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Abstract
The present study investigated attentional optimization in 
participants  learning rule-based (RB) and information 
integration (II) categories. Using an eye-tracker to measure 
the deployment of overt attention, we tracked participants’ 
learning and optimization during a category learning 
experiment. We also measured working memory span. We 
found that participants in the RB condition optimized 
attention less than II participants before reaching the learning 
criterion, but more than II participants  after criterion, and 
confirmed that this  effect was not due to  differences in speed 
of learning or accuracy. Working memory span was 
negatively related to pre-criterion optimization in both 
conditions, but  was unrelated to  post-criterion optimization. 
These results show that  attentional optimization is  influenced 
by  the kind of task being learned or the types of strategies  that 
these tasks elicit, and provide evidence that executive 
attentional factors influence overt attentional optimization. 

Keywords: attention, category learning, categorization, rule-
based, information-integration, eye-tracking, working 
memory.

Introduction
The ability to preferentially process relevant information 

is critical to achieving effective and efficient performance 
on virtually any task. Theories of category learning have 
long recognized the importance of incorporating selective 
attention into their frameworks,  usually simulating selective 
attention with weights that modulate the importance of 
stimulus dimensions (e.g. Kruschke, 1992). However,  the 
goal of modeling selective attention has been complicated 
by the fact that attention is difficult to measure.

 Some studies have attempted to measure attention by 
using specially-chosen transfer stimuli to gauge the 
importance of each stimulus dimension on the 
categorization decision (e.g., Blair & Homa, 2005). One 
disadvantage of an indirect measure like this is that it may 
lead to improper inferences about attentional allocation – for 
instance, transfer and training may be treated differently by 
participants (Blair & Homa, 2003). Attentional allocation 

has also been investigated using a paradigm in which 
participants use a mouse click to reveal information that 
they wish to view (e.g.,  Matsuka & Corter, 2008). This 
method illuminates exactly which dimensions participants 
judge to be important, and the order in which they are 
accessed, but because information that is revealed remains 
available, no real-time information about which stimulus 
dimensions participants are considering is recorded.

A promising alternative is eye-tracking; it provides fine-
grained temporal and spatial information, and is a precise 
and direct measure of one important aspect of attention: 
overt attention. Further, there is important overlap between 
the attentional biases suggested in computational models of 
attention and participants’ real-life deployment of gaze 
(Rehder & Hoffman, 2005a). Rehder and Hoffman (2005b) 
have demonstrated a correspondence between the amount of 
time participants fixate stimulus features and the value of 
attention weights generated by model fits of the response 
data. Kruschke,  Kappenman, and Hetrick (2005) showed 
that measures of eye-gaze were meaningful indicators of 
attentional flexibility and matched modeling analyses even 
at the level of individual participants. 

Eye-tracking studies are beginning to elucidate the role of 
overt attention in categorization.  For example,  many 
important models of categorization assume that attentional 
weights are task-specific.  Blair, Watson, Walshe, and Maj 
(2009) provided eye-tracking evidence that overt attention 
can be deployed differentially for different stimuli, 
supporting a more flexible implementation of attention, like 
those in recent models (e.g., Kruschke, 2001). In another 
example, Watson and Blair (2008) used eye-tracking to 
study participants’  processing of feedback. They found that 
participants who successfully learned a categorization task 
spent far more time looking at the re-presented stimulus on 
incorrect trials than on correct trials, whereas non-learners 
showed no difference. In contrast, most current theories 
posit that the re-presented stimulus plays no role in the 
learning process. 

Recent progress has also been made in understanding how 
the allocation of selective attention is optimized during rule-
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based category learning tasks. Many theories of category 
learning exclusively use error-minimization algorithms to 
shift attentional allocation. However, Matsuka and Corter 
(2008), using an information-board interface, showed that 
participants will flexibly optimize attention to contextual 
effort (cost) / accuracy (benefit) considerations, rather than 
error per se, a result that could not be predicted from 
algorithms of this sort.  Similarly, in an eye-tracking 
experiment, Blair,  Watson, and Meier (2009) found that 
neither performance error nor external feedback are 
necessary for attentional optimization, the opposite of what 
error-driven attention theories would predict.  Participants in 
that study did not shift overt attention early, when 
performance errors were most common; instead, they 
optimized attention only after they had stopped making 
errors. Further, attentional optimization continued in the 
absence of performance error and external feedback until 72 
trials later when the experiment ended. 

The present study is a continuation of the line of research 
pursued by Blair, Watson, and Meier (2009) described 
above, which investigated the optimization of overt 
attention during a rule-based categorization task. We wish to 
illuminate how overt attentional allocations might differ 
when learning categories of different kinds. 

For several decades, theories of categorization have 
assumed that selective attention operates under a single set 
of principles, regardless of the nature of the category being 
learned (e.g., Medin & Schaffer, 1978; Kruschke, 1992). 
Experiments have been conducted on many types of 
category structures; some of the more common ones used in 
research include rule-based (Maddox & Ashby, 2004), 
information integration (Ashby & Gott, 1988), prototype 
distortion (Blair & Homa, 2001; Posner & Keele, 1968),  and 
prediction/probabilistic (Peterson, Hammond & Summers, 
1965). However, there are some compelling reasons to 
believe that selective attention may not operate in the same 
way for all kinds of categories. One model of human 
categorization that predicts differences in how people learn 
categories based on structure is COVIS (Competition 
between Verbal and Implicit Systems; Ashby, Alfonso-
Reese, Turken, & Waldron, 1998), a neuropsychologically-
informed multiple-systems theory of category learning.

According to COVIS, categorization decisions are 
mediated by cortical-striatal-pallidal-thalamic circuits 
involved in two functionally separate systems: an explicit 
verbal system that attempts to learn a decision rule, and an 
implicit procedural system that attempts to learn a decision 
bound. Both systems are interdependently and actively 
involved during category learning, but through learning, the 
system more strongly associated with category membership 
responses will take over.

COVIS predicts that the explicit verbal system first 
dominates the learning of any new category structure.  In 
psychological terms, this mean participants always begin a 
category learning task by creating and testing verbalizable 
rules. This verbal system involves a prefrontal network in 
the brain that attempts to learn the most efficient rule for 
making a correct categorization decision. In contrast, the 
implicit procedural system, which is also active at the 
beginning of a category learning task, mediates response 

selection by associating stimuli with motor responses rather 
than responding based on rule criteria.

The underlying mechanisms of COVIS predict a number 
of dissociations between learning two particular types of 
categories: rule-based structures, and information 
integration structures (Maddox & Ashby, 2004). The explicit 
system is assumed to govern the learning of rule-based 
categories.  These structures are characterized by having 
dimensions with semantic labels that can be selectively 
attended and classified by using verbal rules (Ashby & 
Maddox, 2005). The implicit system, on the other hand, 
governs information integration categories because their 
dimensions are combined at a “predecisional” stage, and 
associated with correct procedural responses. Dissociations 
between the strategies used to solve the two tasks have been 
shown using behavioral measures (e.g.,  Ell & Ashby, 2006) 
and functional neuroimaging (Nomura et al., 2007). We seek 
to investigate if dissociations show up in the way 
participants learn to allocate attention during and after 
learning rule-based or information integration categories.

Blair,  Watson,  and Meier (2009) looked at overt 
attentional allocation during rule-based category learning, 
hypothesizing that participants’ failure to optimize attention 
before mastering the categories may be due to rule 
construction and evaluation occupying executive attentional 
resources. While this explanation holds for rule-based 
categories,  according to COVIS, information integration 
category learning strategies do not rely on the same 
executive attentional networks. COVIS predicts an initial 
rule-based approach to category learning, with a shift to the 
procedural system if rule construction proves unsuccessful 
(Ashby et al., 1998). Such a shift is expected when learning 
information integration categories, as candidate rules must 
be verbalized to be tested and rules delineating information 
integration categories are often difficult to verbalize. If this 
is true, then one might expect to see attentional optimization 
prior to category mastery when participants learn 
information integration tasks, unlike the rule-based tasks 
studies by Blair et al.. Testing this prediction is our main 
experimental goal. 

The situation may be more complicated still, due to 
individual differences in executive attentional capacities. 
One study suggests that a high working memory span is 
actually negatively correlated with performance on 
information integration tasks (DeCaro, Thomas,  & Beilock, 
2008). This may be because working memory span is a 
measure of participants’ ability to suppress unimportant or 
goal-incongruent conflicting information (Conway, Kane, & 
Engle, 2003),  such that individuals with high working 
memory capacity may be more likely to persist in using 
rule-construction as a category learning strategy long after 
such an approach becomes counterproductive. Because 
working memory span has been implicated as an important 
factor in learning different category structures,  we opted to 
include a computerized working memory span measure 
called the Aospan (automated operation span; see Unsworth, 
Heitz, Schrock, & Engle, 2005).  Our secondary goal is to 
investigate possible relationships between working memory 
span and attentional allocation.
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Method

Participants
84 undergraduate students with normal or corrected-to-

normal vision from Simon Fraser University participated in 
this study for pay or course credit.  13 were excluded due to 
excessive eye-tracker errors or failing to complete all trials.

Stimuli and Categories
The stimuli participants learned to categorize were images 

of microorganisms containing three organelles (see Figure 1, 
top panel). In order to create these stimuli,  we created a pool 
of 90 images for each of the three organelles representing 
the three category features, or dimensions. One feature was 
an organelle that varied along an orientation dimension, 
with each successive image changing by 1.5º of rotation.  
The second feature was a crescent-shaped elongated oval 
that differed along a curvature dimension, with each 
successive image altered by 1º of arc aptitude. The third 
feature was a circle filled with white that differed along a 
size dimension, with each successive image containing a 
slightly smaller white disc. Figure 1 (bottom panel) shows 
these features at the extreme and midpoint values. 

The stimulus feature values for the two conditions were 
generated using bivariate distributions similar to those used 
by Ashby and Gott (1988) with parameter values shown in 
Table 1. Participants were randomly assigned to one of two 
possible category structures: rule-based (RB) or information 
integration (II) (Figure 2). Correct categorization of a 
stimulus in the RB condition required checking one relevant 
feature; two features were always irrelevant.  Correct 
categorization of II structures required checking two 
relevant features; one feature was always irrelevant.

The selected features were superimposed onto the arms of 
the microorganism, which subtended 19º of visual angle on 
a display screen of 43.5 cm by 27 cm with a view distance 
of approximately 73 cm. The assigned location for each type 
of organelle remained constant for each participant, and was 
counterbalanced across participants. The three organelles 
were separated from each other by 11.2º of visual angle and 
equidistant from the centre of the microorganism. 

Procedure
The experiment consisted of a working memory capacity 

evaluation task, followed by a categorization task. 
Participants were told they would first be doing a task that 
required remembering letters while performing simple math 
calculations, and then a categorization game that required 
them to sort images into two categories.

Working memory capacity was evaluated using the 
Aospan task, which requires participants to recall strings of 
letters while performing a set of simple math operations. At 
the beginning of each trial, a simple math problem was 
presented. Participants judged whether the proposed 
solution was correct by clicking on the corresponding “true” 
or “false” box, received performance feedback, and were 
presented with a letter. After a set of three to seven math 
questions, participants were prompted with a letter recall 
display, where they were required to order the presented 
letters by clicking on the appropriate boxes. Participants 
were then shown a feedback screen, indicating both math 
and letter recall accuracy for that set.  The Aospan task is 
designed to take 20-25 minutes, and concluded after 75 

Figure 1.  Stimuli used in the experiment. The top panel 
is an example of the stimulus that the participants learned 
to classify. The bottom panel shows the degree of 
variation on the three principle features. 

Table 1: Category Distribution Parameters for Information Integration and Rule-Based Structures

Category ACategory ACategory ACategory ACategory A Category BCategory BCategory BCategory BCategory B

Condition !x !y "x
2  "y

2 covxy !x !y "x
2  "y

2 covxy

Information 
Integration

36 54 140 140 22.954 54 36 140 140 22.954

Rule-Based 30 45 12 120 0 60 45 120 12 0
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trials. The total number of correctly recalled letters reflected 
each participant’s Aospan score.

The Aospan was followed by a categorization task. 
During this task, fine-grained spatial and temporal eye 
movement data were recorded using a Tobii X120 eye-
tracker, sampling at a spatial resolution of 0.5º and temporal 
resolution of 60Hz. Using a modified dispersion threshold 
(Salvucci & Goldberg, 2000) with a spatial threshold of 28 
pixels and a 75 ms minimum fixation duration, eye 
movements were counted as fixations to stimulus features if 
they fell within 100 pixels of the centre of an organelle. A 
trial began with the presentation of a black screen 
containing a red central fixation cross. Participants had to 
click on the cross to be presented with the image of a 
microorganism. After deciding whether the stimulus 
belonged to category A or category B, participants clicked to 
proceed to the response stage. The microorganism 
disappeared, and two response boxes appeared on the left 
and right sides of the screen. The location of each response 
box was constant for each participant, but counterbalanced 
across participants. After clicking on the appropriate box to 
indicate a response, participants received feedback on their 
performance and they were re-presented with the 
microorganism. The response box they clicked turned green 
if their response was correct. If their response was incorrect, 
the box turned red and the box containing the correct 
response turned green. Participants were given as much time 
as they wanted to examine the stimulus before clicking to 
begin the next trial.  Participants completed a total of 200 
trials in the category learning task. 

Results
Five of the seventy-one participants, two from the RB 

condition and three from the II condition, had accuracies of 
less than 60% on the final 50 trials of the categorization 
task. The data from these participants were excluded from 
all remaining analyses. Aospan scores ranged from 33 to 75 
(M = 61.20, SD = 10.4).  A hierarchical multiple regression 
analysis was conducted to determine whether Aospan could 
predict performance on the categorization task. Aospan was 
not a significant predictor of total accuracy either on its own 
(β = .03, t(63) = .44, p > .60) or in an interaction term with 
condition (β = -.11, t(62) = -.24, p > .80). Category 
condition, however, was a significant predictor of accuracy 

(β = -.82, t(63) = -11.17, p < .001),  indicating that the RB 
condition (M = .94) was easier to learn than the II condition 
(M = .74).  

Many studies use a learning criterion of a certain number 
of consecutive error-free trials to separate participants who 
learned the task from those who did not. Rather than 
selecting an arbitrary number, we ranked candidate criterion 
lengths from 1 to 40 according to three measures, each 
weighted equally: the inverse of the average pre-criterion 
accuracy across all participants, the average post-criterion 
accuracy, and the average difference between pre- and post-
criterion accuracy. The best criterion for our data set was 13. 
Using this criterion there were 31 learners and no non-
learners in the RB condition, and 23 learners and 12 non-
learners in the II condition. The average number of trials it 
took to reach criterion was 20 for RB learners and 69 for II 
learners. Learners in the RB condition had a mean accuracy 
of 58% pre-criterion and 97% post-criterion, while II 
learners were 66% accurate before criterion and 83% 
accurate after. A 2 (RB/II) x 2 (pre-/post-criterion) mixed 
ANOVA revealed a significant interaction, F(1,50) = 19.19, 
p < .001; in addition, post-criterion accuracy was 
significantly lower for II than for RB learners, t(52) = 10.16, 
p < .001. Learning is an essentially dichotomous process in 
the RB task: participants have learned little or nothing about 
the categories before criterion, and are essentially perfect 
thereafter. In the II task, on the other hand, learning is a 
more gradual and continuous process, which accords with 
the results of previous studies using II categories (e.g., 
Ashby & Maddox, 2005). 

Attentional optimization for each trial was defined as the 
difference between the mean total fixation time to relevant 
stimulus features and the mean total fixation time to 
irrelevant features, divided by the mean total fixation time 
to all features. Mean total fixation time to relevant features 
was defined as the time spent fixating relevant features 
divided by the number of relevant features; mean total 
fixation time to irrelevant features was analogously 
calculated.  Attentional optimization thus ranges from -1, 
indicating that the participant spent the entire trial fixating 
irrelevant features only, to 1, indicating a trial in which the 
participant looked only at relevant features. On trials where 
the participant fixates only one of the two relevant features 
(23.5% of trials), we subtracted .5 from the optimization 
score.

We predicted that participants learning an II category 
would show a pattern of gradual optimization throughout 
the experiment,  while RB participants would only optimize 
their attention after reaching the learning criterion. To 
examine this prediction, a 2x2 analysis of variance was 
conducted with stage of learning (before criterion, after 
criterion) as a within-subjects variable and condition (RB, 
II) as a between-subjects variable (see Figure 3).  The results 
showed a significant stage-structure interaction, F(1,47) = 
62.89,  p < .001. Compared to the RB participants, 
participants in the II condition showed more optimal 
attentional allocation before criterion (M = .31 versus M = .
10) and less optimal allocation after criterion (M = .55 
versus M = .87). 

0 90
0

90

0 90
0

90

Figure 2. Categories similar to those used in the 
experiment. The left panel shows information 
integration (II) categories, and the right panel shows 
rule-based (RB) categories. Axes represent the 
stimulus feature values.
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In order to account for the possibility that the differences 
we found were due to the differences in learning speed and 
accuracy between conditions, we performed two multiple 
regression analyses. The difference between pre- and post-
criterion optimization scores for each participant was 
regressed on total accuracy and condition. The same was 
performed for number of trials to criterion and condition. In 
both cases, the effect of condition remained significant.

A final analysis involved looking at the relationship 
between Aospan and optimization before and after 
participants reached criterion. We found a significant 
negative correlation between Aospan and pre-criterion 
optimization (r = -.35, p < .05) and no relationship with 
post-criterion optimization (r = -.10, p > .50). A larger 
working memory span seems to impair optimization during 
learning. There was no interaction between Aospan and 
condition in pre- or post-criterion stages (ps > .80), nor was 
there a significant correlation between Aospan scores and  
total optimization over the entire experiment (p > .20).

Discussion
Previous studies have found that learning is hampered in 

rule-based, but not information integration,  category tasks if 
a working memory-demanding task is performed 
concurrently (e.g., Zeithmova & Maddox, 2006). According 
to the COVIS multiple-systems model, prefrontal networks 
involved in executive attention, which are not part of the 
implicit procedural system of category learning, are highly 
active when the verbal system is engaged in rule generation 
and evaluation.  Recent work by DeCaro et al. (2008) 
suggests that high working memory capacity offers an 
advantage while learning rule-based categories, but hinders 
learning of information integration categories. We did not 
find the same result: working memory span did not predict 
accuracy for either rule-based or information integration 
categories.  There are several differences between our 

procedure and theirs, however.  We used a more stringent 
criterion of 13 (they used 8). In addition to the Aospan 
measure used in this study, DeCaro et al. used a measure of 
reading span and so may have had a more accurate measure 
of working memory span. Finally, DeCaro et al. used stimuli 
with four binary-valued dimensions, whereas our task 
required categorizing stimuli with three continuous 
dimensions.  Nevertheless,  if working memory span really is 
tightly connected to learning different types of categories, 
we might still expect to see a correlation between Aospan 
and performance. If increased working memory capacity 
really does help the learning of rule-based categories, while 
hindering learning of information integration categories, it 
does not seem likely to be a very large effect.

Although we found no evidence to suggest a relationship 
between working memory capacity and behavioural 
performance on our tasks, we did find an interesting 
relationship between working memory and attentional 
performance.  Before categories are learned,  participants 
with lower Aospan scores are able to allocate selective 
attention more optimally than those with higher scores. This 
effect was seen in both rule-based and information 
integration categories,  but disappeared post-criterion.  If, as 
COVIS predicts,  all participants initially rely on a dominant 
verbal system regardless of the the kind of category they are 
learning, all participants begin by generating and evaluating 
possible rules. Regardless of condition, participants with 
higher working memory may be more likely to persist in 
using executive memory to test rules until they reach the 
learning criterion, while participants with lower working 
memory may give up on rule-testing and engage procedural 
learning systems before reaching criterion. This would lead 
to our finding: a negative relationship between participants’ 
Aospan scores and their degree of attentional optimization.  
By the time all participants reached criterion, those with 
high Aospan scores quickly optimized attention, resulting in 
similar attentional optimization regardless of Aospan score. 
Future studies will be necessary to replicate and explore this 
finding. 

Another result consistent with previous research on 
attentional optimization is that rule-based learners had very 
low optimization before reaching criterion, and optimized 
attention rapidly upon mastering the task (Blair, Watson, & 
Meier, 2009). When faced with categories that can be 
learned by forming perfectly predictive verbalizable rules, it 
appears that participants generally do not begin attentional 
learning until after these rules have been discovered. On the 
other hand,  information integration learners optimization 
was higher prior to criterion, and lower subsequent to it. 
This suggests that for information integration tasks, 
response learning and attentional learning may be more 
tightly coupled than they are for rule-based tasks.

According to COVIS, the anterior cingulate and other 
areas important to executive function are in charge of 
selecting and switching between rules, and these areas are 
likely heavily involved in the learning of rule-based 
categories like ours. Since participants in our rule-based task 
are initially focused on attaining higher accuracy, executive 
attention may not work towards attentional learning until 
resources can be directed away from hypothesis-testing and 
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Figure 3. Pre-and post criterion optimization for 
rule-based and information integration conditions. 
Bars reflect standard errors.
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towards speed or effort-related goals. In accordance with 
our predictions, participants learning information integration 
categories begin to optimize attention prior to reaching 
criterion, and proceed more gradually as performance 
slowly improved.  If participants cannot predict category 
membership through rule-generation, executive attention is 
freer to work towards learning more efficient patterns of 
allocation as the procedural system begins to dominate the 
categorization task, even before the task is mastered. Our 
findings are consistent with multiple-systems view such as 
COVIS, and suggest that attentional optimization is another 
way in which rule-based and information integration 
categories are dissociated.

Acknowledgments
This research was supported by grants from the National 
Science and Engineering Research Council of Canada, The 
Canada Foundation for Innovation, and the British 
Columbia Knowledge Development Fund to MRB. We 
would also like thank the members of the Cognitive Science 
Lab; in particular: Calen Walshe, Jordan Barnes, Michael 
Fry, Leeza Looned, Aaron Ng, Gordon Pang and Harry 
White. 

References
Ashby, F. G., & Gott,  R. E. (1988). Decision rules in the 

perception and categorization of multidimensional 
stimuli. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 14(1), 33-53.

Ashby, F. G., & Maddox,  W. T. (2005). Human category 
learning. Annual Review of Psychology, 56, 149-178.

Ashby, F. G., Alfonso-Reese, L. A.,  Turken, A.  U., & 
Waldron, E.M. (1998). A neuropsychological theory of 
multiple systems in category learning. Psychological 
Review, 105(3), 442-481.

Blair,  M., & Homa, D. (2001). Expanding the search for a 
linear separability constraint on category learning. 
Memory and Cognition, 29(8), 1153-1164.

Blair,  M., & Homa, D. (2003).  As easy to memorize as they 
are to classify: The 5-4 categories and the category 
advantage. Memory and Cognition, 31(8), 1293-1301.

Blair,  M., & Homa, D. L. (2005). Integrating novel 
dimensions to eliminate category exceptions: When more 
is less. Journal of Experimental Psychology: Learning, 
Memory and Cognition, 31(2), 258-271.

Blair,  M. R., Watson, M. R., & Meier, K. M. (2009). Errors, 
efficiency, and the interplay between attention and 
category learning. Manuscript submitted for publication.

Blair,  M. R., Watson, M. R.,  Walshe, R.C., & Maj, F. (in 
press). Extremely selective attention: Eye-tracking studies 
of dynamic attention allocation to stimulus features in 
categorization.Journal of Experimental Psychology: 
Learning, Memory and Cognition.

Conway, A.  R. A.,  Kane, M. J., & Engle, R. W. (2003). 
Working memory capacity and its relation to general 
intelligence. Trends in Cognitive Sciences, 7(12), 
547-552.

DeCaro, M. S., Thomas, R. D., & Beilock, S. L. (2008). 
Individual differences in category learning: Sometimes 

less working memory capacity is better than more. 
Cognition, 107(1), 284-294.

Ell,  S.  W.,  & Ashby, F. G. (2006). The effects of category 
overlap on information-integration and rule-based 
category learning. Perception and Psychophysics, 68(6), 
1013-1026.

Kruschke, J. K.  (1992). ALCOVE: An exemplar-based 
connectionist model of category learning. Psychological 
Review, 99(1), 22-44.

Kruschke, J.  K. (2001). Toward a unified model of attention 
in associative learning. Journal of Mathematical 
Psychology, 45(6), 812-863.

Kruschke, J. K., Kappenman, E. S., & Hetrick, W. P. (2005). 
Eye gaze and individual differences consistent with 
learned attention in associative blocking and highlighting. 
Journal of Experimental Psychology: Learning, Memory, 
and Cognition, 31(5), 830-845.

Maddox, W. T., & Ashby, F.  G. (2004). Dissociating explicit 
and procedural-learning based systems of perceptual 
category learning. Behavioural Processes, 66(3), 309-332.

Matsuka, T., & Corter. J. E. (2008). Observed attention 
allocation processes in category learning. Quarterly 
Journal of Experimental Psychology, 61(7), 1067-1097.

Medin, D. L., & Schaffer,  M. M. (1978). Context theory of 
classification learning. Psychological Review, 85(3), 
207-238.

Nomura, E. M., Maddox, W. T., Filoteo,  J. V.,  Ing, A. D., 
Gitelman, D. R., Parrish, T. B., Mesulam, M. M., & 
Reber, P. J.  (2007). Neural correlates of rule-based and 
information-integration visual category learning. Cerebral 
Cortex, 17(1), 37-43.

Peterson, C. R., Hammond, K. R., & Summers, D.  A. 
(1965). Optimal responding in multiple-cue probability-
learning. Journal of Experimental Psychology,  70(3), 
270-276.

Posner, M. I.,  & Keele, S. W. (1968). On the genesis of 
abstract ideas.  Journal of Experimental Psychology, 
77(3), 353-363.

Rehder, B., & Hoffman, A. B. (2005a). Eyetracking and 
selective attention in category learning. Cognitive 
Psychology, 51(1), 1-41.

Rehder, B., & Hoffman, A. B. (2005b). Thirty-something 
categorization results explained: Selective attention, 
eyetracking, and models of category learning.  Journal of 
Experimental Psychology: Learning,  Memory, and 
Cognition, 31(5), 811-829.

Salvucci, D. D., & Goldberg,  J. H. (2000). Identifying 
fixations and saccades in eye-tracking protocols. 
Proceedings of the Eye Tracking Research and 
Applications Symposium, 1, 71-78.

Unsworth, N., Heitz,  R. R., Schrock, J. C., & Engle, R. W. 
(2005). An automated version of the operation span task. 
Behavior Research Methods, 37(3), 498-505.

Watson, M. R., & Blair, M. R. (2008). Attentional allocation 
during feedback: Eyetracking adventures on the other side 
of the response. Proceedings of the 30th Annual Meeting 
of the Cognitive Science Society, 345-350.

Zeithamova, D., & Maddox, W. T. (2006). Dual-task 
interference in perceptual category learning. Memory and 
Cognition, 34(2), 387-398. 

3132


