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Abstract 

How do the ways in which we learn influence our 
cognitive representations of what we learn? We show 
that in language learning tasks, the process of learning to 
conceptualize and categorize perceptual input shapes 
how that input gets represented in mind.  In 
representation, there seems to be a give and take between 
veridicality and completeness, on the one hand, and 
discrimination and accurate categorization, on the other.  
Learning to better discriminate objects into categories 
based on their highly-discriminating features makes 
people less likely to notice or remember the same 
objects' less-discriminating features. Gains in response-
discrimination between categories thus come at a cost to 
within category discrimination. We suggest that the 
mechanisms of human learning obey a simple principle: 
there can be no representation without taxation.  

Introduction 
While we perceive the world through our senses, we 

do not experience the world in terms of raw sense data; 
rather we experience it in terms of concepts. We 
experience a world of objects and events – pages, 
screens, cars, people etc – and not the raw patterns of 
activity that external stimuli produce in the retinal cells 
of our eyes.  

     Most, if not all, cognitive activities appear to 
involve a process of converting the mass of data we 
receive from our senses into 'meaningful' concepts. 
Learning imposes discontinuities on the continuous 
dimensions of inputs, so that raw sense data is grouped 
into larger representational wholes, which satisfy the 
informational requirements of various cognitive 
activities. We call this kind of discrimination-learning 
categorization: the process of taking a set of 
undifferentiated perceptual inputs and generating or 
tuning responses to those inputs. Categorization is an 
important aspect of cognition, and much effort has been 
invested in attempting to account for how the 'stuff of 
experience' is represented, manipulated and combined 
in the mind, and how it relates to language. Our 
research addresses an important question this process 
raises: How do the ways in which cognitive 
representations are developed and learned influence 
what gets learned and represented?   

     In this paper, we explore the hypothesis that 
different types of learning produce correspondingly 
different cognitive representations. We show that 

learning to conceptualize or categorize perceptual input 
has consequences for the representation of the input 
itself. In particular, in language-learning tasks, 
improved response-discrimination—i.e., improved 
accuracy in dividing up perceptual input into conceptual 
categories—comes at a cost to the representation of the 
original input. Learning to better discriminate objects 
into categories based on their highly-salient features 
seems to make people less likely to notice or remember 
the same objects’ less-salient features. Learners appear 
to home in on the particular cues that are highly 
predictive of a given category and simultaneously 
discard—or ‘learn to ignore’—other probabilistic 
information that is less informative. Gains in response-
discrimination between categories thus come at a cost 
to within category discrimination. In what follows, we 
lay out these ideas in detail and present empirical 
evidence in support of them. We argue that the basic 
principle of no representation without taxation amounts 
to a fundamental law of learning.  

Learning 
Formally, learning can be conceived of as a process 

by which probabilistic information is acquired about the 
relationships between important regularities in the 
environment (such as objects or events) and the cues 
that allow those regularities to be predicted (Rescorla & 
Wagner, 1972). The learning process is driven by 
discrepancies between what is expected and what is 
actually observed in experience (termed error-driven 
learning). The learned predictive value of a given cue 
produces expectations, and any difference between the 
value of what is expected and what is observed 
produces further learning. The predictive value of a 
given cue is strengthened when relevant events are 
under-predicted by that cue, and weakened when they 
are over-predicted (Kamin, 1969; Rescorla & Wagner, 
1972). As a result, cues compete for relevance, and the 
outcome of this competition is shaped both by positive 
evidence about co-occurrences between cues and 
predicted events, and negative evidence about non-
occurrences of predicted events. Learning is thus the 
product of both positive and negative evidence in the 
environment. That is, if one takes a cue C to predict an 
Event E and E occurs, then the associative strength 
between C and E increases to the degree that E was 
underpredicted (positive evidence). However, if one 
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takes C to predict E, but E does not occur, then the 
associative strength between C and E decreases to the 
degree that E was overpredicted (negative evidence). 
This process produces patterns of learning that are very 
different from what would be expected if learning were 
shaped by positive evidence alone (a common portrayal 
of Pavlovian conditioning, Rescorla, 1988). 

Symbolic learning 
Language learning involves acquiring probabilistic 

information about the predictive relations between two 
aspects of the environment: labels and their semantic 
features. By a label we mean a token of language, such 
as the word ‘pan,’ and by semantic feature, we mean 
the features of objects, events or any ‘thing’ that is 
communicated about in symbolic language.  

Since the predictive relations relevant to language 
learning are relations between labels and features, we 
can distinguish two possible sequential forms that 
symbolic learning might take: (i) when cues are labels 
and events are semantic features; (ii) when cues are 
semantic features and events are labels. 

In case (i), which we will call LF-learning, one 
learns to predict and expect a certain feature from a 
given label. In case (ii), which we will call FL-
learning, one learns to predict and expect a certain 
label from a given feature or set of features. To 
understand the difference between what is actually 
learned in LF-learning as opposed to FL-learning, it is 
important to first note some important differences 
between labels, as the are employed in language, and 
the aspects of the environment they typically describe. 

The structure of labels and the world 
Symbolic labels are relatively discrete, and possess 
little cue-structure, whereas objects and events in the 
world are far less discrete, and possess much denser 
cue-structure. (By cue-structure we mean the amount of 
salient and discriminable cues that are simultaneously 
present in the thing—label or object—in question.)  

Consider a situation in which an object—say, a 
pan—is encountered in the environment. Even if one 
focuses on the pan and ignores other features of the 
background, one still encounters many discriminable 
features at once: shape, color, size, etc. Thus, when a 
pan predicts its label, it simultaneously provides a 
learner with many potentially discriminable cues to that 
label. Further, because objects are not discrete (pans 
share many features with things that are not pans), 
when the features of pans serve as cues to the label 
‘pan,’ some will cue other labels as well. In learning, all 
of these features will compete for relevance as better or 
worse predictors of ‘pan.’ 
     By contrast, consider the label ‘pan.’ A native 
English speaker can rapidly parse this word into a 

sequence of phonemes [ph an], but will otherwise be 
largely unable to discriminate many further features 
within these sounds. This is not to say that there are no 
other discriminable features within speech (such as 
emphasis, volume, or pitch contour), but rather to say 
that the dominant semantic feature is at the level of the 
phoneme. Ordinarily, other features of speech, such as 
pitch contour, do not compete with phonemes in 
predicting meaning in the same way that color might 
vie for relevance with shape in predicting an object 
label.1 And because phonemes occur in a sequence 
rather than simultaneously (see McClelland & Elman, 
1986), there can be little to no direct competition 
between them as cues. Thus, when the label ‘pan’ 
serves as a cue, the label comes with little competitive 
cue-structure: ‘pan’ essentially provides the learner 
with only one potential cue, i.e. the label ‘pan’ itself. 

The difference in cue-structure between labels and 
objects allows us to make a distinction between the two 
forms of learning. In LF-learning, since only one label 
at a time serves as a cue and since individual labels 
have little cue-structure, learning involves predicting a 
complex response from a single cue. LF-learning thus 
has a one-to-many form: one cue (the label) to many 
responses (the features).  

On the other hand, in FL-learning, when an object 
serves as the cue set, learning involves predicting a 
single response from a dense set of cues. FL-learning 
thus has a many-to-one form: many cues (the features) 
to one response (the label). 

The impact of Cue-Competition on Learning 
To see how these factors affect symbolic learning, 

consider a simplified environment in which there are 
two kinds of objects: wugs and nizes. These objects 
have two discriminating features: their shape and their 
color. Wugs are wug-shaped and can be either blue or 
red. Likewise, nizes are niz-shaped and can be either 
blue or red. Suppose now that one is learning what 
wugs and nizes are under FL-learning conditions. 
Figure 1 represents FL-learning in this simplified 
environment.  
     At (i), the learner encounters an object with two 
salient features, shape-1 and red, and then hears the 
label ‘wug.’ The learner acquires equal information 
about two predictive relations, shape⇒‘wug’ and 
red⇒‘wug.’ At (ii), the learner encounters two new 
cues and a new label, and forms two new equally 
weighted predictive relations, shape-2⇒‘niz’ and 

                                                             
1 In speech, it seems that there are complementary cue streams 
rather than cues in competition. For example, the ordinary 
way that words are stressed is complementary to their 
phonemic structure and the ways in which they are used.  In 
English, phonemes and stresses do not compete for relevance 
as cues. 
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blue⇒‘niz’. Then at (iii), the learner encounters two 
previously seen cues, shape-1 and blue. Given what the 
learner already knows—i.e., shape-1⇒‘wug’ and 
blue⇒‘niz’—she expects to encounter both ‘wug’ and 
‘niz,’ but only ‘wug’ actually occurs. As a result: (1) 
the associative strength for the relation shape-one  
‘wug’ increases, given the positive evidence of the 
occurrence of ‘wug’; and importantly (2) the negative 
evidence for the non-occurrence of ‘niz’ causes a loss 
of associative strength of blue  ‘niz.’ Crucially, as the 
associative strength of blue⇒‘niz’ decreases, it’s value 
relative to shape-2⇒ ‘niz’ decreases as well. At (iv), a 

similar situation occurs. The learner encounters shape-2 
and red and expects ‘niz’ and ‘wug’ to occur. When 
only ‘niz’ is heard, the associative strength of shape-
2⇒‘niz’ increases, while red⇒‘wug’ loses associative 
strength.  
     FL-learning is thus competitive: when cues lose 
associative strength, this changes their values relative to 
other cues. Importantly, associative value can shift from 
one cue to another; as one cue loses value, that value 
can be subsumed—i.e., gained—by another. 

 

 

Figure 1. Cue competition in learning. The top panels depict the temporal sequence of events:  an object is shown and then a 
word is heard over three trials.  The lower panels depict the relationship between the various cues and labels in word learning. 
 

 
Figure 2. When labels predict features, the absence of cue competition results a situation where the outcome of learning is 
simply be a representation of the probability of the features given the label.

Now consider LF-learning in a similar scenario 
(Figure 2). At (i), the learner encounters the label ‘wug’ 
and then an object with the two salient features, shape-1 
and red. She thus learns about two equal predictive 
relations ‘wug’⇒shape-1 and ‘wug’⇒red. Similarly, at 
(ii), the learner acquires two further equally valued 
relations ‘niz’⇒shape-2 and ‘niz’⇒blue. Now, at (iii), 
the learner hears ‘wug’ and expects the responses red 
and shape-1. However, shape-1 occurs and blue occurs. 
This has three consequences: (1) positive evidence 
causes an increase in the associative strength of 

‘wug’⇒shape-1; (2) ‘wug’⇒blue becomes a new 
predictive relation; (3) negative evidence decreases the 
associative strength of ‘wug’⇒red. However, since 
‘wug’ is the only cue, and there is no cue competition, 
this loss of associative strength does not occur relative 
to any other cues. Likewise at (iv), we have an increase 
in ‘niz’⇒shape-2, a new relation ‘niz’⇒red and a 
decrease in ‘niz’⇒blue.  But again, these losses and 
gains in associative strength do not occur relative to 
other cues, since ‘niz’ is the sole cue.  
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LF-learning is thus termed non-competitive and 
results in learning the probabilities of events occurring 
given a particular cue.  We call this “conditional 
probability learning.” 

The Feature-Label-Order Hypothesis 
     Both FL and LF-learning capture probabilistic 
information about the predictive relations between cues 
and responses in the environment; in each case, the 
relations are affected both by positive and negative 
evidence. However, there are fundamental distinctions 
between the two forms of learning. In FL-learning, 
since the cue-structure tends to be dense, cue-
competition tends to be strong; thus, FL-learning is 
competitive in addition to being non-competitive. On 
the other hand, LF-learning fails to satisfy dense cue-
structure and remains solely non-competitive.  

The following two computational simulations (in the 
Rescorla & Wagner, 1972 model)2 formally illustrate 
the differences in the representations of what one might 
would expect to get learned in LF and FL-learning. As 
Figure 3 shows, LF-learning simply results in a  
representation of the probability of each feature given 
the label; e.g., the learned associative value of 
‘wug’⇒red is about half of the associative strength of 
‘wug’⇒wug-shaped, because ‘wug’ predicts red 
successfully only 50% of the time while wug-shaped 
successfully 100% of the time. In FL-learning (Figure 
4), the learned representations reflect the value of cues: 
e.g., the associative relationship wug-shaped⇒‘wug’ is 
very reliable, and is highly valued relative to cues that 
generate prediction error. In this case the association 
red⇒‘wug’ is effectively unlearned, since red is a poor 
predictor of ‘wug.’ 

It appears, therefore, that the sequencing of labels and 
features has a significant effect learning. We call this 
the Feature-Label-Order hypothesis. 

 
 
 

 
Figure 3. The development of cue values in a simulation of 
the LF-learning scenario depicted in Figure 2.  
                                                             
2 The simulations assume either a niz or a wug is encountered 
in each trial, that each species and color is equally frequent in 
the environment, and that color and shape are equally salient. 

 

 
Figure 4. The development of cue values in a simulation of 
the FL-learning scenario depicted in Figure 1. 

 

Feature-Label-Order And Representation 
Our analysis predicts that the lack of cue structure in 

labels will inhibit category-learning when words serve 
as cues (LF-learning) as compared to when they are 
predicted by objects (FL-learning). Further, as the 
simulations reveal, in FL-learning a sacrifice is made in 
terms of the representation of items at the cue-level in 
order to gain discriminatory accuracy at the response-
level.  This suggests a complementary prediction: if LF-
learning produces less distortion in the representation of 
cues, we should expect that items learned about as cues 
in LF-training ought to be represented more accurately 
in memory. 

To examine both sides of the no representation 
without taxation hypothesis—i.e., that information 
gains at one level of representation come at a cost to 
another level—we conducted an experiment to see 
whether the increases in category discrimination 
brought about by FL-learning would be accompanied 
by decreases in the completeness of people’s 
representations of the items they had encountered in 
FL-training as compared to items they had encountered 
in LF-training.  

24 Stanford Undergraduates learned the names of six 
“species of aliens”. The six families were divided into 
three family pairs, with each pair sharing the same body 
type (Figure 5 shows one pair of families, with each 
row corresponding to a separate family). Each 
participant learned one family pair in FL-configuration, 
one family pair in LF-configuration, and one pair split 
so that one family was learned LF and one FL. The 
families assigned to each configuration were 
counterbalanced across participants. 
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Figure 5. Exemplars of two fribble categories3 used in 
training in Experiment 1. The configuration of the diagnostic 
features for each category is circled.  
 

Training comprised 2 identical blocks presenting 18 
exemplars of each of the six categories in a pseudo-
randomized order (i.e., no two exemplars from a family 
pair were presented adjacently). To enforce LF or FL 
predictive relationships in training, we minimized 
participants’ opportunities to strategize. All six 
categories were trained simultaneously, with exemplars 
interspersed in a semi-randomized order so that 
exemplars of each category were presented in a non-
predictable sequence. Exemplars were presented for 
only 175ms to inhibit participants’ ability to 
consciously search for features (Woodman & Luck, 
2003). LF-training trials comprised 1000ms 
presentation of a label (“this is a wug”), followed by a 
blank screen for 150 ms, followed by 175ms exposure 
to the exemplar. FL-training trials comprised 175 ms 
exemplar, 150 ms blank screen and 1000ms label (“that 
was a wug”). A 1000ms blank screen separated trials. 

Participants were tested in two ways. A first test 
examined their ability to correctly discriminate between 
the categories they had learned about. Participants were 
presented with both an exemplar they had been exposed 
to in training and a label on-screen, and asked to 
respond “old” if the exemplar-label pairing was one 
they had learned, and “new” if it was not one they had 
learned. There were 10 “old” and 10 “new” tests per 
category. The “new” trials presented pairings not seen 
in training, and two exemplars were mismatched with 
each of the 5 alternative labels, yielding 120 test trials. 

The second test examined participants’ ability to 
discriminate the actual fribbles they had learned from 
novel exemplars. Participants were presented with 8 
exemplars from each family that had been seen 
previously and 8 exemplars of each family that they had 
not seen previously, and asked to discriminate between 
them. The second test yielded 96 test trials. 

Results 
Table 1 presents rates for hits, false alarms and the 

signal detection measure d’ for each task and training 
type.  A 2 (training) x 2 (test) repeated measures 
ANOVA revealed an interaction between the way that 
participants learned the categories and their 
performance in the tests (F(1,21) = 4.695, p < .05). Post 
hoc paired t-tests revealed that participants were more 
accurate in verifying feature-label pairings when trained 
FL than LF (t(21) = 2.09, p<0.05). However, when 
participants were asked to recognize training items, the 
opposite was true: they were more accurate for items 
which had been trained LF rather than FL (t(21) = -1.9, 

                                                             
3 Created by Michael Tarr’s lab at Brown University. 

p<0.05). As hypothesized, improved learning about the 
categorization task appears to have come at the expense 
of accurate memory for the items that this information 
was learned from. Participants’ gains at one level of 
representation appear to have come at a cost to another. 

 
Category Verification Test 

 Hit False Alarm d’ 

FL-trained 0.73 0.43 1.30 

LF-trained 0.66 0.45 0.67 

 
Exemplar Recognition Test 

 Hit False Alarm d’ 

FL-trained 0.52 0.46 0.23 

LF-trained 0.62 0.36 1.04 

Table 1. Mean hit, false alarm, and d’ rates by test and by 
training-type. 

Discussion 
In this paper, we have sought to take seriously the 

task of accounting for both learning and representation. 
We have taken the view that in order for something to 
be represented it must be learned. Representations must 
therefore be subject to the constraints that are imposed 
by learning mechanisms.  

The principle we have discussed here—that learning 
distorts inputs—is implicitly enshrined in the 
mechanisms of neural network models (Rosenblatt, 
1959; Rescorla & Wagner, 1972; Rumelhart, Hinton & 
McClelland, 1986). To the extent that these models 
capture some aspects of the way learning works (Miller, 
Barnet & Grahame, 1995; Siegel & Allan, 1996), there 
seems to be reason to believe that human learning may 
be governed by the same principle (Hollerman & 
Schultz, 1998; Barlow, 2001), i.e., that learning about 
things can only come at some cost to the completeness 
of the representations of the things learned from. The 
results of our experiment support this analysis. We 
believe that this principle of no representation without 
taxation governs the processes by which we 
conceptualize the world. 

What might this contribute to the study of perceptual 
and cognitive representation? Briefly: it follows from 
our account that in order for the contents of a perceptual 
(phenomenal) representation to be instantiated or 
realized, the elements in the representation must be 
individually cashed out. In order to make those 
elements discrete, they must be discriminated from one 
another, and this will necessarily involve a loss of 
information at the level of the perceptual input. By this 
line of reasoning, a purely perceptual representation 
doesn't represent any thing per se; rather it is 
unanalyzed, or holistic. What we call cognitive 
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representations, on the other hand, are the result of 
discrimination (and discrimination-learning); that is, 
they are arrived at by taking a perceptual representation 
and slicing it up, discarding information for a purpose. 

This approach offers a new perspective from which to 
consider a wide range of cognitive phenomena. For 
example, in Sperling's (1960) partial report 
experiments, observers are required to identify a subset 
of the characters within the visual display. At various 
intervals after the removal of the visual display a tone is 
sounded to indicate to observers which particular set of 
characters within the display they are to report (e.g., the 
top, middle or bottom row). Participants are able to 
recollect four to five characters, irrespective of how 
many other characters were present within the display, 
and frequently report the phenomenal impression of 
many more elements immediately after display 
presentation. This is often taken as evidence that 
observers have a representation of all of the elements in 
the array, and that non-reported elements are lost to 
decay in memory.  

No representation without taxation sugest a more 
nuanced perspective of this phenomenon.  We suggest 
that it is a mistake to think that there is, say, a "7" or "k" 
in a phenomenal representation; the point is, there isn't. 
The information to discriminate a "7" or a "k" is there, 
but moving from a phenomenal representation to a 
cognitive representation necessarily involves a loss of 
information that allows the “7” and “k” to be 
discriminated cognitively from the rest of the 
phenomenal representation.  

We do not wish to claim here that this phenomena 
reduces simply along these lines. The ways in which 
multiple memory systems integrate their representations 
to produce human experience and behavior is likely to 
be far more complex than this simple sketch. Our hope 
is simply that by better illuminating the nature of 
cognitive representations and the constraints on their 
development, we may help further our understanding of 
how it is that we come to represent the world. 
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