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Abstract

Individual differences in analogical reasoning, long of
interest to intelligence researchers, provide a unique
window to view how changes in working memory and
relational learning may jointly contribute to
development. Hosenfeld, van der Maas, and van den
Boom (1997) collected geometric analogy data from 6-7
year children during repetitive testing sessions over the
course of one year. They identified three groups of
children who showed different performance trajectories.
We simulate these data in DORA/LISA and suggest that
improved performance over training sessions likely
results from children improving in being able to identify
spatial relations, while the differences in learning
trajectories across the groups of children of the same age
are best explained by individual differences in working
memory.
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Introduction

Developments in children's analogical reasoning are
traditionally attributed either to increased working
memory resources due to maturation (e.g., Halford,
2005; Richland, Morrison & Holyoak, 2006) or
accretion of a knowledge base relevant to the particular
analogical reasoning task (see Rattermann & Gentner,
1998; Goswami, 2001). To address these alternative
claims, studies have either held knowledge constant and
correlated age with success on analogy tasks with
increasingly demanding working memory requirements
(see Halford, 2005; Richland et al, 2006), or correlated
performance on a knowledge test with performance on
an analogical reasoning task (see Goswami, 2001).
Most of these experiments have been cross-sectional,
which has impeded the field's ability to develop a
comprehensive theory of development that includes
both factors.

A study by Hosenfeld, van den Boom, and van den
Boom (1997) used a longitudinal methodology,

collecting geometric analogy data from 6-7 year old
children during repetitive testing sessions over the
course of one year. Most children improved over the
sessions, but these authors were particularly interested
in the qualitative nature of the developmental
trajectories. Children's performance followed into three
distinct patterns of change (see Figure 6) and the
authors analyzed these patterns for qualitative insights
into analogical change.

These data are also illustrative in considering the
relations among processing resources and knowledge in
development. We simulate these data in DORA/LISA
to better understand the hypothesized contributions of
resource maturation (i.e., working memory), and
knowledge accretion. Specifically, we use DORA to
simulate children’s ability to better recognize spatial
relations over repeated training sessions and then use
LISA to simulate children’s reasoning based on these
representations of spatial relations. Importantly, we
manipulate working memory in both models (via
changes in lateral inhibition in the model) to simulate
individual differences across groups of children.

Methods

In this section we describe the Hosenfeld et al. (1997)
study, followed by a general description of the DORA
and LISA models and present task simulations.

Task Description

In Hosenfeld et al.’s (1997) study children solved
geometric analogy problems consisting of simple
shapes in common relations such as above/below (see
Figure 1). The complexity of the problems was varied
by changing the number of relations needed to
characterize the A:B transition. During testing, children
solved A:B :: C:D problems in which they had to draw
the missing D term to make a valid analogy. 6-7 year-
old children were administered the task eight times over
the course of one year, at three-week intervals.
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Figure 1. Analogy problems varying in complexity
based on those in Hosenfeld et al., (1997).

Researchers recorded accuracy rates, time to solution,
and types of errors made.

Children's performance could be collapsed into three
learning profiles: 1) Non-Analogical Reasoners, who
solved the majority of problems non-analogically
throughout all sessions, 2) Transitional Reasoners, who
moved from solving problems largely non-analogically
to solving problems largely analogically, and 3)
Analogical Reasoners, who solved the majority of
problems analogically throughout the treatment. The
learning trajectories of accuracy over time are shown in
Figure 6.

Model Description

LISA (Hummel & Holyoak, 1997, 2003) is a symbolic-
connectionist model of analogy and relational
reasoning. DORA (Doumas, Hummel, & Sandhofer,
2008) is a model, based on LISA, which learns
structured (i.e., symbolic) representations of properties
and relations from unstructured inputs. That is, DORA
provides an account of how the structured relational
representations LISA wuses to perform relational
reasoning can be learned from examples.

DORA accounts for over 20 phenomena from the
literature on relational learning, as well as its
development (Doumas et al., 2008). In addition, as
DORA learns representations of relations and properties
it can be coupled to LISA to simulate an additional 30+
phenomena in relational thinking. The description of
DORA/LISA that follows is a brief overview due to
space constraints. For full details see Doumas et al.
(2008) and Hummel and Holyoak (1997, 2003).
LISAese Representations In LISA (and by extension
in DORA gffer it has gone through learning) relational
structures are represented by a hierarchy of distributed
and localist codes (see Figure 2). At the bottom,
“semantic” units represent the features of objects and
roles in a distributed fashion. At the next level, these

distributed representations are connected to localist
units (POs) representing individual predicates (or role)
and objects. Localist role-binding units (RBs;
alternatively called subpropositions, SPs) link object
and relational role units into specific role-filler
bindings. At the top of the hierarchy, localist P units
link RBs into whole relational propositions.

To represent the proposition contains (shield,
square) as shown in the top left stimulus in Figure 1,
PO units (triangles and large circles in Figure 2)
representing the relational roles outside and inside, and
the fillers shield and square are connected to semantic
units coding their semantic features. = RB units
(rectangles) then conjunctively code the connection
between roles and their fillers (one RB connects shield
to outside, and one connects square to inside). At the
top of the hierarchy, P units (oval) link sets of RBs into
whole relational propositions. A P unit conjunctively
codes the connection between the RBs representing
outside+shield and the RB representing inside+square,
thus encoding the relational proposition contains
(shield, square).

Propositions are divided into two mutually exclusive
sets: a driver and one or more recipients. In LISA, the
sequence of firing events is controlled by the driver.
Specifically, one (or at most three) proposition(s) in the
driver becomes active (i.e., enter working memory).
When a proposition enters working memory, role-filler
bindings must be represented dynamically on the units
that maintain role-filler independence (i.e., POs and
semantic units; see Hummel & Holyoak, 1997). In
DORA, roles are dynamically bound to their fillers by
systematic asynchrony of firing. As a proposition in the
driver becomes active, bound objects and roles fire in
direct sequence. Binding information is carried in the
proximity of firing (e.g., with roles firing directly
before their fillers). Using the example in Figure 2, in
order to bind outside to shield and inside to square (and
so represent contains (shield, square)), the units
corresponding to inside fire directly followed by the

contains(shield, P units

square)
outside+shield RB units
PO units

Figure 2. A proposition in LISA/DORA.
Triangles denote roles and circles denote objects.
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Figure 3. DORA learns a representation of inside
by comparing a square that is inside some object to
a triangle inside some object. (a) DORA compares

square and triangle and units representing both

become active. (b) Feature units shared by the
square and the triangle become more active than
unshared features (darker grey). (c) A new unit
learns connections to features in proportion to their
activation (solid lines indicate stronger connection
weights). The new unit codes the featural overlap
of the square and triangle (i.e., the role “inside”).

units corresponding to shield, followed by the units for
coding inside followed by the units for square. '

Relational Learning At a basic level, DORA uses
comparison to isolate shared properties of objects and
to represent them as explicit structures. DORA starts
with simple feature-vector representations of objects
(i.e., a node connected to set of features describing that
object). When DORA compares one object to another,
corresponding elements of the two representations fire
simultaneously. For example, when DORA compares a
square that is inside some object to a triangle that is
inside some other object (e.g., the square inside the
shield and triangle inside the circle in the first row of
Figure 1), then the nodes representing the square and
triangle fire together (Figure 3a). Any semantic features
that are shared by both compared objects (i.c., features
common to both the square and the triangle) receive
twice as much input and thus become roughly twice as
active as features connected to one but not the other
(Figure 3b). DORA then recruits a new PO unit and
learns connections between that unit and active
semantics via Hebbian learning. Because the strength of
connections learned via Hebbian learning is a function
of the wunits’ activations, DORA learns stronger

! Asynchrony-based binding allows role and filler to be coded
by the same pool of semantic units, which allows DORA to
learn representations of relations from representations of
objects (Doumas et al., 2008).

connections between the new PO unit and more active
semantic units (Figure 3c). The new PO thus becomes
an explicit representation of the featural overlap of the
compared square and triangle. In this example, DORA
forms an explicit predicate representing “inside” (i.e.,
the features common to both the square and triangle).
Importantly, the new PO acts as an explicit predicate
representation of inside that can be dynamically bound
to fillers. >

DORA then learns representations of multi-place
relations by linking sets of constituent role-filler pairs
into relational structures (see Doumas et al., 2008 for
details). Continuing the previous example, when DORA
thinks about a triangle inside a circle, and a square
inside a shield, it will map outside (circle) to outsid
e(shield) and inside (triangle) to insid e(square) (Figure
4a). This processes produces a distinct pattern of firing
over the units composing each set of propositions
(namely, the RB units of outside (circle) fire out of
synchrony with those of inside (triangle) while the RB
unit of outside (shield) fire out of synchrony with those
of inside (square); Figure 4b-d). The pattern serves as a
reliable signal that DORA exploits to combine sets of
role-filler pairs into multi-place relations. The
diagnostic firing pattern signals DORA to recruit a P
unit that learns connections to any active RBs in the
recipient (Figure 4¢). The end result is a P unit linking
the RBs in the recipient into a whole relational structure
(in Figure 4f-h, contains (shield, square)).
Mapping For the purposes of analogical mapping,
DORA uses LISA’s mapping algorithm. DORA learns
mapping connections between units of the same type
(e.g., PO, RB, etc.) in the driver and recipient (e.g.,
between PO units in the driver and PO units in the
recipient). These connections grow whenever
corresponding units in the driver and recipient are
active simultaneously. They permit LISA to learn the
correspondences (i.e., mappings) between
corresponding structures in separate analogs. They also
permit correspondences learned early in mapping to
influence the correspondences learned later.
Analogical inference When augmented with the
capacity for self-supervised learning, LISA’s mapping
algorithm (Hummel & Holyoak, 2003) naturally allows
for analogical inference. To illustrate, consider how
LISA solves an inference problem like one in the first
row of Figure 1. LISA represents the A and B terms in
the driver and the C term in the recipient. As the
proposition coding for the A term, contain (shield,
square), becomes active in the driver, it activates, and

% The new predicates DORA learns might be initially “dirty” in that
they contain some extraneous features (e.g., any other features shared
by the square and triangle from the above example). However,
through repeated iterations of the same learning process, DORA
forms progressively more refined representations (see Doumas et al.,
2008).
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Figure 4. DORA learns a representation of the whole relation contains(shield, triangle) by mapping
outside(circle) to outside(shield) and inside(triangle) to inside(square). (a) The units coding outside fire; (b) the
units for circle and shield fire; (c¢) the units for inside fire; (d) finally, the units for triangle and square fire. (e-f)

DORA recruits a P unit that learns connections to the active RB unit (the RB coding for outside(shield)) in the
recipient. (g-h) The P unit learns connections to the active RB unit in the (the RB coding for inside(square)).
The result is a structure coding for contains (shield, square).

consequently maps to, the units coding for contains
(circle, triangle) in the recipient. Specifically, the units
coding for outside (shield) in the driver activate and
map to the units coding for outside (circle) in the
recipient, and the units coding for inside (square) in the
driver activate and map to the units coding for inside
(triangle) in the recipient.

However, when the B term, contains (square, shield)
becomes active in the driver, there are no corresponding
units in the recipient for it to map to (recall the C term
is already mapped to the A term). When units are active
in the driver and no units are available for mapping in
the recipient, LISA performs analogical inference via a
self-supervised learning algorithm. During self-
supervised learning, active units in the driver signal
LISA to recruit matching units in the recipient.
Continuing the example, as units coding for outside
(square) become active, LISA recruits RB and P units
in the recipient to match the active RB in P in the
driver. Newly recruited P units in the recipient learn
connections to active recipient RB units, and newly
recruited RB units learn connections to active PO units
(i.e., LISA learns connections between the new P and
RB units and between the new RB unit and the units
coding for outside and triangle in the recipient). In
other words, LISA infers that outside (square) in the
driver should correspond to outside (triangle) in the
recipient. The same happens when inside (shield) fires
in the driver and LISA infers inside (circle) in the

recipient. Thus, LISA completes the D term in a
problem via analogical inference.

Simulation

We simulated Hosenfeld et al.’s (1997) results in two
steps. In the first step we used DORA’s relation
learning algorithm to learn representations of the
transformations used in the geometric analogy
problems. We started DORA with representations of
100 objects attached to random sets of features (chosen
from a pool of 100). We then defined 5 transformations
(the same as used by Hosenfeld et al., 1997: adding an
element, changing size, halving, doubling, and
changing containment). Each single-place predicate
transformation (adding an element, changing size,
halving, doubling) consisted of two semantic features,
and each relational transformation (changing
containment) consisted of two roles each with two
semantic features (e.g., for the contains relation, both
the roles inside and outside were each defined by two
specific semantic units). Each of the 100 objects was
attached to the features of between 2 and 4
transformations chosen at random. If an object was part
of a relational transformation, it was attached to the
features of one of the roles, chosen at random. For
example, object] might be attached to the features for
doubled (a single-place transformation) and inside (one
role of the relational transformation, contains). We
presented DORA with sets of objects selected at
random, and allowed it to compare the objects and learn
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from the results (as per DORA’s relation learning
algorithm). As DORA learned new representations it
would also wuse these representations to make
subsequent comparisons. For instance, if DORA
learned an explicit representation of the property double
by comparing two objects both attached to the features
of double, it could use this new representation for future
comparisons. On each trial we selected between 2 and 6
representations and let DORA compare them and learn
from the results (i.e., perform predication, and relation
learning routines). We assume that this act of inspection
and comparison is similar to what happens when
children encounter the geometric analogy problems and
have to consider how the various elements are related.

We hypothesized that differences between the three
groups of children from Hosenfeld et al.’s (1997)
experiment were at least partially a product of
differences in working memory. We simulated these
differences in DORA/LISA by varying levels of lateral
inhibition. In DORA/LISA, inhibition is critical to the
selection of information for processing in working
memory. Specifically, inhibition determines
DORA/LISA’s intrinsically limited working-memory
capacity (see Hummel & Holyoak, 2003, Appendix A),
controls its ability to select items for placement into
working memory and also regulates its ability to control
the spreading of activation in the recipient. We have
previously used this approach in LISA to simulate
patterns of analogy performance in a variety of
populations with lesser working-memory capacity
including older adults (Viskontas et al., 2004), patients
with damage to prefrontal cortex (Morrison et al.,
2004), and young children (Morrison, Doumas, &
Richland, 2006).

We defined three groups for the purposes of the
simulation: (1) non-analogical, (2) transitional, and (3)
analogical. We ran 100 simulations for each group.
During each simulation we chose an inhibition level
from a normal distribution with a mean of .4 for the
non-analogical group, .6 for the transitional group, and
.8 for the analogical group (each distribution had a SD
= .2). For each simulation we ran 800 learning trials
and checked the quality of the representations DORA
had learned during the last 100 trials after each 100
trials. Quality was calculated as the mean of connection
weights to relevant features (i.e., those defining a
specific transformation or role of a transformation)
divided by the mean of all other connection weights + 1
(1 was added to the mean of all other connection
weights to normalize the quality measure to between 0
and 1). A higher quality denoted stronger connections
to the semantics defining a specific transformation
relative to all other connections (i.e., a more pristine
representation of the transformation). Figure 5 shows
the quality of the representations DORA learned at each
level of inhibition.

In the second part of the simulation we used the
representations DORA learned during the first part of
the simulation in LISA to simulate solving the
geometric analogy problems. We simulated all eight of
Hosenfeld et al. (1997) testing phases. Each testing
phase consisted of 20 trials. On each trial we presented
LISA with the A and B terms in the driver and the C
term in the recipient. The A, B and C term were object
POs each attached to 4 random features and bound to
PO predicate units identifying the transformations in
which they were involved. We used representations of
the transformations DORA had learned during the first
simulation to represent the transformations in the
testing trials. For example, if the A term was a shield
inside a square, we represented that with the LISEese
proposition contains (square, shield), with a PO
representing square bound to a PO representing outside
(where outside was a PO that DORA had learned
during the first part of the simulation) and a PO
representing shield bound to a PO representing inside
(where inside was a PO that DORA had learned during
the first part of the simulation). For the first testing
phase we used the representations DORA had learned
during the first 100 learning trials. For the second
testing phase, we used the representations DORA had
learned during the first 200 learning trials, and so on.

During test trials, LISA attempted to map driver and
recipient propositions and make inferences about the
missing D term. For example, if LISA mapped the A
term in the driver to the C term, then when the B term
fired LISA inferred the D term in the recipient. We took
the inferred proposition in the recipient to be LISA’s
answer on that trial.

As can be observed in Figure 6, DORA/LISA’s
performance on the testing trials closely followed those
of the children in Hosenfeld et al. (1997). Just like the
non-analogical children, DORA/LISA with a low
inhibition level performed poorly throughout. Like the
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Figure 5. Simulation of relational learning in
DORA. Groups were created by changing DORA’s
working-memory capacity via adjusting inhibition.
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transitional children, DORA/LISA with a medium
inhibition level started slow but improved slowly. Like
the analogical children. Lastly, DORA/LISA with a
high inhibition level performed well virtually from the
start and maintained a good performance. It is
interesting to note, however, that DORA/LISA
performed poorly on the first several sessions for the
Analogical group. We believe this is likely due to
greater starting relational knowledge in this group of
children. If for instance, we started with the DORA
representations for session 3 instead of 1, the pattern of
results would much more closely mirror the children’s
results. Thus, differences in relational knowledge may
also be an important component of understanding
individual differences in analogical reasoning.

Though we cannot present these data for space
reasons, it is also significant to note that LISA made the
same types of errors, in similar proportions, as children
made in the Hosenfeld et al. (1997) study. For instance,
DORA, just like children, tended to make errors by
inferring a D tern solution with the correct
transformations applied to the wrong objects, or simply
copying all or part of the B term.

Conclusion
We assert that working-memory resources and
relational knowledge each contribute differently to
relational reasoning, with working-memory resources
15
0.9
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0.3
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0.1
0

Proportion Correct

1 2 3 4 5 6 7 8

Test Session

DORA
Simulation

Children

Group 3: Non-Analogical
Group 2: Transitional
Group 1: Analogical ===

Figure 6. Results from Hosenfeld et al., (1997)
and LISA simulations. Simulation results were the
result of training in DORA followed by reasoning in
LISA. Groups were created solely by changing
DORA/LISA’s working-memory capacity (i.c.,
adjusting lateral inhibition).

emerging as an important source of persistent
individual differences in relational learning.

While considerable effort has been directed at
understanding how working memory supports
analogical reasoning, less attention has been given to
looking at the role of working memory in its
antecedent, relational learning. Understanding this
factor will be an important step in understanding how
relational learning develops and how it can contribute
to successful analogical reasoning in children.
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