two
components of the DSM autism diagnostic criteria. With
regard to social interaction, children with ASD have
exhibited differences in initiation, turn-taking, imitation,
and joint attention behaviors.

In recent years, technology has become available to
permit day-long naturalistic recording of infant’s acoustic
environments, including their own vocalizations and the
speech and other environmental sounds in the infant’s
vicinity. Warren et al. (2009) evaluated social interaction in
all-day recordings (5,256 hours over 438 sessions) in ASD
and control groups. The authors discovered differences
between typically developing and autistic children in the
frequencies of both conversational turns and child
vocalizations. These results, based on summary measures,
encourage analysis at a more fine-grained level of temporal
detail in order to address such issues as the directionality of
the conversational exchanges and temporal characteristics of
adult-child interactions. Both latency to response and
diagonal cross recurrence profiles can be automatically
calculated, making them suitable for application to large-
scale naturalistic recordings.

This Study

In the present study, we first looked at response latencies in
a way that was similar to Keller et al. (1999). However, we
evaluated much more data and used more naturalistic
recordings (collected at home, daycare, and therapy as
opposed to only at home in a single post-sleep, post-feeding
context with experimenters present and videotaping). Other
differences are that we looked at the vocal modality only,
and that we evaluated age, autism, gender, and maternal
education as predictive factors. We also applied cross
recurrence analysis to the data and investigate leading and
following tendencies in the recordings. The application of
this method with large-scale recordings of adult-child
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speech is unique as is its application to the autism
population.

Method

Participants

The participant recruitment, recordings and the automated
labeling of them were conducted as part of previous studies.
Warren et al. (2009) provide more detailed information on
the procedures. The present study includes data from 26
children between 16-48 months who have been diagnosed
under the classic autism subtype except for two who
received Pervasive Developmental Disorder-Not Otherwise
Specified subtype diagnoses; documentation of ASD
diagnoses by trained professionals was provided by the
children’s parents. No child was reported to have a
diagnosis that included echolalia (pathological repetition of
previously heard speech). The study also includes data from
78 typically developing (TD) children who were selected
form a larger normative database such that for each child
with ASD there were three TD controls of the same gender
and socioeconomic status (SES), as measured by the
mother’s education level, and collectively across the three
controls spanning the same range of ages as the ASD child.

Recording

Recordings were made using LENA digital language
processor devices. These recorders fit into a pocket sewn
into the front of custom-designed clothing and record a
single channel of audio for up to 16 hours at a time. The
device records the child’s voice as well as other sounds
within approximately a 6-10° radius of the child. Parents
were mailed the devices and were instructed to begin
recording when the child awoke in the morning and left the
recorder on throughout the day. Recordings contexts
included the home, preschool, and speech-language therapy.
There were 438 recordings in total, each lasting at least 12
hours. The present study is thus based on over 5,256 hours
of naturalistic recording.

Automated Labeling

Each recording was processed using the professional version
of the LENA analysis software. The software analyzes and
time segments the entire recording according to the likely
source of the signal, e.g., the child wearing the recorder,
another child, an adult, a television or radio, silence; every
part of the recording is given a label. Within child segments
it also labels some sub-segments (termed vocalizations by
the system) as speech-like or as cry/vegetative/fixed.
Reliability for the automated labeling compared to human
raters on TD child recordings is approximately 82% correct
for adult speaker, 76% correct for key child, 75% correct for
child speech-like, and 84% for child cry/vegetative/fixed
(Xu et al., 2009). The software allows for exporting these
sound source and child vocalization type segmentations
along with other information in XML format.



We developed a set of Perl scripts to extract the specific
information of interest for this study from the XML files
(exported as .its files by the LENA software). Specifically,
we extracted the start and end times of each segment labeled
with relatively high confidence as coming from the child
wearing the recorder (child near, CHN, segments, labeled as
such because they fell near the maximum of the Gaussian
mixture model that gave the likelihood that a segment was
produced by the child) and of each segment labeled as
coming from an adult with relatively high confidence
(female adult near, FAN, or male adult near, MAN). Note
that loudness and nearness to the child increase the
confidence of segment coding and therefore increase the
likelihood of a sound being included in the present study.
Also, there were minimum duration thresholds for each
segment label type; thus, a long string of vocalization by the
same speaker could only be split if there was an intervening
silence, TV, or other-speaker vocalization meeting the
minimum duration requirement. We also identified child
segments that contained only speech-like sub-segments as
well as those that contained only cry/vegetative sub-
segments. All the subsequent response time and cross
recurrence calculations were made using only those child
segments that contained no cry/vegetative sub-segments and
at least one speech-like sub-segment.

Response Time Analysis

We developed a set of programs written in Perl and R that
automatically extracted and calculated response time
information from the speaker labels. First, adult response
times were calculated according to the following procedure.
For each child segment, we determined whether an adult
segment followed without any child segment intervening.
Other sound source labels were permitted to intervene
between the child segment and the subsequent adult
segment. Then the time between the offset of the child
segment and the onset of the adult segment was calculated.
Child response times were calculated in exactly the same
manner, except with the speaker labels reversed. Based on
these response times, the median adult response time and
the median child response time were calculated as well as
the proportion of adult responses occurring within 1s and
the proportion of child responses occurring within 1s.

Cross Recurrence Analysis

Cross Recurrence Plots Cross recurrence plots (Marwan et
al., 2007; Richardson et al., 2007) are matrices that indicate
correspondence or lack of correspondence for every possible
combination of events or times in one event time series and
the events or times in another series. In our case, the vertical
dimension of the matrix corresponds to the presence and
absence of child segments and the horizontal dimension of
the matrix corresponds to the presence and absence of adult
segments (Fig. 1). Each element in the plot matrix is
assigned a value of 1 (marked in black in the figure) if there
is a child segment at the row corresponding to the element’s
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Example of a subsection of a cross recurrence plot
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Figure 1: On the top is the cross recurrence plot for the
first 200s of one of the recordings. The gray region
indicates the portion from which the diagonal recurrence
profile is calculated. On the bottom is the diagonal
recurrence profile for the entire recording.

row number as well as an adult segment at the segment
corresponding to the element’s column number.

The time series that were used for making these charts
were broken into Is chunks. When either the child or an
adult was speaking, a 1s chunk was coded as 1 in the
speaker’s series and as null value in the non-speaker’s
series. Regardless of the actual length of the segment, it was
coded as lasting 1s so that long speaker segments would not
be treated as having long lags to segments by the other
speaker. When neither child nor adult were speaking, both
time series were coded as null values for the duration of the
no-speaker time, rounded down to the nearest second. The
recurrence plot is square since both the vertical and the
horizontal dimensions have length equal to the total number
of 1s chunks in the recording.



Diagonal Cross Recurrence Profiles A number of
measures, such as recurrence rate, determinism, etc. can be
extracted directly from the cross recurrence plot (Marwan et
al., 2007). However, in this study we focused on measures
that were extracted from the plot’s diagonal recurrence
profile (explained below) after it had been derived from the
recurrence plot. In the physical sciences, this is sometimes
referred to as the recurrence probability or the recurrence
spectrum (Marwan et al., 2007). Richardson and Dale
(2005) and Richardson et al. (2007) have used this measure
in analyses of linguistic coordination. It can be interpreted
as a lag profile that reflects co-occurrence patterns between
utterances at varying relative lags. We provide some further
description here.

The diagonal on the recurrence plot running from the
origin to the final event on both axes reflects when the child
and caregiver are speaking at the same time. Sometimes this
main line is referred to as the “line of synchronization,”
since any points on this line reflect matching on/off states
for the child and the adult(s). However, since the automatic
labeling procedure does not allow overlapping speaker
labels, there will never be a match along this diagonal.

The next diagonal line just below-right of the primary
diagonal contains the matches between the child’s on/off
states and those of the adult series one step into the future.
In other words, the elements of this adjacent below-right
diagonal are given a point on the plot when a given child
segment was immediately followed by an adult segment
(i.e., the adult spoke one time step later during the
interaction). Conversely, the elements of the adjacent above-
left diagonal line have a point when a given adult segment
was immediately followed by a child segment Moving to
diagonals further below-right or above-left give indication
of when the adult followed the child at larger lags and when
the child followed the adult at larger lags, respectively.

For each diagonal line parallel to the primary diagonal,
the number of 1’s can be added and divided by the total
number of elements in that diagonal to give the proportion
cross recurrence for the speaker order and lag amount
corresponding to that diagonal. These proportions can then
be plotted to create a diagonal recurrence profile (Fig. 1).
By randomly shuffling the speaker labels and recalculating
the diagonal recurrence profile, and by repeatedly doing this
and averaging across the shuffled label profiles, one can
obtain a bootstrapped estimate of the baseline diagonal
recurrence profile that would be expected if were no
systematic leading-following relationship between the
speakers. Dividing the actual diagonal recurrence profile by
the baseline estimate gives a normalized diagonal recurrence
profile that represents proportion above chance
leading/following tendencies.

In this study, we measured three characteristics of the
normalized diagonal recurrence profile for a given
recording. The first was the height of the profile at the point
immediately right from center. This gives an indication of
how often the adult vocalized immediately after a child
vocalization. The second was the height at the point
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immediately left of center; it tells how often the child’s
vocalizations immediately followed the adult’s. The third
measure is the ratio of the sum of values on the right side of
the profile (which is higher when the adult tended to follow
the child) to the sum of values on the left side of the profile
(higher when the child tended to follow the adult). This
gives a measure of the general balance between leading and
following across the two speakers.

Results

Response Time Results

The adult response times and child response times for the
ASD and control groups are plotted as averaged histograms
in Figure 2.

For each of the four response time independent measures
(adult median response time, adult proportion within 1s,
child median response time, and child proportion within 1 s)
we ran a mixed model regression with participant ID as a
random effect and ASD status, age in weeks, gender, and
mother’s education level (a measure of the family’s
socioeconomic status) as fixed effects.

Adult median response time was significantly longer for
children with ASD (M = 2.32s, SD = 1.22) than for the
controls (M = 1.65s, SD = 0.78), p < 0.001, = 0.331, and
was significantly shorter as maternal education increased, p
<0.001, = -0.234. Adult proportion of responses within 1s
was significantly smaller for children with ASD (M = 0.37,
SD = 0.10) than for the controls (M = 0.43, SD = 0.08), p <
0.001, B = -0.348, and was significantly larger as maternal
education increased (p < 0.001, S = 0.284).

Child median response time was longer for children with
ASD (M = 2.70s, SD = 1.38) than for the controls (M =
2.37s, SD = 0.92) though this did not reach statistical
significance, p = 0.063, = 0.161, and was significantly
shorter as maternal education increased, p = 0.016, = -
0.153. Child proportion of responses within Is was
significantly larger as maternal education increased, p =
0.010, 5=0.174.

Age and gender did not significantly predict any of the
four independent variables.

Cross Recurrence Results

The averaged diagonal recurrence profiles for the ASD and
control groups are plotted in Figure 3. As with the response
time measures, each of the three dependent variables (height
immediately right of center, height immediately left of
center, and ratio of right side to left side) was regressed on
participant ID as a random effect and ASD status, age in
weeks, gender, and mother’s education level as fixed
effects.

The height at the point immediately right of center was
only significantly predicted by age, decreasing as age
increased, p <0.001, 5=-0.228.

The height at the point immediately left of center, which
represents the frequency with which the child immediately
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Figure 2: Histograms of adult response latencies for
children with and without ASD.

followed the adult, was significantly higher for the ASD
group (M = 1.73, SD = 0.91) than for the control group (M =
1.53, SD = 1.09), p < 0.001, g = 0.207. The height at this
point was also significantly lower as maternal education
increased, p = 0.017, = -0.183, and was lower as age
increased, p = 0.002, f=-0.214.

The ratio of the right side (from lag 1 through lag 10) to
the left side (from lag 1 through lag 10) of the diagonal
cross recurrence profile was smaller for the ASD group (M
= 1.06, SD = 0.18) than for the TD group (M = 1.25, SD =
0.30), p < 0.001, B = -0.398, indicating that the general
tendency for the child to lead and for the adult to follow was
lessened in the autism group. A small but significant
increase was accounted for by age, p = 0.01, f=0.136.
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TD diagonal cross—recurrence profile
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Figure 3. Diagonal recurrence profiles averaged across
all recordings in the TD group (top) and all recordings in
the ASD group (bottom). In each profile, the red line
indicates the mean values across recordings. Blue lines
indicate 95% confidence intervals. Displacement from
diagonal is in seconds.

Discussion

This study provides new information from automated
analysis over large naturalistic recordings in support of the
idea that social interaction is impaired in ASD.
Interestingly, the strongest trend concerned the adult’s
responses to the child rather than the child’s responses to the
adult. There were differences in both the dynamics and the
directionality of adult-child interaction in ASD. The length
of time before an adult responded to an ASD child’s speech
or speech-like vocalization was larger in ASD than for TD
children with a smaller percentage of responses occurring
within the Is window considered ideal for contingency
detection. In addition, ASD children’s speech and speech-
like wvocalizations were more of a tendency to
follow the adult vocalizations than TD children’s.
The shift of the balance toward child following (and
adults leading) and increased latency of adult responses to
the child when they did occur could be due to less initiation
of communication on the part of the ASD children and/or to



reduced communicative content or other deficiencies in the
vocalizations of children with ASD. It could also be due to
adults’ reduced attentiveness to the vocalizations of children
with the disorder. This pattern of following vs. being
followed may have feedback effects on the child’s language
development, reducing the quality of the contingency-based
input available to the child with ASD as they acquire
speech, language, and other communication skills. At
present, there are very few computational models that
attempt to capture the interplay among cognitive agents in a
realistic way (one exception may be language evolutionary
models; see Cangelosi & Parisi, 2002, for examples). The
dynamic interplay between cognitive agents during
development, such as speech-contingency patterns, may
produce feedback loops that substantially impact learning
within an individual system.

The present work is relevant to theoretical, including
computational, modeling of speech-language development.
Language learning occurs in the context of social
interactions during which the child hears what other
speakers say but also receives contingent reinforcement for
their own vocalizations. Understanding the typical dynamics
of these interactions may help guide the development of
models that take into account the dynamic interactive social
context of language learning. They may also help inform
models of autism. Some of the deficits present in autism
may be the result of a negative feedback loop in which
children with autism produce fewer or lower-quality
conversation initiations, leading to adults’ responding with
lower frequency and more latency, which in turn leads to
poorer learning of language and communication-related
skills by the child.

From a practical standpoint, measures of conversational
dynamics, both at short and long timescales could
potentially be applied for early identification of autism or
other communicative disorders. Being a disorder that
involves profound social and cognitive impairments,
differences in patterns of communicative interaction, such
as in leading-following and elicitation of quick responses,
might indicate risk for autism. For example, automatically
computed interaction-based measures (such as the ones used
in the present study) could supplement the acoustic
measures used in an existing autism screening tool (Xu et
al., 2009)
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