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Abstract

The present study investigated attentional optimization in
participants learning rule-based (RB) and information
integration (II) categories. Using an eye-tracker to measure
the deployment of overt attention, we tracked participants’
learning and optimization during a category learning
experiment. We also measured working memory span. We
found that participants in the RB condition optimized
attention less than II participants before reaching the learning
criterion, but more than II participants after criterion, and
confirmed that this effect was not due to differences in speed
of learning or accuracy. Working memory span was
negatively related to pre-criterion optimization in both
conditions, but was unrelated to post-criterion optimization.
These results show that attentional optimization is influenced
by the kind of task being learned or the types of strategies that
these tasks elicit, and provide evidence that executive
attentional factors influence overt attentional optimization.

Keywords: attention, category learning, categorization, rule-
based, information-integration, eye-tracking, working
memory.

Introduction

The ability to preferentially process relevant information
is critical to achieving effective and efficient performance
on virtually any task. Theories of category learning have
long recognized the importance of incorporating selective
attention into their frameworks, usually simulating selective
attention with weights that modulate the importance of
stimulus dimensions (e.g. Kruschke, 1992). However, the
goal of modeling selective attention has been complicated
by the fact that attention is difficult to measure.

Some studies have attempted to measure attention by
using specially-chosen transfer stimuli to gauge the
importance of each stimulus dimension on the
categorization decision (e.g., Blair & Homa, 2005). One
disadvantage of an indirect measure like this is that it may
lead to improper inferences about attentional allocation — for
instance, transfer and training may be treated differently by
participants (Blair & Homa, 2003). Attentional allocation

has also been investigated using a paradigm in which
participants use a mouse click to reveal information that
they wish to view (e.g., Matsuka & Corter, 2008). This
method illuminates exactly which dimensions participants
judge to be important, and the order in which they are
accessed, but because information that is revealed remains
available, no real-time information about which stimulus
dimensions participants are considering is recorded.

A promising alternative is eye-tracking; it provides fine-
grained temporal and spatial information, and is a precise
and direct measure of one important aspect of attention:
overt attention. Further, there is important overlap between
the attentional biases suggested in computational models of
attention and participants’ real-life deployment of gaze
(Rehder & Hoffman, 2005a). Rehder and Hoffman (2005b)
have demonstrated a correspondence between the amount of
time participants fixate stimulus features and the value of
attention weights generated by model fits of the response
data. Kruschke, Kappenman, and Hetrick (2005) showed
that measures of eye-gaze were meaningful indicators of
attentional flexibility and matched modeling analyses even
at the level of individual participants.

Eye-tracking studies are beginning to elucidate the role of
overt attention in categorization. For example, many
important models of categorization assume that attentional
weights are task-specific. Blair, Watson, Walshe, and Maj
(2009) provided eye-tracking evidence that overt attention
can be deployed differentially for different stimuli,
supporting a more flexible implementation of attention, like
those in recent models (e.g., Kruschke, 2001). In another
example, Watson and Blair (2008) used eye-tracking to
study participants’ processing of feedback. They found that
participants who successfully learned a categorization task
spent far more time looking at the re-presented stimulus on
incorrect trials than on correct trials, whereas non-learners
showed no difference. In contrast, most current theories
posit that the re-presented stimulus plays no role in the
learning process.

Recent progress has also been made in understanding how
the allocation of selective attention is optimized during rule-
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based category learning tasks. Many theories of category
learning exclusively use error-minimization algorithms to
shift attentional allocation. However, Matsuka and Corter
(2008), using an information-board interface, showed that
participants will flexibly optimize attention to contextual
effort (cost) / accuracy (benefit) considerations, rather than
error per se, a result that could not be predicted from
algorithms of this sort. Similarly, in an eye-tracking
experiment, Blair, Watson, and Meier (2009) found that
neither performance error nor external feedback are
necessary for attentional optimization, the opposite of what
error-driven attention theories would predict. Participants in
that study did not shift overt attention early, when
performance errors were most common; instead, they
optimized attention only after they had stopped making
errors. Further, attentional optimization continued in the
absence of performance error and external feedback until 72
trials later when the experiment ended.

The present study is a continuation of the line of research
pursued by Blair, Watson, and Meier (2009) described
above, which investigated the optimization of overt
attention during a rule-based categorization task. We wish to
illuminate how overt attentional allocations might differ
when learning categories of different kinds.

For several decades, theories of categorization have
assumed that selective attention operates under a single set
of principles, regardless of the nature of the category being
learned (e.g., Medin & Schaffer, 1978; Kruschke, 1992).
Experiments have been conducted on many types of
category structures; some of the more common ones used in
research include rule-based (Maddox & Ashby, 2004),
information integration (Ashby & Gott, 1988), prototype
distortion (Blair & Homa, 2001; Posner & Keele, 1968), and
prediction/probabilistic (Peterson, Hammond & Summers,
1965). However, there are some compelling reasons to
believe that selective attention may not operate in the same
way for all kinds of categories. One model of human
categorization that predicts differences in how people learn
categories based on structure is COVIS (Competition
between Verbal and Implicit Systems; Ashby, Alfonso-
Reese, Turken, & Waldron, 1998), a neuropsychologically-
informed multiple-systems theory of category learning.

According to COVIS, categorization decisions are
mediated by cortical-striatal-pallidal-thalamic circuits
involved in two functionally separate systems: an explicit
verbal system that attempts to learn a decision rule, and an
implicit procedural system that attempts to learn a decision
bound. Both systems are interdependently and actively
involved during category learning, but through learning, the
system more strongly associated with category membership
responses will take over.

COVIS predicts that the explicit verbal system first
dominates the learning of any new category structure. In
psychological terms, this mean participants always begin a
category learning task by creating and testing verbalizable
rules. This verbal system involves a prefrontal network in
the brain that attempts to learn the most efficient rule for
making a correct categorization decision. In contrast, the
implicit procedural system, which is also active at the
beginning of a category learning task, mediates response

selection by associating stimuli with motor responses rather
than responding based on rule criteria.

The underlying mechanisms of COVIS predict a number
of dissociations between learning two particular types of
categories: rule-based structures, and information
integration structures (Maddox & Ashby, 2004). The explicit
system is assumed to govern the learning of rule-based
categories. These structures are characterized by having
dimensions with semantic labels that can be selectively
attended and classified by using verbal rules (Ashby &
Maddox, 2005). The implicit system, on the other hand,
governs information integration categories because their
dimensions are combined at a “predecisional” stage, and
associated with correct procedural responses. Dissociations
between the strategies used to solve the two tasks have been
shown using behavioral measures (e.g., Ell & Ashby, 2006)
and functional neuroimaging (Nomura et al., 2007). We seek
to investigate if dissociations show up in the way
participants learn to allocate attention during and after
learning rule-based or information integration categories.

Blair, Watson, and Meier (2009) looked at overt
attentional allocation during rule-based category learning,
hypothesizing that participants’ failure to optimize attention
before mastering the categories may be due to rule
construction and evaluation occupying executive attentional
resources. While this explanation holds for rule-based
categories, according to COVIS, information integration
category learning strategies do not rely on the same
executive attentional networks. COVIS predicts an initial
rule-based approach to category learning, with a shift to the
procedural system if rule construction proves unsuccessful
(Ashby et al., 1998). Such a shift is expected when learning
information integration categories, as candidate rules must
be verbalized to be tested and rules delineating information
integration categories are often difficult to verbalize. If this
is true, then one might expect to see attentional optimization
prior to category mastery when participants learn
information integration tasks, unlike the rule-based tasks
studies by Blair et al.. Testing this prediction is our main
experimental goal.

The situation may be more complicated still, due to
individual differences in executive attentional capacities.
One study suggests that a high working memory span is
actually negatively correlated with performance on
information integration tasks (DeCaro, Thomas, & Beilock,
2008). This may be because working memory span is a
measure of participants’ ability to suppress unimportant or
goal-incongruent conflicting information (Conway, Kane, &
Engle, 2003), such that individuals with high working
memory capacity may be more likely to persist in using
rule-construction as a category learning strategy long after
such an approach becomes counterproductive. Because
working memory span has been implicated as an important
factor in learning different category structures, we opted to
include a computerized working memory span measure
called the Aospan (automated operation span; see Unsworth,
Heitz, Schrock, & Engle, 2005). Our secondary goal is to
investigate possible relationships between working memory
span and attentional allocation.
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Method

Participants

84 undergraduate students with normal or corrected-to-
normal vision from Simon Fraser University participated in
this study for pay or course credit. 13 were excluded due to
excessive eye-tracker errors or failing to complete all trials.

Stimuli and Categories

The stimuli participants learned to categorize were images
of microorganisms containing three organelles (see Figure 1,
top panel). In order to create these stimuli, we created a pool
of 90 images for each of the three organelles representing
the three category features, or dimensions. One feature was
an organelle that varied along an orientation dimension,
with each successive image changing by 1.5° of rotation.
The second feature was a crescent-shaped elongated oval
that differed along a curvature dimension, with each
successive image altered by 1° of arc aptitude. The third
feature was a circle filled with white that differed along a
size dimension, with each successive image containing a
slightly smaller white disc. Figure 1 (bottom panel) shows
these features at the extreme and midpoint values.

The stimulus feature values for the two conditions were
generated using bivariate distributions similar to those used
by Ashby and Gott (1988) with parameter values shown in
Table 1. Participants were randomly assigned to one of two
possible category structures: rule-based (RB) or information
integration (II) (Figure 2). Correct categorization of a
stimulus in the RB condition required checking one relevant
feature; two features were always irrelevant. Correct
categorization of II structures required checking two
relevant features; one feature was always irrelevant.

The selected features were superimposed onto the arms of
the microorganism, which subtended 19° of visual angle on
a display screen of 43.5 cm by 27 cm with a view distance
of approximately 73 cm. The assigned location for each type
of organelle remained constant for each participant, and was
counterbalanced across participants. The three organelles
were separated from each other by 11.2° of visual angle and
equidistant from the centre of the microorganism.

Procedure

The experiment consisted of a working memory capacity
evaluation task, followed by a categorization task.
Participants were told they would first be doing a task that
required remembering letters while performing simple math
calculations, and then a categorization game that required
them to sort images into two categories.
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Figure 1. Stimuli used in the experiment. The top panel
is an example of the stimulus that the participants learned
to classify. The bottom panel shows the degree of
variation on the three principle features.

Working memory capacity was evaluated using the
Aospan task, which requires participants to recall strings of
letters while performing a set of simple math operations. At
the beginning of each trial, a simple math problem was
presented. Participants judged whether the proposed
solution was correct by clicking on the corresponding “true”
or “false” box, received performance feedback, and were
presented with a letter. After a set of three to seven math
questions, participants were prompted with a letter recall
display, where they were required to order the presented
letters by clicking on the appropriate boxes. Participants
were then shown a feedback screen, indicating both math
and letter recall accuracy for that set. The Aospan task is
designed to take 20-25 minutes, and concluded after 75

Table 1: Category Distribution Parameters for Information Integration and Rule-Based Structures

Category A Category B
Condition Uy 0y’ 0y’ COVyy Ux Uy o’ 0’ COVyy
Information 3¢ 54 140 140 22.954 54 36 140 140 22.954
Integration
Rule-Based 30 45 12 120 0 60 45 120 12 0
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Figure 2. Categories similar to those used in the
experiment. The left panel shows information
integration (II) categories, and the right panel shows
rule-based (RB) categories. Axes represent the
stimulus feature values.

trials. The total number of correctly recalled letters reflected
each participant’s Aospan score.

The Aospan was followed by a categorization task.
During this task, fine-grained spatial and temporal eye
movement data were recorded using a Tobii X120 eye-
tracker, sampling at a spatial resolution of 0.5° and temporal
resolution of 60Hz. Using a modified dispersion threshold
(Salvucci & Goldberg, 2000) with a spatial threshold of 28
pixels and a 75 ms minimum fixation duration, eye
movements were counted as fixations to stimulus features if
they fell within 100 pixels of the centre of an organelle. A
trial began with the presentation of a black screen
containing a red central fixation cross. Participants had to
click on the cross to be presented with the image of a
microorganism. After deciding whether the stimulus
belonged to category A or category B, participants clicked to
proceed to the response stage. The microorganism
disappeared, and two response boxes appeared on the left
and right sides of the screen. The location of each response
box was constant for each participant, but counterbalanced
across participants. After clicking on the appropriate box to
indicate a response, participants received feedback on their
performance and they were re-presented with the
microorganism. The response box they clicked turned green
if their response was correct. If their response was incorrect,
the box turned red and the box containing the correct
response turned green. Participants were given as much time
as they wanted to examine the stimulus before clicking to
begin the next trial. Participants completed a total of 200
trials in the category learning task.

Results

Five of the seventy-one participants, two from the RB
condition and three from the II condition, had accuracies of
less than 60% on the final 50 trials of the categorization
task. The data from these participants were excluded from
all remaining analyses. Aospan scores ranged from 33 to 75
(M = 61.20, SD = 10.4). A hierarchical multiple regression
analysis was conducted to determine whether Aospan could
predict performance on the categorization task. Aospan was
not a significant predictor of total accuracy either on its own
(B =.03, 1(63) = .44, p > .60) or in an interaction term with
condition (f = -.11, #62) = -.24, p > .80). Category
condition, however, was a significant predictor of accuracy

(B =-.82, (63) = -11.17, p < .001), indicating that the RB
condition (M = .94) was easier to learn than the II condition
(M=.74).

Many studies use a learning criterion of a certain number
of consecutive error-free trials to separate participants who
learned the task from those who did not. Rather than
selecting an arbitrary number, we ranked candidate criterion
lengths from 1 to 40 according to three measures, each
weighted equally: the inverse of the average pre-criterion
accuracy across all participants, the average post-criterion
accuracy, and the average difference between pre- and post-
criterion accuracy. The best criterion for our data set was 13.
Using this criterion there were 31 learners and no non-
learners in the RB condition, and 23 learners and 12 non-
learners in the II condition. The average number of trials it
took to reach criterion was 20 for RB learners and 69 for II
learners. Learners in the RB condition had a mean accuracy
of 58% pre-criterion and 97% post-criterion, while II
learners were 66% accurate before criterion and 83%
accurate after. A 2 (RB/II) x 2 (pre-/post-criterion) mixed
ANOVA revealed a significant interaction, £(1,50) = 19.19,
p < .001; in addition, post-criterion accuracy was
significantly lower for II than for RB learners, #52) = 10.16,
p <.001. Learning is an essentially dichotomous process in
the RB task: participants have learned little or nothing about
the categories before criterion, and are essentially perfect
thereafter. In the II task, on the other hand, learning is a
more gradual and continuous process, which accords with
the results of previous studies using II categories (e.g.,
Ashby & Maddox, 2005).

Attentional optimization for each trial was defined as the
difference between the mean total fixation time to relevant
stimulus features and the mean total fixation time to
irrelevant features, divided by the mean total fixation time
to all features. Mean total fixation time to relevant features
was defined as the time spent fixating relevant features
divided by the number of relevant features; mean total
fixation time to irrelevant features was analogously
calculated. Attentional optimization thus ranges from -1,
indicating that the participant spent the entire trial fixating
irrelevant features only, to 1, indicating a trial in which the
participant looked only at relevant features. On trials where
the participant fixates only one of the two relevant features
(23.5% of trials), we subtracted .5 from the optimization
score.

We predicted that participants learning an II category
would show a pattern of gradual optimization throughout
the experiment, while RB participants would only optimize
their attention after reaching the learning criterion. To
examine this prediction, a 2x2 analysis of variance was
conducted with stage of learning (before criterion, after
criterion) as a within-subjects variable and condition (RB,
II) as a between-subjects variable (see Figure 3). The results
showed a significant stage-structure interaction, F(1,47) =
62.89, p < .001. Compared to the RB participants,
participants in the II condition showed more optimal
attentional allocation before criterion (M = .31 versus M = .
10) and less optimal allocation after criterion (M = .55
versus M = .87).
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Figure 3. Pre-and post criterion optimization for
rule-based and information integration conditions.
Bars reflect standard errors.

In order to account for the possibility that the differences
we found were due to the differences in learning speed and
accuracy between conditions, we performed two multiple
regression analyses. The difference between pre- and post-
criterion optimization scores for each participant was
regressed on total accuracy and condition. The same was
performed for number of trials to criterion and condition. In
both cases, the effect of condition remained significant.

A final analysis involved looking at the relationship
between Aospan and optimization before and after
participants reached criterion. We found a significant
negative correlation between Aospan and pre-criterion
optimization (r = -.35, p < .05) and no relationship with
post-criterion optimization (» = -.10, p > .50). A larger
working memory span seems to impair optimization during
learning. There was no interaction between Aospan and
condition in pre- or post-criterion stages (ps > .80), nor was
there a significant correlation between Aospan scores and
total optimization over the entire experiment (p > .20).

Discussion

Previous studies have found that learning is hampered in
rule-based, but not information integration, category tasks if
a working memory-demanding task is performed
concurrently (e.g., Zeithmova & Maddox, 2006). According
to the COVIS multiple-systems model, prefrontal networks
involved in executive attention, which are not part of the
implicit procedural system of category learning, are highly
active when the verbal system is engaged in rule generation
and evaluation. Recent work by DeCaro et al. (2008)
suggests that high working memory capacity offers an
advantage while learning rule-based categories, but hinders
learning of information integration categories. We did not
find the same result: working memory span did not predict
accuracy for either rule-based or information integration
categories. There are several differences between our

procedure and theirs, however. We used a more stringent
criterion of 13 (they used 8). In addition to the Aospan
measure used in this study, DeCaro et al. used a measure of
reading span and so may have had a more accurate measure
of working memory span. Finally, DeCaro et al. used stimuli
with four binary-valued dimensions, whereas our task
required categorizing stimuli with three continuous
dimensions. Nevertheless, if working memory span really is
tightly connected to learning different types of categories,
we might still expect to see a correlation between Aospan
and performance. If increased working memory capacity
really does help the learning of rule-based categories, while
hindering learning of information integration categories, it
does not seem likely to be a very large effect.

Although we found no evidence to suggest a relationship
between working memory capacity and behavioural
performance on our tasks, we did find an interesting
relationship between working memory and attentional
performance. Before categories are learned, participants
with lower Aospan scores are able to allocate selective
attention more optimally than those with higher scores. This
effect was seen in both rule-based and information
integration categories, but disappeared post-criterion. If, as
COVIS predicts, all participants initially rely on a dominant
verbal system regardless of the the kind of category they are
learning, all participants begin by generating and evaluating
possible rules. Regardless of condition, participants with
higher working memory may be more likely to persist in
using executive memory to test rules until they reach the
learning criterion, while participants with lower working
memory may give up on rule-testing and engage procedural
learning systems before reaching criterion. This would lead
to our finding: a negative relationship between participants’
Aospan scores and their degree of attentional optimization.
By the time all participants reached criterion, those with
high Aospan scores quickly optimized attention, resulting in
similar attentional optimization regardless of Aospan score.
Future studies will be necessary to replicate and explore this
finding.

Another result consistent with previous research on
attentional optimization is that rule-based learners had very
low optimization before reaching criterion, and optimized
attention rapidly upon mastering the task (Blair, Watson, &
Meier, 2009). When faced with categories that can be
learned by forming perfectly predictive verbalizable rules, it
appears that participants generally do not begin attentional
learning until after these rules have been discovered. On the
other hand, information integration learners optimization
was higher prior to criterion, and lower subsequent to it.
This suggests that for information integration tasks,
response learning and attentional learning may be more
tightly coupled than they are for rule-based tasks.

According to COVIS, the anterior cingulate and other
areas important to executive function are in charge of
selecting and switching between rules, and these areas are
likely heavily involved in the learning of rule-based
categories like ours. Since participants in our rule-based task
are initially focused on attaining higher accuracy, executive
attention may not work towards attentional learning until
resources can be directed away from hypothesis-testing and
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towards speed or effort-related goals. In accordance with
our predictions, participants learning information integration
categories begin to optimize attention prior to reaching
criterion, and proceed more gradually as performance
slowly improved. If participants cannot predict category
membership through rule-generation, executive attention is
freer to work towards learning more efficient patterns of
allocation as the procedural system begins to dominate the
categorization task, even before the task is mastered. Our
findings are consistent with multiple-systems view such as
COVIS, and suggest that attentional optimization is another
way in which rule-based and information integration
categories are dissociated.
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