No Representation without Taxation:
The Costs and Benefits of Learning to Conceptualize the Environment

Melody Dye and Michael Ramscar
Department of Psychology, Stanford University,
Jordan Hall, Stanford, CA 94305.

Abstract

How do the ways in which we learn influence our
cognitive representations of what we learn? We show
that in language learning tasks, the process of learning to
conceptualize and categorize perceptual input shapes
how that input gets represented in mind. In
representation, there seems to be a give and take between
veridicality and completeness, on the one hand, and
discrimination and accurate categorization, on the other.
Learning to better discriminate objects into categories
based on their highly-discriminating features makes
people less likely to notice or remember the same
objects' less-discriminating features. Gains in response-
discrimination between categories thus come at a cost to
within category discrimination. We suggest that the
mechanisms of human learning obey a simple principle:
there can be no representation without taxation.

Introduction

While we perceive the world through our senses, we
do not experience the world in terms of raw sense data;
rather we experience it in terms of concepts. We
experience a world of objects and events — pages,
screens, cars, people etc — and not the raw patterns of
activity that external stimuli produce in the retinal cells
of our eyes.

Most, if not all, cognitive activities appear to
involve a process of converting the mass of data we
receive from our senses into 'meaningful' concepts.
Learning imposes discontinuities on the continuous
dimensions of inputs, so that raw sense data is grouped
into larger representational wholes, which satisfy the
informational requirements of various cognitive
activities. We call this kind of discrimination-learning
categorization: the process of taking a set of
undifferentiated perceptual inputs and generating or
tuning responses to those inputs. Categorization is an
important aspect of cognition, and much effort has been
invested in attempting to account for how the 'stuff of
experience' is represented, manipulated and combined
in the mind, and how it relates to language. Our
research addresses an important question this process
raises: How do the ways in which cognitive
representations are developed and learned influence
what gets learned and represented?

In this paper, we explore the hypothesis that
different types of learning produce correspondingly
different cognitive representations. We show that

learning to conceptualize or categorize perceptual input
has consequences for the representation of the input
itself. In particular, in language-learning tasks,
improved  response-discrimination—i.e., improved
accuracy in dividing up perceptual input into conceptual
categories—comes at a cost to the representation of the
original input. Learning to better discriminate objects
into categories based on their highly-salient features
seems to make people less likely to notice or remember
the same objects’ less-salient features. Learners appear
to home in on the particular cues that are highly
predictive of a given category and simultaneously
discard—or ‘learn to ignore’—other probabilistic
information that is less informative. Gains in response-
discrimination between categories thus come at a cost
to within category discrimination. In what follows, we
lay out these ideas in detail and present empirical
evidence in support of them. We argue that the basic
principle of no representation without taxation amounts
to a fundamental law of learning.

Learning

Formally, learning can be conceived of as a process
by which probabilistic information is acquired about the
relationships between important regularities in the
environment (such as objects or events) and the cues
that allow those regularities to be predicted (Rescorla &
Wagner, 1972). The learning process is driven by
discrepancies between what is expected and what is
actually observed in experience (termed error-driven
learning). The learned predictive value of a given cue
produces expectations, and any difference between the
value of what is expected and what is observed
produces further learning. The predictive value of a
given cue is strengthened when relevant events are
under-predicted by that cue, and weakened when they
are over-predicted (Kamin, 1969; Rescorla & Wagner,
1972). As a result, cues compete for relevance, and the
outcome of this competition is shaped both by positive
evidence about co-occurrences between cues and
predicted events, and negative evidence about non-
occurrences of predicted events. Learning is thus the
product of both positive and negative evidence in the
environment. That is, if one takes a cue C to predict an
Event E and E occurs, then the associative strength
between C and E increases to the degree that E was
underpredicted (positive evidence). However, if one
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takes C to predict E, but E does not occur, then the
associative strength between C and E decreases to the
degree that E was overpredicted (negative evidence).
This process produces patterns of learning that are very
different from what would be expected if learning were
shaped by positive evidence alone (a common portrayal
of Pavlovian conditioning, Rescorla, 1988).

Symbolic learning

Language learning involves acquiring probabilistic
information about the predictive relations between two
aspects of the environment: labels and their semantic
features. By a label we mean a token of language, such
as the word ‘pan,” and by semantic feature, we mean
the features of objects, events or any ‘thing’ that is
communicated about in symbolic language.

Since the predictive relations relevant to language
learning are relations between labels and features, we
can distinguish two possible sequential forms that
symbolic learning might take: (i) when cues are labels
and events are semantic features; (ii) when cues are
semantic features and events are labels.

In case (i), which we will call LF-learning, one
learns to predict and expect a certain feature from a
given label. In case (ii), which we will call FL-
learning, one learns to predict and expect a certain
label from a given feature or set of features. To
understand the difference between what is actually
learned in LF-learning as opposed to FL-learning, it is
important to first note some important differences
between labels, as the are employed in language, and
the aspects of the environment they typically describe.

The structure of labels and the world

Symbolic labels are relatively discrete, and possess
little cue-structure, whereas objects and events in the
world are far less discrete, and possess much denser
cue-structure. (By cue-structure we mean the amount of
salient and discriminable cues that are simultaneously
present in the thing—Iabel or object—in question.)

Consider a situation in which an object—say, a
pan—is encountered in the environment. Even if one
focuses on the pan and ignores other features of the
background, one still encounters many discriminable
features at once: shape, color, size, etc. Thus, when a
pan predicts its label, it simultaneously provides a
learner with many potentially discriminable cues to that
label. Further, because objects are not discrete (pans
share many features with things that are not pans),
when the features of pans serve as cues to the label
‘pan,” some will cue other labels as well. In learning, all
of these features will compete for relevance as better or
worse predictors of ‘pan.’

By contrast, consider the label ‘pan.” A native
English speaker can rapidly parse this word into a

sequence of phonemes [p" an], but will otherwise be
largely unable to discriminate many further features
within these sounds. This is not to say that there are no
other discriminable features within speech (such as
emphasis, volume, or pitch contour), but rather to say
that the dominant semantic feature is at the level of the
phoneme. Ordinarily, other features of speech, such as
pitch contour, do not compete with phonemes in
predicting meaning in the same way that color might
vie for relevance with shape in predicting an object
label." And because phonemes occur in a sequence
rather than simultaneously (see McClelland & Elman,
1986), there can be little to no direct competition
between them as cues. Thus, when the label ‘pan’
serves as a cue, the label comes with little competitive
cue-structure: ‘pan’ essentially provides the learner
with only one potential cue, i.e. the label ‘pan’ itself.

The difference in cue-structure between labels and
objects allows us to make a distinction between the two
forms of learning. In LF-learning, since only one label
at a time serves as a cue and since individual labels
have little cue-structure, learning involves predicting a
complex response from a single cue. LF-learning thus
has a one-to-many form: one cue (the label) to many
responses (the features).

On the other hand, in FL-learning, when an object
serves as the cue set, learning involves predicting a
single response from a dense set of cues. FL-learning
thus has a many-to-one form: many cues (the features)
to one response (the label).

The impact of Cue-Competition on Learning

To see how these factors affect symbolic learning,
consider a simplified environment in which there are
two kinds of objects: wugs and nizes. These objects
have two discriminating features: their shape and their
color. Wugs are wug-shaped and can be either blue or
red. Likewise, nizes are niz-shaped and can be either
blue or red. Suppose now that one is learning what
wugs and nizes are under FL-learning conditions.
Figure 1 represents FL-learning in this simplified
environment.

At (i), the learner encounters an object with two
salient features, shape-1 and red, and then hears the
label ‘wug.” The learner acquires equal information
about two predictive relations, shape=‘wug’ and
red=‘wug.” At (ii), the learner encounters two new
cues and a new label, and forms two new equally
weighted predictive relations, shape-2=‘niz’ and

"In speech, it seems that there are complementary cue streams
rather than cues in competition. For example, the ordinary
way that words are stressed is complementary to their
phonemic structure and the ways in which they are used. In
English, phonemes and stresses do not compete for relevance
as cues.
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blue=‘niz’. Then at (iii), the learner encounters two
previously seen cues, shape-1 and blue. Given what the
learner already knows—i.e., shape-1=‘wug’ and
blue=‘niz’—she expects to encounter both ‘wug’ and
‘niz,” but only ‘wug’ actually occurs. As a result: (1)
the associative strength for the relation shape-one -
‘wug’ increases, given the positive evidence of the
occurrence of ‘wug’; and importantly (2) the negative
evidence for the non-occurrence of ‘niz’ causes a loss
of associative strength of blue 2 ‘niz.” Crucially, as the
associative strength of blue=>‘niz’ decreases, it’s value
relative to shape-2= ‘niz’ decreases as well. At (iv), a

similar situation occurs. The learner encounters shape-2
and red and expects ‘niz’ and ‘wug’ to occur. When
only ‘niz’ is heard, the associative strength of shape-
2=>‘niz’ increases, while red=‘wug’ loses associative
strength.

FL-learning is thus competitive: when cues lose
associative strength, this changes their values relative to
other cues. Importantly, associative value can shift from
one cue to another; as one cue loses value, that value
can be subsumed—i.e., gained—by another.

cue competition - associative and dissociative learning
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Figure 1. Cue competition in learning. The top panels depict the temporal sequence of events: an object is shown and then a
word is heard over three trials. The lower panels depict the relationship between the various cues and labels in word learning.
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Figure 2. When labels predict features, the absence of cue competition results a situation where the outcome of learning is
simply be a representation of the probability of the features given the label.

Now consider LF-learning in a similar scenario
(Figure 2). At (i), the learner encounters the label ‘wug’
and then an object with the two salient features, shape-1
and red. She thus learns about two equal predictive
relations ‘wug’=>shape-1 and ‘wug’=red. Similarly, at
(i1), the learner acquires two further equally valued
relations ‘niz’=>shape-2 and ‘niz’=>blue. Now, at (iii),
the learner hears ‘wug’ and expects the responses red
and shape-1. However, shape-1 occurs and blue occurs.
This has three consequences: (1) positive evidence
causes an increase in the associative strength of

‘wug’=>shape-1; (2) ‘wug’=>blue becomes a new
predictive relation; (3) negative evidence decreases the
associative strength of ‘wug’=>red. However, since
‘wug’ is the only cue, and there is no cue competition,
this loss of associative strength does not occur relative
to any other cues. Likewise at (iv), we have an increase
in ‘niz’=>shape-2, a new relation ‘niz’=red and a
decrease in ‘niz’=>blue. But again, these losses and
gains in associative strength do not occur relative to
other cues, since ‘niz’ is the sole cue.
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LF-learning is thus termed non-competitive and
results in learning the probabilities of events occurring
given a particular cue. We call this “conditional
probability learning.”

The Feature-Label-Order Hypothesis

Both FL and LF-learning capture probabilistic
information about the predictive relations between cues
and responses in the environment; in each case, the
relations are affected both by positive and negative
evidence. However, there are fundamental distinctions
between the two forms of learning. In FL-learning,
since the cue-structure tends to be dense, cue-
competition tends to be strong; thus, FL-learning is
competitive in addition to being non-competitive. On
the other hand, LF-learning fails to satisfy dense cue-
structure and remains solely non-competitive.

The following two computational simulations (in the
Rescorla & Wagner, 1972 model)® formally illustrate
the differences in the representations of what one might
would expect to get learned in LF and FL-learning. As
Figure 3 shows, LF-learning simply results in a
representation of the probability of each feature given
the label; e.g., the learned associative value of
‘wug’=>red is about half of the associative strength of
‘wug’=wug-shaped, because ‘wug’ predicts red
successfully only 50% of the time while wug-shaped
successfully 100% of the time. In FL-learning (Figure
4), the learned representations reflect the value of cues:
e.g., the associative relationship wug-shaped=>‘wug’ is
very reliable, and is highly valued relative to cues that
generate prediction error. In this case the association
red=‘wug’ is effectively unlearned, since red is a poor
predictor of ‘wug.’

It appears, therefore, that the sequencing of labels and
features has a significant effect learning. We call this
the Feature-Label-Order hypothesis.
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Figure 3. The development of cue values in a simulation of
the LF-learning scenario depicted in Figure 2.

% The simulations assume either a niz or a wug is encountered
in each trial, that each species and color is equally frequent in
the environment, and that color and shape are equally salient.
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Figure 4. The development of cue values in a simulation of
the FL-learning scenario depicted in Figure 1.

Feature-Label-Order And Representation

Our analysis predicts that the lack of cue structure in
labels will inhibit category-learning when words serve
as cues (LF-learning) as compared to when they are
predicted by objects (FL-learning). Further, as the
simulations reveal, in FL-learning a sacrifice is made in
terms of the representation of items at the cue-level in
order to gain discriminatory accuracy at the response-
level. This suggests a complementary prediction: if LF-
learning produces less distortion in the representation of
cues, we should expect that items learned about as cues
in LF-training ought to be represented more accurately
in memory.

To examine both sides of the no representation
without taxation hypothesis—i.e., that information
gains at one level of representation come at a cost to
another level—we conducted an experiment to see
whether the increases in category discrimination
brought about by FL-learning would be accompanied
by decreases in the completeness of people’s
representations of the items they had encountered in
FL-training as compared to items they had encountered
in LF-training.

24 Stanford Undergraduates learned the names of six
“species of aliens”. The six families were divided into
three family pairs, with each pair sharing the same body
type (Figure 5 shows one pair of families, with each
row corresponding to a separate family). Each
participant learned one family pair in FL-configuration,
one family pair in LF-configuration, and one pair split
so that one family was learned LF and one FL. The
families assigned to each configuration were
counterbalanced across participants.
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Figure 5. Exemplars of two fribble categories’ used in
training in Experiment 1. The configuration of the diagnostic
features for each category is circled.

Training comprised 2 identical blocks presenting 18
exemplars of each of the six categories in a pseudo-
randomized order (i.e., no two exemplars from a family
pair were presented adjacently). To enforce LF or FL
predictive relationships in training, we minimized
participants’ opportunities to strategize. All six
categories were trained simultaneously, with exemplars
interspersed in a semi-randomized order so that
exemplars of each category were presented in a non-
predictable sequence. Exemplars were presented for
only 175ms to inhibit participants’ ability to
consciously search for features (Woodman & Luck,
2003).  LF-training trials comprised  1000ms
presentation of a label (“this is a wug”), followed by a
blank screen for 150 ms, followed by 175ms exposure
to the exemplar. FL-training trials comprised 175 ms
exemplar, 150 ms blank screen and 1000ms label (“that
was a wug”). A 1000ms blank screen separated trials.

Participants were tested in two ways. A first test
examined their ability to correctly discriminate between
the categories they had learned about. Participants were
presented with both an exemplar they had been exposed
to in training and a label on-screen, and asked to
respond “old” if the exemplar-label pairing was one
they had learned, and “new” if it was not one they had
learned. There were 10 “old” and 10 “new” tests per
category. The “new” trials presented pairings not seen
in training, and two exemplars were mismatched with
each of the 5 alternative labels, yielding 120 test trials.

The second test examined participants’ ability to
discriminate the actual fribbles they had learned from
novel exemplars. Participants were presented with 8
exemplars from each family that had been seen
previously and 8 exemplars of each family that they had
not seen previously, and asked to discriminate between
them. The second test yielded 96 test trials.

Results

Table 1 presents rates for hits, false alarms and the
signal detection measure d’ for each task and training
type. A 2 (training) x 2 (test) repeated measures
ANOVA revealed an interaction between the way that
participants  learned the categories and their
performance in the tests (F(1,21) = 4.695, p < .05). Post
hoc paired t-tests revealed that participants were more
accurate in verifying feature-label pairings when trained
FL than LF (t(21) = 2.09, p<0.05). However, when
participants were asked to recognize training items, the
opposite was true: they were more accurate for items
which had been trained LF rather than FL (t(21) =-1.9,

? Created by Michael Tarr’s lab at Brown University.

p<0.05). As hypothesized, improved learning about the
categorization task appears to have come at the expense
of accurate memory for the items that this information
was learned from. Participants’ gains at one level of
representation appear to have come at a cost to another.

Category Verification Test

Hit False Alarm | d’
FL-trained 0.73 0.43 1.30
LF-trained 0.66 0.45 0.67

Exemplar Recognition Test

Hit False Alarm | d’
FL-trained 0.52 0.46 0.23
LF-trained 0.62 0.36 1.04

Table 1. Mean hit, false alarm, and d’ rates by test and by
training-type.

Discussion

In this paper, we have sought to take seriously the
task of accounting for both learning and representation.
We have taken the view that in order for something to
be represented it must be learned. Representations must
therefore be subject to the constraints that are imposed
by learning mechanisms.

The principle we have discussed here—that learning
distorts inputs—is implicitly enshrined in the
mechanisms of neural network models (Rosenblatt,
1959; Rescorla & Wagner, 1972; Rumelhart, Hinton &
McClelland, 1986). To the extent that these models
capture some aspects of the way learning works (Miller,
Barnet & Grahame, 1995; Siegel & Allan, 1996), there
seems to be reason to believe that human learning may
be governed by the same principle (Hollerman &
Schultz, 1998; Barlow, 2001), i.e., that learning about
things can only come at some cost to the completeness
of the representations of the things learned from. The
results of our experiment support this analysis. We
believe that this principle of no representation without
taxation governs the processes by which we
conceptualize the world.

What might this contribute to the study of perceptual
and cognitive representation? Briefly: it follows from
our account that in order for the contents of a perceptual
(phenomenal) representation to be instantiated or
realized, the elements in the representation must be
individually cashed out. In order to make those
elements discrete, they must be discriminated from one
another, and this will necessarily involve a loss of
information at the level of the perceptual input. By this
line of reasoning, a purely perceptual representation
doesn't represent any thing per se; rather it is
unanalyzed, or holistic. What we call cognitive
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representations, on the other hand, are the result of
discrimination (and discrimination-learning); that is,
they are arrived at by taking a perceptual representation
and slicing it up, discarding information for a purpose.

This approach offers a new perspective from which to
consider a wide range of cognitive phenomena. For
example, in Sperling's (1960) partial report
experiments, observers are required to identify a subset
of the characters within the visual display. At various
intervals after the removal of the visual display a tone is
sounded to indicate to observers which particular set of
characters within the display they are to report (e.g., the
top, middle or bottom row). Participants are able to
recollect four to five characters, irrespective of how
many other characters were present within the display,
and frequently report the phenomenal impression of
many more elements immediately after display
presentation. This is often taken as evidence that
observers have a representation of all of the elements in
the array, and that non-reported elements are lost to
decay in memory.

No representation without taxation sugest a more
nuanced perspective of this phenomenon. We suggest
that it is a mistake to think that there is, say, a "7" or "k"
in a phenomenal representation; the point is, there isn't.
The information to discriminate a "7" or a "k" is there,
but moving from a phenomenal representation to a
cognitive representation necessarily involves a loss of
information that allows the “7” and “k” to be
discriminated cognitively from the rest of the
phenomenal representation.

We do not wish to claim here that this phenomena
reduces simply along these lines. The ways in which
multiple memory systems integrate their representations
to produce human experience and behavior is likely to
be far more complex than this simple sketch. Our hope
is simply that by better illuminating the nature of
cognitive representations and the constraints on their
development, we may help further our understanding of
how it is that we come to represent the world.
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