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Abstract 
It has recently been shown that neural networks can learn 
particular mathematical groups, for example, the Klein 4-
group (Jamrozik & Shultz, 2007). However, there are groups 
with any number of elements, all of which are said to 
instantiate the abstract group structure. Learning to 
differentiate groups from other structures that are not groups 
is a very difficult task. Contrary to some views, we show that 
neural networks can learn to recognize finite groups 
consisting of up to 4 elements. We present this problem as a 
case study that exhibits the advantages of knowledge-based 
learning over knowledge-free learning. In addition, we also 
show the surprising result that the way in which the KBCC 
algorithm recruits previous knowledge reflects some deep 
structural properties of the patterns that are learned, namely, 
the structure of the subgroups of a given group. 
 

Keywords: Mathematical groups; neural networks; KBCC; 
CC. 

Introduction 
Mathematical groups are remarkable for two reasons: On 
the one hand, they pervade many areas of mathematics and 
also everyday life, and on the other hand, their abstract 
structure is quite difficult to learn from instances. In this 
paper we use the task of learning the abstract structure of 
small finite groups as a case study to make the following 
three points: (a) We provide an argument against purported 
limitations of neural network approaches. (b) We show how 
neural networks can learn from previously existing 
knowledge and that this increases the speed of their 
learning. (c) Our results reveal that the neural networks 
show some ‘deep understanding’ of the abstract structure of 
the problems they are learning. 

Some authors have argued that ordinary artificial neural 
networks are inherently unable to learn systematically 
structured representations such as mathematical groups 
(Phillips, & Halford, 1997; Marcus, 1998). However, a first 
step has recently been made to invalidate this claim, because 
it has been demonstrated that neural networks can learn 
particular mathematical groups, like the Klein 4-group, in a 
fashion that simulates learning by humans (Jamrozik & 
Shultz, 2007). We now extend the task to learning the 
abstract structure of small finite groups with three and four 
elements and we compare knowledge-based learning with 
knowledge-free learning.  

Artificial neural networks most always learn from scratch, 
unlike people who almost always try to build new learning 
on top of their existing knowledge. Our results show how 
neural networks can also learn from existing knowledge. In 
particular, we are curious to know whether it helps the 
learning process to have previously learned the structure of 
smaller groups. This is especially interesting, because 
similarities between two different groups and differences 
between groups and other domains cannot in general be 
characterized by structure-preserving mappings, but only by 
formulating their underlying laws (Schlimm, 2008).  

Learning of group structure based on previous knowledge 
of smaller groups is a natural area of application for 
constructive algorithms that build their learning on top of 
existing knowledge. One such algorithm is knowledge-
based cascade-correlation (KBCC), which constructs a 
neural-network topology by recruiting previously learned 
networks and single hidden units (Shultz & Rivest, 2001). 
Its performance can be readily compared to ordinary 
cascade-correlation (CC), which builds a network only by 
recruiting single hidden units (Fahlman & Lebiere, 1990). 
Past comparisons have revealed that KBCC tends to recruit 
relevant knowledge whenever it can and that this speeds 
learning (Shultz & Rivest, 2001) and in some cases makes 
learning possible (Egri & Shultz, 2006). 

Finally, we investigate the relation between the group to 
be learned and the kinds of networks that are recruited from 
the knowledge base: Does only the size of the recruits 
matter, or does the quality of their knowledge also play a 
role? Our results provide a surprising answer to this 
question that points to promising new lines of work on 
knowledge and learning.  

The Abstract Group Structure 
A mathematical group consists of a set of elements together 
with an associative operation * (i.e., where a*(b*c) and 
(a*b)*c yield the same result), for which the following three 
properties hold: (i) the objects are closed under the group 
operation, i.e., for elements a and b, a*b is also an element 
of the group; (ii) there exists a neutral element n, such that 
a*n=a for all elements a of the group; and (iii) that for 
every element a there exists an inverse element a', such that 
a*a'=n.  
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Typical examples of groups are the first n-1 natural 
numbers with addition modulo n as the group operation (for 
n=3, see Figure 1; for n=4, see the cyclic 4-group in 
Figure 3); the positions of a cube with the operation of 
performing rotations in space; all possible permutations of a 
given sequence of objects with successive application of the 
permutation as the group operation (Rothman, 1985); and, 
the different configurations that can be obtained by flipping 
a mattress (Hayes, 2005). The group operation is usually 
presented by a multiplication table, or Cayley table, as in the 
examples shown in Figure 1. 
 

* 0 1 2 
0 0 1 2 
1 1 2 0 
2 2 0 1  

* b a c 
b a c b 
a c b a 
c b a c  

Figure 1: Addition modulo 3 and alternative presentation. 
 

The multiplication table on the left in Figure 1 represents 
a 3-element group with elements 0, 1, 2, where the group 
operation * is interpreted as addition modulo 3; the neutral 
element is 0; as one can see by inspecting the table, the 
inverse of 0 is 0, the inverse of 1 is 2, and the inverse of 2 
is 1. Because an abstract group is characterized only by the 
structure induced by the group operation and not by the 
names of the elements or the order in which they are 
presented in a multiplication table, renaming the elements 
and/or rearranging the rows and columns yields a 
representation of the same abstract group (see, for example, 
the multiplication table on the right in Figure 1 for an 
alternative presentation; here c is the neutral element). In 
fact, one can show that there is only one abstract group with 
three elements (Rotman, 1996). In other words, any set with 
three elements and an operation that satisfies the conditions 
(i)–(iii) for groups listed above can be put into the form of 
the multiplication tables in Figure 1 by renaming the 
elements and rearranging the rows and columns. 

There is also exactly one abstract group with two 
elements, which is represented by the two multiplication 
tables in Figure 2 (the group on the left has the neutral 
element 0, while the group on the right has the neutral 
element 1; these two groups are again instances of the same 
abstract group). 

 
* 0 1 
0 0 1 
1 1 0  

* 0 1 
0 1 0 
1 0 1  

Figure 2: Two alternative representations of the same 
abstract 2-element group. 

 
There are two different abstract groups with four 

elements: the cyclic 4-group, and the Klein 4-group (see 
Figure 3). They are considered different because the 
multiplication table of a Klein 4-group can never be made to 
coincide with that of a cyclic 4-group by renaming the 

elements and rearranging the rows and columns. In 
mathematical terms, these two groups are not isomorphic. 

 
* 0 1 2 3 
0 0 1 2 3 
1 1 2 3 0 
2 2 3 0 1 
3 3 0 1 2 

Cyclic 4-group 

* 0 1 2 3 
0 0 1 2 3 
1 1 0 3 2 
2 2 3 0 1 
3 3 2 1 0 

Klein 4-group 

Figure 3: Two different 4-element groups, the cyclic 4-
group (left) and the Klein 4-group (right). 

 
Both 4-element groups have the 2-element group as a 

subgroup. In other words, within their 4x4 multiplication 
tables one can identify pairs of elements that behave like a 
group with 2 elements. For the cyclic 4-group these are the 
elements 0 and 2, while the Klein 4-group has three such 
pairs: elements 0 and 1, 0 and 2, and 0 and 3. Notice also, 
that the 3-element group (Figure 1) does not have the 2-
element group as a subgroup. This difference between 3- 
and 4-element groups has interesting implications for 
interpreting the results of knowledge-based learning of 
groups. We return to this difference in the discussion of our 
results.  

For our research, we trained neural networks with all 
possible multiplication tables for the 3-element and the 4-
element groups using knowledge-free (CC) and knowledge-
based (KBCC) learning algorithms in order to assess their 
abilities, and, in the case of the knowledge-based algorithm, 
also to study the quality of the recruited knowledge. 

Method 
CC Learning 
CC learning alternates between two phases: input phase and 
output phase (Fahlman & Lebiere, 1990). Each phase is 
composed a number of epochs, where an epoch is a pass 
through the set of training examples. CC networks begin 
learning without any hidden units. They start training in 
output phase, by adjusting connection weights entering 
output units to reduce as much error as possible. In input 
phases, the input weights to candidate hidden units are 
trained in order to maximize the covariance between unit 
activation and network error. The candidate unit with the 
highest absolute covariance is selected and installed into the 
network with random input connection weights of the same 
sign as those that were just learned, the other candidates are 
discarded, and training shifts back to output phase. The 
algorithm shifts from one phase to the other when the 
current phase fails to improve the solution of the problem on 
which the network is being trained. That is, it fails to reduce 
error in output phase, or fails to increase covariances in 
input phase. CC and related algorithms have been used to 
simulate many aspects of cognition and its development 
(Shultz, 2003; 2006).  
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KBCC Learning 
KBCC differs from CC mainly by having the potential to 
recruit previously-learned networks in competition with 
single hidden units (Shultz & Rivest, 2001). The 
computational device that gets recruited is the one whose 
output covaries best with residual network error. An 
example of a KBCC network is shown in Figure 4, 
illustrating that a recruited source network can have 
multiple inputs and outputs, thus requiring connection-
weight matrices rather than vectors. Mathematical details 
for KBCC are available elsewhere (Shultz & Rivest, 2001), 
along with evidence of its use in cognitive simulations 
(Shultz, Rivest, Egri, Thivierge, & Dandurand, 2007).  

 
Figure 4: Drawing of sample KBCC network after 

recruiting two source networks and one sigmoid unit. The 
dashed line represents a single connection weight, the light 
solid lines represent weight vectors, and the dark solid lines 

represent weight matrices. Activation flow is upward. 

The 3x3 Learning Task 
As inputs we encode the group multiplication tables 
discussed earlier, in which the names and the order of the 
group elements are kept fixed. In this case the 3-element 
group can be presented by three different multiplication 
tables, as shown in Figure 5. (In the first multiplication table 
0 is the neutral element, while it is 1 and 2 in the second and 
third table, respectively). Because these tables can be 
transformed into each other by renaming the elements and 
rearranging the rows and columns, they all represent the 
same abstract group. Also, because the names of the 
elements and their order are kept constant, we can omit the 
labels of the columns and rows from the inputs, so that the 
multiplication table of a 3-element group can be given as a 
3x3 matrix. 
  

* 0 1 2 
0 0 1 2 
1 1 2 0 
2 2 0 1  

* 0 1 2 
0 2 0 1 
1 0 1 2 
2 1 2 0  

* 0 1 2 
0 1 2 0 
1 2 0 1 
2 0 1 2  

 
Figure 5: Alternative presentations of the 3-element group. 

 
When presenting a group multiplication table it is 

customary to always write the neutral element in the 

leftmost column and the top row, as in the table on the left 
in Figure 5. However, we did not employ this convention 
for the inputs in order to prevent networks from learning 
some feature that is purely an artifact of this particular mode 
of presentation, e.g., that 0*0 is always 0. As a consequence, 
the learning task itself becomes much more difficult. To 
grasp this, consider the task of determining whether the two 
multiplication tables presented in Figure 1 or the three tables 
shown in Figure 5 are indeed instances of the same abstract 
group. Even most trained mathematicians would not be able 
to solve this at a glance. 

It is noteworthy that only very few multiplication tables 
actually represent instances of an abstract group. A 3x3 
multiplication table, or matrix, can be filled with at most 
three elements in 39=19,683 different ways. If only those 
tables are considered in which each element occurs exactly 
three times, this reduces the number of different 
multiplication tables to 1,680. If the tables are further 
restricted to only those in which each element occurs 
exactly once in each row and column, 12 different tables 
remain, of which only the three shown in Figure 5 represent 
the abstract group structure. 

The candidate units for the KBCC algorithm consisted of 
multiple instances of a sigmoid unit, a network that was 
trained to learn the 2x2 group using the CC algorithm 
(genuine 2x2), and a network of the same structure as the 
previous one, but with random weights chosen with uniform 
distribution from the range -1 to 1 (random 2x2). As 
training data for the genuine 2x2, we used all 16 possible 
configurations of the elements 0 and 1 in a 2x2 
multiplication table, only two of which are in fact groups 
(these two are shown in Figure 3). 

For the comparison of the CC and the KBCC algorithms 
we used in the training set 900 positive matrices, i.e., 300 
copies of the three alternative presentations of the 3-element 
group, and 1000 random 3x3 matrices, in which every 
element occurs exactly three times, that are not groups. 

The 4x4 Learning Task 
Each of the two abstract groups with four elements can be 
represented by 16 different 4x4 matrices (if the names of the 
elements and their order are kept fixed). Of these, 15 were 
used in the training sets and one was used for testing for 
generalization. As in the 3x3 case, we again used 900 
positive instances, i.e., 60 copies of the 15 4x4 group 
multiplication tables and 1000 random 4x4 matrices that are 
not groups in which every element occurs exactly four 
times. 

The pool of possible recruits by the KBCC algorithm 
consisted of multiple instances of the same units as in the 
3x3 learning task (sigmoid, genuine 2x2, and random 2x2), 
plus two additional 3x3 networks. The genuine 3x3 network 
had learned the 3-element group structure using a training 
set consisting of 1090 matrices in total, 90 of which were 
copies of the 3 different multiplication tables for the 3x3 
group. The random 3x3 network had the same structure as 
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the genuine 3x3, but again with random weights chosen 
with uniform distribution from the range -1 to 1. 

Both the 3x3 and the 4x4 learning tasks were run 20 times 
to enable statistical comparisons. Each network was trained 
until the single output unit activation was within the score-
threshold parameter of its target value on every training 
pattern. Because the output decision was a binary one, i.e., 
the input matrix is a group or is not a group, the score-
threshold was the default value of 0.4. The sigmoid 
activation function has an output in the range -.5 to .5.  

Results 
We analyzed learning speed, number of recruits, the quality 
of KBCC recruits, and generalization ability.  

For learning speed, we performed a task dimensions x 
algorithm factorial ANOVA of the epochs required to learn 
the training patterns. There were main effects of dimensions 
F(1, 76) = 7.37, p < .01 and algorithm F(1, 76) = 15.54, p < 
.001, but no significant interaction. The means are presented 
in Figure 6. The 4x4 patterns took longer to learn than the 
3x3 patterns, and CC took longer to learn than did KBCC. 
The speedup provided by KBCC was significant for both 
3x3 patterns, t(38) = 3.51, p < .001, and 4x4 patterns t(38) = 
2.31, p < .03.  Thus, KBCC learned these groups faster than 
did knowledge-free CC.  
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Figure 6:  Mean epochs to learn groups of different 

dimensions by two algorithms ±SE. 
 

Number of recruits was also subjected to a dimensions x 
algorithm factorial ANOVA. There were two main effects 
and no interaction. The main effect of dimensions reflected 
more recruits for the 4x4 task (M = 3.98) than for the 3x3 
task (M= 3.2), F(1, 76) = 5.34, p < .03. The main effect of 
algorithm revealed that CC used more recruits (M = 4.00) 
than did KBCC (M = 3.17), F(1, 76) = 6.05, p < .02. 
Generally in CC-type algorithms, the more recruits that are 
required, the longer it takes to learn.  

For quality of recruits, we analyzed the 3x3 task 
separately from the 4x4 task because some types of recruits 
were available in the latter but not in former. Learning 3x3 
patterns, KBCC networks recruited many more genuine 2x2 
source networks (M = 2.05) than randomized 2x2 source 
networks (M = 0.35), t(19) = -6.47, p < .001. This is the 
pattern one would expect if the recruits’ actual knowledge is 

more important than its mere complexity. See Table 1 for 
the proportions of the units recruited by KBCC in both 
learning tasks.  

 
Table 1: Proportions of recruits by KBCC. 

 
 Dimensions of group to be learned 

Recruits 3x3 4x4 
Sigmoid .077 .147 
Genuine 2x2 .788 .427 
Random 2x2 .135 .067 
Genuine 3x3 n/a .227 
Random 3x3 n/a .133 

 
For learning 4x4 patterns, the counts of genuine and 

random 2x2 and 3x3 recruits were subjected to a type of 
recruit x dimensions of recruit repeated measures ANOVA. 
The associated means are plotted in Figure 7.  There was a 
main effect of type of recruit and an interaction between that 
and the dimensions of the recruit. The main effect of type of 
recruit, F(1, 19) = 10.34, p < .005, reflects that recruits were 
more often genuine than random, again the expected pattern 
if knowledge trumps mere complexity. The interaction, F(1, 
19) = 8.64, p < .01, was further explored with dependent t 
tests.  Among genuine network recruits, there were more 
2x2s than 3x3s, t(19) = 3.00, p < .01, an interesting finding 
discussed more fully in the Discussion section. Whereas 
among random network recruits, there was no significant 
difference related to group dimensions of the recruit, t(19) = 
-1.42, ns.  
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Figure 7: Mean genuine  and random  network recruits 
 of different group dimensions in KBCC learning of  

4x4 groups ±SE. 
 

For the 4x4 learning task we tested generalization in 20 
fresh CC and 20 fresh KBCC networks by recording each 
network’s error on 1 of the 16 sets of patterns that was not 
used in training. The mean errors are plotted in Figure 8. A 
repeated-measures ANOVA on these errors with algorithm 
as a between network factor and training as a within 
network factor yielded only a main effect of training, F(1, 
38) = 71.42, p < .0001. Error dropped sharply on these test 
patterns during training with either algorithm. 
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Figure 8: Mean error on test patterns before and after 

training ±SE. 

Discussion 
It is evident that both CC and KBCC algorithms are able to 
learn the structure of the abstract 3-element and 4-element 
groups, and that they generalize successfully to untrained 
test patterns. Thus, claims that such tasks are impossible to 
learn by neural networks are successfully refuted by our 
results. 

Comparison between the CC and KBCC learning 
algorithms reveals the following: (a) KBCC consistently 
learns faster than CC, and (b) KBCC consistently has fewer 
recruits. These two differences are due to the fact that 
KBCC chooses recruits that possess knowledge that is 
relevant for the task at hand. Thus, our results confirm 
similar learning speedups due to knowledge that were 
obtained previously with very different learning tasks 
(Shultz & Rivest, 2001). 

In addition, if we look at the types of networks that are 
recruited by KBCC, we notice very distinctive preferences 
(see Table 1), which cannot be explained in terms of the 
complexities of the recruited networks alone. When learning 
the 3x3 group, KBCC recruited in the majority of cases the 
genuine source network, i.e., the network that had already 
learned the 2x2 group. This shouldn’t come as too big a 
surprise, because both groups share those structural features 
that are characteristic of all groups and that distinguish them 
from other patterns that do not instantiate the abstract group 
structure. (These features are the properties (i), (ii), and (iii), 
presented earlier.) This also explains why, in the 4x4 
learning task, KBCC recruited the two networks that were 
trained with the smaller groups (Genuine 2x2 and Genuine 
3x3) more frequently than the networks with random 
weights or single sigmoid units.  

But, why did KBCC recruit the genuine 2x2 network 
significantly more often than the genuine 3x3 network? 
After all, because the 3x3 network is larger it should be able 
to encode more information than the 2x2 network. Some 
insight into the structural relations between the different 2, 
3, and 4-element groups can resolve this mystery and 
explain the prima facie irrational behavior of the KBCC 
algorithm.  

As mentioned earlier, both of the abstract 4x4 groups 
have 2x2 groups as their subgroups. Thus, the 2x2 group is  

a sort of building block for both the cyclic 4-group and the 
Klein 4-group, and the KBCC algorithm picks up on these 
subtle structural relationships. In other words, in addition to 
being sensitive to the abstract group structure, KBCC is also 
able to exploit deeper structural relationships between what 
is being learned and what is already present in the 
knowledge base. In the present case this has the effect that 
those candidate networks are preferred that represent 
subgroups of the group that is being learned. To summarize, 
our results suggest that KBCC does not recruit networks 
primarily based on some quantitative measure (e.g., size and 
complexity), but based on the relevance and quality of the 
knowledge they encode. 

In future work we would like to investigate if this 
observation can also be substantiated when larger groups are 
being learned. Based on our experiences so far we expect 
that in  these cases further structural  properties, like that of 
being a cyclic group or being a commutative group, will 
play a role for the selection of the candidate recruits.  

As anticipated, the learning of the abstract group structure 
proved to be a worthy and interesting challenge for 
constructive network algorithms. CC is known to be a 
strong learner because of the way it searches simultaneously 
in both topology space and weight space to find, not only 
appropriate connection weights, but also the right topology 
for the task it is learning (Fahlman & Lebiere, 1990; Shultz, 
2003). Thus, CC naturally, without intervention of 
programmers, builds networks of about the right size for the 
learning task. Consequently, it can learn to distinguish 
groups from non-groups, given enough learning time and 
examples. But KBCC, by recruiting simpler relevant 
knowledge than its training task, can learn these distinctions 
even faster and with fewer recruits than CC can. There is 
little question that these constructive neural learners can, 
from examples alone, learn important features about 
abstract, systematic structures.  

We make no claim that these neural networks understand 
groups in the same explicit fashion as mathematical 
specialists do. But these algorithms could well serve to 
model how ordinary people acquire complex, abstract, 
highly-structured knowledge (Jamrozik & Shultz, 2007; 
Egri & Shultz, 2006). Modeling expert explicit 
mathematical knowledge would require in addition that this 
implicit learned knowledge be converted into an axiomatic 
characterization that expresses the three group properties 
(i)–(iii) listed in our earlier section on The Abstract Group 
Structure, to allow for a concise representation of both finite 
and infinite groups (Schlimm, 2008). 
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