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Abstract

It has recently been shown that neural networks can learn
particular mathematical groups, for example, the Klein 4-
group (Jamrozik & Shultz, 2007). However, there are groups
with any number of elements, all of which are said to
instantiate the abstract group structure. Learning to
differentiate groups from other structures that are not groups
is a very difficult task. Contrary to some views, we show that
neural networks can learn to recognize finite groups
consisting of up to 4 elements. We present this problem as a
case study that exhibits the advantages of knowledge-based
learning over knowledge-free learning. In addition, we also
show the surprising result that the way in which the KBCC
algorithm recruits previous knowledge reflects some deep
structural properties of the patterns that are learned, namely,
the structure of the subgroups of a given group.

Keywords: Mathematical groups; neural networks; KBCC;
CC.

Introduction

Mathematical groups are remarkable for two reasons: On
the one hand, they pervade many areas of mathematics and
also everyday life, and on the other hand, their abstract
structure is quite difficult to learn from instances. In this
paper we use the task of learning the abstract structure of
small finite groups as a case study to make the following
three points: (a) We provide an argument against purported
limitations of neural network approaches. (b) We show how
neural networks can learn from previously existing
knowledge and that this increases the speed of their
learning. (c) Our results reveal that the neural networks
show some ‘deep understanding’ of the abstract structure of
the problems they are learning.

Some authors have argued that ordinary artificial neural
networks are inherently unable to learn systematically
structured representations such as mathematical groups
(Phillips, & Halford, 1997; Marcus, 1998). However, a first
step has recently been made to invalidate this claim, because
it has been demonstrated that neural networks can learn
particular mathematical groups, like the Klein 4-group, in a
fashion that simulates learning by humans (Jamrozik &
Shultz, 2007). We now extend the task to learning the
abstract structure of small finite groups with three and four
elements and we compare knowledge-based learning with
knowledge-free learning.

Artificial neural networks most always learn from scratch,
unlike people who almost always try to build new learning
on top of their existing knowledge. Our results show how
neural networks can also learn from existing knowledge. In
particular, we are curious to know whether it helps the
learning process to have previously learned the structure of
smaller groups. This is especially interesting, because
similarities between two different groups and differences
between groups and other domains cannot in general be
characterized by structure-preserving mappings, but only by
formulating their underlying laws (Schlimm, 2008).

Learning of group structure based on previous knowledge
of smaller groups is a natural area of application for
constructive algorithms that build their learning on top of
existing knowledge. One such algorithm is knowledge-
based cascade-correlation (KBCC), which constructs a
neural-network topology by recruiting previously learned
networks and single hidden units (Shultz & Rivest, 2001).
Its performance can be readily compared to ordinary
cascade-correlation (CC), which builds a network only by
recruiting single hidden units (Fahlman & Lebiere, 1990).
Past comparisons have revealed that KBCC tends to recruit
relevant knowledge whenever it can and that this speeds
learning (Shultz & Rivest, 2001) and in some cases makes
learning possible (Egri & Shultz, 2006).

Finally, we investigate the relation between the group to
be learned and the kinds of networks that are recruited from
the knowledge base: Does only the size of the recruits
matter, or does the quality of their knowledge also play a
role? Our results provide a surprising answer to this
question that points to promising new lines of work on
knowledge and learning.

The Abstract Group Structure

A mathematical group consists of a set of elements together
with an associative operation * (i.e., where a*(b*c) and
(a*b)*c yield the same result), for which the following three
properties hold: (i) the objects are closed under the group
operation, i.e., for elements a and b, a*b is also an element
of the group; (ii) there exists a neutral element n, such that
a*n=a for all elements a of the group; and (iii) that for
every element a there exists an inverse element @', such that
a*a'=n.
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Typical examples of groups are the first n-1 natural
numbers with addition modulo » as the group operation (for
n=3, see Figure l; for n=4, see the cyclic 4-group in
Figure 3); the positions of a cube with the operation of
performing rotations in space; all possible permutations of a
given sequence of objects with successive application of the
permutation as the group operation (Rothman, 1985); and,
the different configurations that can be obtained by flipping
a mattress (Hayes, 2005). The group operation is usually
presented by a multiplication table, or Cayley table, as in the
examples shown in Figure 1.

— o

— O (N

6o T *

o | (c|e

W= *
=11
oo | |z
o oo |»

2

Figure 1: Addition modulo 3 and alternative presentation.

The multiplication table on the left in Figure 1 represents
a 3-element group with elements 0, 1, 2, where the group
operation * is interpreted as addition modulo 3; the neutral
element is 0; as one can see by inspecting the table, the
inverse of 0 is 0, the inverse of 1 is 2, and the inverse of 2
is 1. Because an abstract group is characterized only by the
structure induced by the group operation and not by the
names of the elements or the order in which they are
presented in a multiplication table, renaming the elements
and/or rearranging the rows and columns yields a
representation of the same abstract group (see, for example,
the multiplication table on the right in Figure 1 for an
alternative presentation; here c¢ is the neutral element). In
fact, one can show that there is only one abstract group with
three elements (Rotman, 1996). In other words, any set with
three elements and an operation that satisfies the conditions
(1)—(iii) for groups listed above can be put into the form of
the multiplication tables in Figure 1 by renaming the
elements and rearranging the rows and columns.

There is also exactly one abstract group with two
elements, which is represented by the two multiplication
tables in Figure 2 (the group on the left has the neutral
element 0, while the group on the right has the neutral
element 1; these two groups are again instances of the same
abstract group).

01 *101
0[0]1 0[1]0
1]1]0 1/0]1

Figure 2: Two alternative representations of the same
abstract 2-element group.

There are two different abstract groups with four
elements: the cyclic 4-group, and the Klein 4-group (see
Figure 3). They are considered different because the
multiplication table of a Klein 4-group can never be made to
coincide with that of a cyclic 4-group by renaming the

elements and rearranging the rows and columns. In
mathematical terms, these two groups are not isomorphic.

*10]1]2)3 *10]1]2]3
0[{0]1]2]3 0[{0]1]2]3
1]1[2]3]0 1/1/]0]3]2
2(2]3]0]1 2(2(3]0]1
3[3]0]1]2 3[3]2]1]0

Cyclic 4-group Klein 4-group

Figure 3: Two different 4-element groups, the cyclic 4-
group (left) and the Klein 4-group (right).

Both 4-element groups have the 2-element group as a
subgroup. In other words, within their 4x4 multiplication
tables one can identify pairs of elements that behave like a
group with 2 elements. For the cyclic 4-group these are the
elements 0 and 2, while the Klein 4-group has three such
pairs: elements 0 and 1, 0 and 2, and 0 and 3. Notice also,
that the 3-element group (Figure 1) does not have the 2-
element group as a subgroup. This difference between 3-
and 4-element groups has interesting implications for
interpreting the results of knowledge-based learning of
groups. We return to this difference in the discussion of our
results.

For our research, we trained neural networks with all
possible multiplication tables for the 3-element and the 4-
element groups using knowledge-free (CC) and knowledge-
based (KBCC) learning algorithms in order to assess their
abilities, and, in the case of the knowledge-based algorithm,
also to study the quality of the recruited knowledge.

Method

CC Learning

CC learning alternates between two phases: input phase and
output phase (Fahlman & Lebiere, 1990). Each phase is
composed a number of epochs, where an epoch is a pass
through the set of training examples. CC networks begin
learning without any hidden units. They start training in
output phase, by adjusting connection weights entering
output units to reduce as much error as possible. In input
phases, the input weights to candidate hidden units are
trained in order to maximize the covariance between unit
activation and network error. The candidate unit with the
highest absolute covariance is selected and installed into the
network with random input connection weights of the same
sign as those that were just learned, the other candidates are
discarded, and training shifts back to output phase. The
algorithm shifts from one phase to the other when the
current phase fails to improve the solution of the problem on
which the network is being trained. That is, it fails to reduce
error in output phase, or fails to increase covariances in
input phase. CC and related algorithms have been used to
simulate many aspects of cognition and its development
(Shultz, 2003; 2006).
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KBCC Learning

KBCC differs from CC mainly by having the potential to
recruit previously-learned networks in competition with
single hidden wunits (Shultz & Rivest, 2001). The
computational device that gets recruited is the one whose
output covaries best with residual network error. An
example of a KBCC network is shown in Figure4,
illustrating that a recruited source network can have
multiple inputs and outputs, thus requiring connection-
weight matrices rather than vectors. Mathematical details
for KBCC are available elsewhere (Shultz & Rivest, 2001),
along with evidence of its use in cognitive simulations
(Shultz, Rivest, Egri, Thivierge, & Dandurand, 2007).

outputs

source 2

source 1 ‘
bias | | inputs

Figure 4: Drawing of sample KBCC network after
recruiting two source networks and one sigmoid unit. The
dashed line represents a single connection weight, the light
solid lines represent weight vectors, and the dark solid lines
represent weight matrices. Activation flow is upward.

The 3x3 Learning Task

As inputs we encode the group multiplication tables
discussed earlier, in which the names and the order of the
group elements are kept fixed. In this case the 3-element
group can be presented by three different multiplication
tables, as shown in Figure 5. (In the first multiplication table
0 is the neutral element, while it is 1 and 2 in the second and
third table, respectively). Because these tables can be
transformed into each other by renaming the elements and
rearranging the rows and columns, they all represent the
same abstract group. Also, because the names of the
elements and their order are kept constant, we can omit the
labels of the columns and rows from the inputs, so that the
multiplication table of a 3-element group can be given as a
3x3 matrix.
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Figure 5: Alternative presentations of the 3-element group.

When presenting a group multiplication table it is
customary to always write the neutral element in the

leftmost column and the top row, as in the table on the left
in Figure 5. However, we did not employ this convention
for the inputs in order to prevent networks from learning
some feature that is purely an artifact of this particular mode
of presentation, e.g., that 0*0 is always 0. As a consequence,
the learning task itself becomes much more difficult. To
grasp this, consider the task of determining whether the two
multiplication tables presented in Figure 1 or the three tables
shown in Figure 5 are indeed instances of the same abstract
group. Even most trained mathematicians would not be able
to solve this at a glance.

It is noteworthy that only very few multiplication tables
actually represent instances of an abstract group. A 3x3
multiplication table, or matrix, can be filled with at most
three elements in 3°=19,683 different ways. If only those
tables are considered in which each element occurs exactly
three times, this reduces the number of different
multiplication tables to 1,680. If the tables are further
restricted to only those in which each element occurs
exactly once in each row and column, 12 different tables
remain, of which only the three shown in Figure 5 represent
the abstract group structure.

The candidate units for the KBCC algorithm consisted of
multiple instances of a sigmoid unit, a network that was
trained to learn the 2x2 group using the CC algorithm
(genuine 2x2), and a network of the same structure as the
previous one, but with random weights chosen with uniform
distribution from the range -1 to 1 (random 2x2). As
training data for the genuine 2x2, we used all 16 possible
configurations of the elements 0 and 1 in a 2x2
multiplication table, only two of which are in fact groups
(these two are shown in Figure 3).

For the comparison of the CC and the KBCC algorithms
we used in the training set 900 positive matrices, i.e., 300
copies of the three alternative presentations of the 3-element
group, and 1000 random 3x3 matrices, in which every
element occurs exactly three times, that are not groups.

The 4x4 Learning Task

Each of the two abstract groups with four elements can be
represented by 16 different 4x4 matrices (if the names of the
elements and their order are kept fixed). Of these, 15 were
used in the training sets and one was used for testing for
generalization. As in the 3x3 case, we again used 900
positive instances, i.e., 60 copies of the 15 4x4 group
multiplication tables and 1000 random 4x4 matrices that are
not groups in which every element occurs exactly four
times.

The pool of possible recruits by the KBCC algorithm
consisted of multiple instances of the same units as in the
3x3 learning task (sigmoid, genuine 2x2, and random 2x2),
plus two additional 3x3 networks. The genuine 3x3 network
had learned the 3-element group structure using a training
set consisting of 1090 matrices in total, 90 of which were
copies of the 3 different multiplication tables for the 3x3
group. The random 3x3 network had the same structure as
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the genuine 3x3, but again with random weights chosen
with uniform distribution from the range -1 to 1.

Both the 3x3 and the 4x4 learning tasks were run 20 times
to enable statistical comparisons. Each network was trained
until the single output unit activation was within the score-
threshold parameter of its target value on every training
pattern. Because the output decision was a binary one, i.e.,
the input matrix is a group or is not a group, the score-
threshold was the default value of 0.4. The sigmoid
activation function has an output in the range -.5 to .5.

Results

We analyzed learning speed, number of recruits, the quality
of KBCC recruits, and generalization ability.

For learning speed, we performed a task dimensions x
algorithm factorial ANOVA of the epochs required to learn
the training patterns. There were main effects of dimensions
F(1,76) =737, p <.01 and algorithm F(1, 76) = 15.54, p <
.001, but no significant interaction. The means are presented
in Figure 6. The 4x4 patterns took longer to learn than the
3x3 patterns, and CC took longer to learn than did KBCC.
The speedup provided by KBCC was significant for both
3x3 patterns, #(38) = 3.51, p <.001, and 4x4 patterns #38) =
2.31, p <.03. Thus, KBCC learned these groups faster than
did knowledge-free CC.
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Group dimensions of learning task

Figure 6: Mean epochs to learn groups of different
dimensions by two algorithms +SE.

Number of recruits was also subjected to a dimensions x
algorithm factorial ANOVA. There were two main effects
and no interaction. The main effect of dimensions reflected
more recruits for the 4x4 task (M = 3.98) than for the 3x3
task (M= 3.2), F(1, 76) = 5.34, p < .03. The main effect of
algorithm revealed that CC used more recruits (M = 4.00)
than did KBCC (M = 3.17), F(1, 76) = 6.05, p < .02.
Generally in CC-type algorithms, the more recruits that are
required, the longer it takes to learn.

For quality of recruits, we analyzed the 3x3 task
separately from the 4x4 task because some types of recruits
were available in the latter but not in former. Learning 3x3
patterns, KBCC networks recruited many more genuine 2x2
source networks (M = 2.05) than randomized 2x2 source
networks (M = 0.35), #(19) = -6.47, p < .001. This is the
pattern one would expect if the recruits’ actual knowledge is

more important than its mere complexity. See Table 1 for
the proportions of the units recruited by KBCC in both
learning tasks.

Table 1: Proportions of recruits by KBCC.

Dimensions of group to be learned

Recruits 3x3 4x4
Sigmoid 077 .147
Genuine 2x2 788 427
Random 2x2 135 .067
Genuine 3x3 n/a 227
Random 3x3 n/a 133

For learning 4x4 patterns, the counts of genuine and
random 2x2 and 3x3 recruits were subjected to a type of
recruit X dimensions of recruit repeated measures ANOVA.
The associated means are plotted in Figure 7. There was a
main effect of type of recruit and an interaction between that
and the dimensions of the recruit. The main effect of type of
recruit, F(1, 19) = 10.34, p < .005, reflects that recruits were
more often genuine than random, again the expected pattern
if knowledge trumps mere complexity. The interaction, F(1,
19) = 8.64, p < .01, was further explored with dependent ¢
tests. Among genuine network recruits, there were more
2x2s than 3x3s, #(19) = 3.00, p < .01, an interesting finding
discussed more fully in the Discussion section. Whereas
among random network recruits, there was no significant
difference related to group dimensions of the recruit, #19) =
-1.42, ns.
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Figure 7: Mean genuine and random network recruits
of different group dimensions in KBCC learning of
4x4 groups £SE.

For the 4x4 learning task we tested generalization in 20
fresh CC and 20 fresh KBCC networks by recording each
network’s error on 1 of the 16 sets of patterns that was not
used in training. The mean errors are plotted in Figure 8. A
repeated-measures ANOVA on these errors with algorithm
as a between network factor and training as a within
network factor yielded only a main effect of training, F(1,
38)=71.42, p <.0001. Error dropped sharply on these test
patterns during training with either algorithm.
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Figure 8: Mean error on test patterns before and after
training +SE.

Discussion

It is evident that both CC and KBCC algorithms are able to
learn the structure of the abstract 3-element and 4-element
groups, and that they generalize successfully to untrained
test patterns. Thus, claims that such tasks are impossible to
learn by neural networks are successfully refuted by our
results.

Comparison between the CC and KBCC learning
algorithms reveals the following: (a) KBCC consistently
learns faster than CC, and (b) KBCC consistently has fewer
recruits. These two differences are due to the fact that
KBCC chooses recruits that possess knowledge that is
relevant for the task at hand. Thus, our results confirm
similar learning speedups due to knowledge that were
obtained previously with very different learning tasks
(Shultz & Rivest, 2001).

In addition, if we look at the types of networks that are
recruited by KBCC, we notice very distinctive preferences
(see Table 1), which cannot be explained in terms of the
complexities of the recruited networks alone. When learning
the 3x3 group, KBCC recruited in the majority of cases the
genuine source network, i.e., the network that had already
learned the 2x2 group. This shouldn’t come as too big a
surprise, because both groups share those structural features
that are characteristic of all groups and that distinguish them
from other patterns that do not instantiate the abstract group
structure. (These features are the properties (i), (i), and (iii),
presented earlier.) This also explains why, in the 4x4
learning task, KBCC recruited the two networks that were
trained with the smaller groups (Genuine 2x2 and Genuine
3x3) more frequently than the networks with random
weights or single sigmoid units.

But, why did KBCC recruit the genuine 2x2 network
significantly more often than the genuine 3x3 network?
After all, because the 3x3 network is larger it should be able
to encode more information than the 2x2 network. Some
insight into the structural relations between the different 2,
3, and 4-element groups can resolve this mystery and
explain the prima facie irrational behavior of the KBCC
algorithm.

As mentioned earlier, both of the abstract 4x4 groups
have 2x2 groups as their subgroups. Thus, the 2x2 group is

a sort of building block for both the cyclic 4-group and the
Klein 4-group, and the KBCC algorithm picks up on these
subtle structural relationships. In other words, in addition to
being sensitive to the abstract group structure, KBCC is also
able to exploit deeper structural relationships between what
is being learned and what is already present in the
knowledge base. In the present case this has the effect that
those candidate networks are preferred that represent
subgroups of the group that is being learned. To summarize,
our results suggest that KBCC does not recruit networks
primarily based on some quantitative measure (e.g., size and
complexity), but based on the relevance and quality of the
knowledge they encode.

In future work we would like to investigate if this
observation can also be substantiated when larger groups are
being learned. Based on our experiences so far we expect
that in these cases further structural properties, like that of
being a cyclic group or being a commutative group, will
play a role for the selection of the candidate recruits.

As anticipated, the learning of the abstract group structure
proved to be a worthy and interesting challenge for
constructive network algorithms. CC is known to be a
strong learner because of the way it searches simultaneously
in both topology space and weight space to find, not only
appropriate connection weights, but also the right topology
for the task it is learning (Fahlman & Lebiere, 1990; Shultz,
2003). Thus, CC naturally, without intervention of
programmers, builds networks of about the right size for the
learning task. Consequently, it can learn to distinguish
groups from non-groups, given enough learning time and
examples. But KBCC, by recruiting simpler relevant
knowledge than its training task, can learn these distinctions
even faster and with fewer recruits than CC can. There is
little question that these constructive neural learners can,
from examples alone, learn important features about
abstract, systematic structures.

We make no claim that these neural networks understand
groups in the same explicit fashion as mathematical
specialists do. But these algorithms could well serve to
model how ordinary people acquire complex, abstract,
highly-structured knowledge (Jamrozik & Shultz, 2007;
Egri & Shultz, 2006). Modeling expert explicit
mathematical knowledge would require in addition that this
implicit learned knowledge be converted into an axiomatic
characterization that expresses the three group properties
(1)—(iii) listed in our earlier section on The Abstract Group
Structure, to allow for a concise representation of both finite
and infinite groups (Schlimm, 2008).
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