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Abstract

We present a formal analysis of symbolic learning that
predicts significant differences in symbolic learning
depending on the sequencing of semantic features and
labels. A computational simulation confirms the Feature-
Label-Ordering (FLO) effect in learning that our analysis
predicts. Discrimination learning is facilitated when
semantic features predict labels, but not when labels
predict semantic features. A behavioral study confirms
the predictions of the simulation. Our results and analysis
suggest that the semantic categories people use to
understand and communicate about the world might only
be learnable when labels are predicted from objects.

Introduction

The ways in which symbolic knowledge is learned
and represented in the mind are poorly understood. We
present an analysis of symbolic learning—in particular,
word learning—in terms of error-driven learning, and
consider two possible ways in which symbols might be
learned: learning to predict a label from the features of
objects and events in the world; or learning to predict
those features from a label. This analysis predicts
significant differences in symbolic learning depending
on the sequencing of objects and labels, confirmed in
computational simulations and an empirical study.
Discrimination learning is facilitated when semantic
features predict labels, but not when labels predict
semantic features. We call this the Feature-Label-
Ordering (FLO) effect. Our results and analysis suggest
that the semantic categories people use to understand
and communicate about the world can only be learned if
labels are predicted from objects.

Learning

Formally, learning can be conceived of as a process
by which probabilistic information is acquired about the
relationships between important regularities in the
environment (such as objects or events) and the cues
that allow those regularities to be predicted (Rescorla &
Wagner, 1972). This process is driven by discrepancies
between what is expected and what is actually observed
in experience (termed error-driven learning). The
learned value of a given cue produces expectations, and
any difference between the value of what is expected
and what is observed produces further learning. The
predictive value of a cues are strengthened when
relevant events are under-predicted, and weakened

when they are over-predicted (Kamin, 1969; Rescorla
& Wagner, 1972). As a result, cues compete for
relevance, and the outcome of this competition is
shaped both by positive evidence about co-occurrences
between cues and predicted events, and negative
evidence about non-occurrences of predicted events.
This process produces patterns of learning that are very
different from what would be expected if learning were
shaped by positive evidence alone (a common portrayal
of Pavlovian conditioning, Rescorla, 1988).

Symbolic learning

Language learning involves acquiring information
about the relations between labels and their semantic
features. Here we define labels as tokens of language,
such as the word ‘pan,” and semantic features as the
properties of the objects and events communicated
about in language. In turn, we can distinguish two
possible forms that symbolic learning about labels and
features can take:

(i) cues are labels and events are semantic features;

(ii) cues are semantic features and events labels.

In (i), which we call Label-to-Feature or LF-
Learning, one learns to predict and expect certain
features given a label. In (ii), which we call Feature-to-
Label or FL-Learning, one learns to predict and expect
labels given a feature or certain set of features. To
explain the difference between what is learned in LF-
learning versus FL-learning, it is important to note
some differences between labels, as they are employed
in language, and the aspects of the environment they
typically describe.

The structure of labels and the world

Symbolic labels are relatively discrete, and possess
little cue-structure, whereas objects and events in the
world are far less discrete, and possess much denser
cue-structure. (By cue-structure we mean the number of
potentially discriminable cues that are simultaneously
present.) Consider a situation in which say, a pan is
encountered in the environment. A pan presents to a
learner many discriminable features: shape, color, size,
etc. However, because objects are not discrete (i.e.,
pans share many features with things that are not pans),
some of these features will cue other labels as well.

By contrast, consider the label ‘pan.” A native
English speaker can parse this word into a sequence of
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phonemes [p" an], but will be unable to discriminate
many further features. This is not to say that there are
no other discriminable features within speech (such as
emphasis, volume, or pitch contour), but rather to say
that the dominant semantic feature is at the level of the
phoneme. Other features of speech do not compete with
phonemes in predicting meaning in the same way that
color might vie for relevance with shape in predicting
an object label. Further, because phonemes occur in a
sequence rather than simultaneously, there can be little
to no direct competition between them as cues. Thus,
labels such as ‘pan’ provides little competitive cue-
structure: ‘pan’ essentially provides the learner with
only a single cue, i.e. the label ‘pan’ itself.

The difference in cue-structure in turn affects the
formal properties of the two forms of learning we
described above. In LF-learning, because labels serve as
cues and since individual labels have little cue-
structure, learning involves predicting a set of features
(the semantic features of objects and events) from a
single cue (the label). Thus, LF-learning has a one-to-
many form: one cue to many features.

By contrast, in FL-learning, when object or event
serve as cues, learning involves predicting a single
response (a label) from a large set of cues (the features
of an event or object). Thus FL-learning, has a many-to-
one form: from many semantic features to a label.

Cue-competition in learning

Where many cues are presented simultaneously, they
can compete for relevance in the prediction of a
particular event. If a cue successfully predicts an event
over time (positive evidence), the associative strength
between the cue and the event will increase.
Conversely, when a cue unsuccessfully predicts a given
event—i.e., the event does not follow the cue (negative

evidence), the associative strength between the cue and
the response will decrease.

In one-to-many LF-learning, a single cue will be
predictive of each of the many features encountered in
an object or event. Because no other cues are available
to compete for associative value, there can be no loss of
potential associative value to other cues over the course
of learning trials. By contrast, in many-to-one FL-
learning, because many cues are available to compete
for relevance, learning will separate the highly reliable
cues from the less reliable cues, favoring cues with a
high degree of positive evidence and disfavoring those
with a high degree of negative evidence. FL-learning
and LF-learning thus differ significantly in terms of
cue-competition; the dense cue-structure of FL-learning
fosters cue-competition, while the sparse cue-structure
of LF-learning inhibits it.

Cue-structure and symbolic learning

To see how these factors affect symbolic learning,
consider a simplified environment in which there are
two kinds of objects: wugs and nizes. These objects
have two salient features: their shape and their color.
Wugs are wug-shaped and can be either blue or red.
Likewise, nizes are niz-shaped and can be either blue or
red. Suppose now that one is learning what wugs and
nizes are under FL-learning conditions. Figure 1
represents FL-learning in this simplified environment:

At (i), a learner encounters an object with two
poentially relevant features, shape-1 and red, and then
hears the label ‘wug’. The learner acquires information
about two equally predictive relations, shape-=>‘wug’
and red=‘wug’. At (ii), the learner two new cues and a
new label, and forms two new equally weighted
predictive relations, shape-2=>‘niz’ and blue=‘niz’.
Then at (iii), the learner encounters two previously seen
cues, shape-1 and blue.

cue competition - associative and dissociative learning
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Figure 1. Cue competition in Feature-to-Label learning. The top panels depict the temporal sequence of events: an object is
shown and then a word is heard over three trials. The lower panels depict the relationship between the various cues and labels.
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Figure 2. In Label-to-Feature Learning, the absence of cue competition results in a situation where the outcome of learning is
simply a representation of the probability of the features given the label.

Given what the learner already knows—i.e., shape-
I=‘wug’ and blue=‘niz’—she expects ‘wug’ and
‘niz,” but, only ‘wug’ actually occurs. As a result: (1)
given positive evidence of the occurrence of ‘wug’, the
associative strength for the relation shape-1=‘wug’
increases; and importantly (2) negative evidence about
the non-occurrence of ‘niz’ causes blue=‘niz’ to lose
associative strength. Crucially, as the associative
strength of blue=‘niz’ decreases, its value relative to
shape-2=> ‘niz’ changes as well. At (iv), a similar
situation occurs. The learner encounters shape-2 and
red and expects ‘niz’ and ‘wug’. Only ‘niz’ is heard, so
the associative strength of shape-2=>‘niz’ increases,
while red=‘wug’ loses associative strength.

FL-learning is thus competitive: if a cue loses
associative strength, its value can change relative to
other cues. Since one cue’s loss can be another’s gain,
this may shift associative value from one cue to another.

Now consider LF-learning in a similar scenario
(Figure 2). At (i), a learner encounters the label ‘wug’
and then an object with the two salient features, shape-1
and red. She thus learns about two equally valuable
predictive relations ‘wug’ =>shape-1 and ‘wug’=>red.
Similarly, at (ii), the learner acquires two further
equally valued relations  ‘niz’=>shape-2  and
‘niz’=>blue. Now, at (iii), the learner hears ‘wug’ and
expects red and shape-1. However, shape-1 occurs and
blue occurs. This has three consequences: (1) positive
evidence induces an increase in the associative strength
of ‘wug’=>shape-1; (2) ‘wug’=blue becomes a new
predictive relation; (3) negative evidence decreases the
strength of ‘wug’=red. However, since ‘wug’ is the
only cue, this loss of associative strength is not relative
to any other cues (likewise at iv). LF-learning is thus
non-competitive, and simply results in the learning of
the probabilities of events occurring given cues.

The Feature-Label-Order Hypothesis

Both FL and LF-learning capture probabilistic
information predictive relationships in the environment.
However, there are fundamental differences between
the two. In FL-learning, predictive power, not
frequency or simple probability, determines cue values.
LF-learning is probabilistic in far more simple terms.
Given this, it seems that the sequencing of labels and
features ought to have a marked affect on learning. We
call this the Feature-Label-Order hypothesis.

We formally tested the FLO hypothesis in
simulations using a prominent error-driven learning
model (Rescorla &Wagner, 1972; see also; Allen and
Siegel, 1996). We should note that the analysis of
symbolic learning described here could be implemented
in a number of other models (e.g., Pearce & Hall, 1980;
Rumelhart, Hinton & McClelland, 1986; Barlow, 2001)
and applied to learning other environmental regularities.

The Rescorla-Wagner model formally states how the
associative values (V) of a set of cues i predicting an
event j change as a result of learning in discrete training
trials, where n indexes the current trial.

Equation (1) is a discrepancy function that describes
the amount of learning that will occur on a given trial;
i.e., the change in associative strength between a set of
cues i and some event j:'

AVi'=ai B; (%; - Vrorar) (1)

If there is a discrepancy between A, (the total possible
associative value of an event) and Vrzory (the sum of
current cue values), the saliency of the set of cues o and
the learning rate of the event B will be multiplied
against that discrepancy. The resulting amount will then
be added or subtracted from the associative strength of
any cues present on that trial.

! Vi is the change in associative strength on a learning trial 7.
a denotes the saliency of i, and B the learning rate for .
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The associative strength between a set of cues i and
an event j will increase in a negatively accelerated
fashion over time, as learning gradually reduces the
discrepancy between what is predicted and what is
observed. Given an appropriate learning-rate, learning
asymptotes at a level that minimizes the sum-of-squares
prediction error for a set of observed cues to an event.
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Figure 3. The development of cue values in a simulation of
the LF-learning scenario depicted in Figure 2.
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Figure 4. The development of cue values in a simulation of
the FL-learning scenario depicted in Figure 1.

Discrimination and interference

Two computational simulations (in the Rescorla &
Wagner, 1972 model, described below)’ formally
illustrate the differences in the representations of what
gets learned in LF and FL-learning. As Figure 3 shows,
LF-learning simply results in a representation of the
probability of each feature given the label; e.g., the
learned associative value of ‘wug’=>red is about half of
the associative strength of ‘wug’=wug-shaped,
because ‘wug’ predicts red successfully only 50% of
the times and wug-shaped successfully 100% of the
time. In FL-learning (Figure 4), the learned
representations reflect the value of cues: the associative
relationship ‘wug’=>wug-shaped is very reliable, and is
highly valued relative to cues that generate prediction
error. In this case the association ‘wug’=red is
effectively unlearned.

% The simulations assume either a niz or a wug is encountered
in each trial, that each species and color is equally frequent in
the environment, and that color and shape are equally salient.

It is important to note that in LF-learning, the lack of
discrimination produced by Ilearning can lead to
problems of interference in predicting events (or
responses to them). LF-learning tends to produce
representations in which a number of competing
predictions are all highly probable. To illustrate this,
we return to our wug / niz example. Imagine a world in
which there were fifty times as many blue wugs as blue
nizzes in the population, and fifty times as many red
nizzes as red wugs. In this scenario, the color red will
cue “niz” about 98% of the time and “wug” less than
2% of the time, simply based on frequency of
occurrence. For a child trying to name a red wug,
there’s again a near 100% probability that wug-shaped
= wug, but now there’s also a 98% probability that red
= niz. There will thus be a large degree of uncertainty
regarding the correct answer. We call this response
interference. The problem here is that tracking the
frequencies of successful predictions does not pick out
the cues that best discriminate one prediction from
another. Thus, while both FL and LF-learning may
produce successful response-discrimination in an ideal
world, LF-learning will fail to discriminate events when
their frequencies vary; and in the actual world, these
frequencies inevitably will.
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Figure 5: The abstract representations of the category
structures used to train the Rescorla-Wagner models

Simulating interference

To illustrate the problem of response interference, we
simulated category learning in the Rescorla-Wagner
model using abstract representations of the category
structures in Figure 5. The training set comprised 3
category labels and 9 exemplar features (3 non-
discriminating features that were shared between
exemplars belonging to different categories, and 6
discriminating features that were not shared with
members of another category). The frequency of the
sub-categories was manipulated so that each labeled
category drew 75% of its exemplars from one sub-
category and 25% of its exemplars from another
subcategory. The two sub-categories that made up each
labeled category did not share any features, such that
learning to correctly classify one of the sub-categories
paired with each label would provide no assistance with
learning the other sub-category paired with that label.
Finally, each low frequency sub-category shared its
non-discriminating feature with the high frequency
exemplars of a different labeled category. This
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manipulation was designed to create a bias towards the
misclassification of the low-frequency exemplars.
Learning to correctly classify low frequency exemplars
necessarily required learning to weigh the
discriminating feature more than the non-discriminating
feature, despite its lower overall input frequency.

Two simulations were configured to created two
networks of feature and label relationships. The first
network learned associative weights from the 9
exemplar features (serving as cues) to the 3 labels
(serving as events; “FL training”), while in the second
case the network learned from the 3 labels (serving as
cues) to the 9 features (serving as events; LF training).
Each category had a high frequency exemplar,
presented on 75% of the training trials for that category,
and a low frequency exemplar (occurring 25% of the
time). On each training trial a label and appropriate
exemplar pattern were selected randomly to train each
of the two networks. Training comprised 5000 trials,
which allowed learning to reach asymptote. The model
has several parameters that affect learning. For
simplicity, the simulations assumed equally salient cues
and events (a=0.01 for all 7; B=0.01 for all ) and equal
maximum associative strengths (= 1.0).

To test the FL-network, exemplar features were
activated to determine the subsequent activation of the
labels. Propagating these values across the weights
learned by the network then determined the associative
values that had been learned for each label given those
features. Luce’s Choice Axiom (Luce, 1959) was used
to derive choice probabilities for the 3 labels given
these activations, revealing that the FL-trained network
categorized and discriminated well (the probability of
correct classification for the low and the high frequency
exemplars was p=1).

LF-network testing involved activating the labels in
order to determine subsequent activation of the features.
In turn, each label was given an input value of 1, and
this then produced activation levels in the features,
which were determined by the associative values
learned in training. In order to assess the network’s
performance, the Euclidean distance between the
predicted activations and the actual feature activations
of the appropriate exemplar were calculated. For each
label there were two sets of feature activations: those
corresponding to the high and low frequency
exemplars. To test learning of both exemplar types, a
category and a frequency (either high or low) were
selected, and the difference between the feature
activations predicted by the network and the correct
values for the category exemplars was computed. These
differences were then converted to z-scores, and from
these the probabilities of selecting the correct exemplar
given the category label were calculated as follows:

P(x) = exp(-z(dist(x,t)) 2)

where P(x) is the likelihood of the network selecting
exemplar x, z(-) returns the z-score of its argument
relative to its population, dist(,’) is the Euclidean
distance function, and t is the exemplar pattern
generated by the network. The P(x) likelihoods were
normalized using Luce’s Choice Axiom to yield
normalized probability estimates. These revealed that
the LF network performed poorly. At asymptote, it
predicted the correct feature pattern with only p=.35
confidence for low frequency exemplars (chance), and
p=.75 confidence for high frequency exemplars.

Testing the FLO Hypothesis

Consistent with our hypothesis, a notable Feature-
Label-Order Effect was detectable in the simulations.
The following experiment was designed to see whether
human learning would show a similar effect.
Participants

32 Stanford Undergraduates participated for credit.
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Figure 6. The category structures Experiment 1. (The stimuli
are fribbles created by Michael Tarr’s lab at Brown
University.) The features that need to be weighted to
successfully distinguish the sub-categories are circled on the
low-frequency “dep” and high-frequency “tob” exemplars.

Method and Materials

Three experimental categories of “fribbles” were
constructed, each comprising two sub-categories
clustered around a non-discriminating feature and a set
of discriminating features. The two sub-categories that
made up each labeled category did not share features,
and so learning to correctly classify one of the sub-
categories paired with each label provided no assistance
with learning the other sub-category paired with that
label. The sub-categories were again manipulated so
that 75% of the exemplars of a category belonged to
one sub-category, and 25% to another, and each non-
discriminating feature was shared by high frequency
and low frequency exemplars that belonged to different
categories. Thus learning to correctly classify low
frequency exemplars necessarily required learning to
weigh the discriminating feature more than the non-
discriminating feature. A control category served to
check that there were no differences in learning
between the two groups other than those we
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hypothesized: all its exemplars shared just one, highly
salient feature (all were blue). Because learning this
category involved a binary pairing blue=bim, there
was no “predictive structure” to discover. In the
absence of competing exemplars, learning was
predicted to be identical for FL and LF training.

To enforce LF or FL relationships as our participants
studied “species of aliens” we minimized their ability to
strategize (word learning is rarely a conscious process).
All four categories were trained simultaneously,
exemplars of each category were presented in a non-
predictable sequence, and each exemplar was presented
for only 175ms to inhibit participants’ ability to search
for features. FL training trials comprised 1000ms
presentation of a label (“this is a wug”), followed by a
blank screen for 150 ms, followed by 175ms exposure
to the exemplar. LF training trials comprised 175 ms
exemplar, 150 ms blank screen and 1000ms label (“that
was a wug”). A 1000ms blank screen separated all trials
(see Figure 10). A training block comprised 20 different
exemplars of each experimental category — 15 high-
frequency exemplars and 5 low-frequency exemplars —
and 15 control category exemplars. Training comprised
2 identical blocks, with a short rest between the blocks.

Testing consisted of speeded 4 alternative forced-
choice tasks. Half the participants matched an exemplar
to the 4 category labels, and half matched a label to 4
previously exemplars drawn from each -category.
Participants were instructed to respond as quickly as
they could (after 3500ms, a buzzer sounded and no
response was recorded). Each sub-category (and the
control) was tested 8 times, yielding 56 test trials.
Results and Discussion

The results of the experiment were remarkably
consistent with our predictions; a 2 x 2 ANOVA
revealed a significant interaction between exemplar-
frequency and training (F(1,94)=20.187, p<0.001;
Figure 6). The FL-trained participants classified high
and low frequency items accurately (FL high p=.98;
low p=.78), while the LF-trained participants only
accurately classified high-frequency items (p=.86) and
failed to classify the low frequency exemplars above
chance levels (p=.36, t(47)=0.536, p>0.5). The control
category was learned to ceiling in both conditions.
Analyses of confusability (i.e., the rates at which
exemplars were misclassified to the category with
which they shared non-discriminating features) showed
the same interaction between frequency and training
(F(1,94)=8.335, p<0.005), with higher confusion rates
after LF training (M=22.6%) than FL (M=6%;
t(16)=5.23, p<0.0001). These differences were not due
to a speed / accuracy trade-off; participants trained FL
were faster as well as more accurate (LF M=2332ms,
FL M=2181ms; t(190)=1.677, p<0.1).
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Figure 7: Performance of participants training and exemplar type.
Note here that SX corresponds to Label-to-Feature (LF) and XS to
Feature-to-Label (FL).

To the degree that learning is driven by prediction
error (and there is considerable evidence that it is) the
Feature-Label-Ordering effect may be an inevitable
feature of learning. We believe it has many implications
for our understanding of language and cognition.
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