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Abstract 

It has been argued that performance in the lexical decision 
task (LDT) does not provide a direct measure of lexical 
access because of the effect of decision processes. We re-
examine LDT data and fits of the diffusion decision model 
reported by Ratcliff, Gomez and McKoon (2004) and show 
that they assumed too little role for non-decision processes in 
explaining the word frequency effect. Our analysis supports 
an effect of frequency on decision and non-decision time.   
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Reading is one of the most remarkable abilities achieved 
by the human mind. One of the key aspects enabling reading 
is the ability to recognize a string of characters as being a 
word, a process called “lexical decision”. The lexical 
decision task (LDT) is a paradigm for studying word 
identification in which participants are presented with a 
string of letters and they must quickly decide whether or not 
the letters form a word. If the letters presented do make a 
word, then the time taken to make a ‘word’ response is 
thought to give information about how long it took to 
retrieve the word from their database of words, a process 
referred to as lexical access.  

The word frequency effect is one of the most robust 
findings from the LDT paradigm: words used less 
frequently in natural language take longer to indentify than 
higher frequency words. Historically, the word frequency 
effect has been reported as a difference in mean reaction 
time (RT) for correct responses between low and high 
frequency words. Mean RT from high and low frequency 
words usually differs by around 60-80ms. However, RT in 
the LDT is quite variable, typically having a standard 
deviation of greater than 100ms. Some of this variability is 
because of differences between words within a frequency 
class, but variability also occurs between the same word on 
different occasions. Variability in RT is also positively 
skewed, with a longer right (slow) than left (fast) tail in RT 
distribution, and the length of the right tail has been found 
to vary systematically in LDT experiments. Hence, 
researchers have begun to investigate differences in the 
entire RT distribution between high and low frequency 
words, rather than just the mean RT (Andrews & Heathcote, 
2001; Balota & Spieler, 1999; Plourde & Besner, 1997). 
More recently, there have been lexical theories proposed 
that account for effects on all aspects of RT distribution 
(Ratcliff, Gomez and McKoon, 2004; Yap, Balota, Cortese 
& Watson, 2006).   

RT distributions have been shown to be well 
characterized by the ex-Gaussian distribution (Luce, 1986). 

The ex-Gaussian distribution is produced by convolving 
(i.e., adding samples from) the Gaussian and Exponential 
distributions. It has three parameters, the mean (µ) and 
standard deviation (σ) of the Gaussian component and the 
mean of the exponential component (τ). These parameters 
give information about the shape of the RT distribution. In 
particular, the µ parameter is affected by the speed of the 
fastest responses made by participants. Similarly, the τ 
parameter is affected by the length of the right tail of the RT 
distribution.  

Differences in parameter estimates from fits of the ex-
Gaussian to high and low frequency RT distributions 
indicate that there are changes in the very fastest and 
slowest responses made by participants. Changes in µ of 
approximately 20-30ms have been reported (Andrews & 
Heathcote, 2001; Balota & Spieler, 1999; Plourde & Besner, 
1997). These changes indicate that the entire RT distribution 
shifts to be slower for less frequent words, independently of 
any changes in the shape of the distribution. In the same 
applications of the ex-Gaussian, changes in τ of 
approximately 35-45ms were observed, suggesting that the 
right tail is longer when the words to be identified are less 
frequent.  

Balota and Chumbly (1984) argued that the data from 
LDT tasks come from a combination of the lexical process 
and the decision process. Ratcliff et al. (2004) furthered this 
line by arguing information about lexical access can only be 
obtained from RT after accounting for the decision process. 
In other words, even studying the full range of behavioral 
data in the LDT (i.e., accuracy and RT distributions for 
correct and error responses) does not by itself provide clear 
information about lexical access. To address this issue they 
fit a model of the decision process, the diffusion model, to 
their LDT data and used estimates of its parameters, and the 
parameters of a simple characterization of non-decision 
processes, to examine lexical access. When Yap et al. 
(2006) compared the diffusion account with a hybrid two-
stage model of the LDT based on Balota and Chumbly’s 
work, they concluded in favor of the diffusion model.  

The diffusion model account of RT is composed of two 
parts – a decision time and a non-decision time. The account 
of LDT starts by assuming that a stimulus is perceived and 
encoded. This is followed by lexical access, which gives an 
estimate of how much evidence the stimulus provides for 
each response (word and non-word in an LDT). This 
evidence determines the rate at which information is 
accumulated, called drift rate, and drives the decision part 
of the diffusion model. The time taken for the initial 
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perceptual, encoding and lexical access processes, plus the 
time to execute the motor response after the decision 
process is completed, makes up the non-decision time. The 
non-decision time, Ter in the diffusion model determines the 
smallest possible RT and, therefore, changes in Ter shift the 
entire RT distribution. The ex-Gaussian evidence reviewed 
above might have suggested that the word frequency effect 
would, in part, be explained by differences in Ter for high 
and low frequency words. However, when Ratcliff et al. 
(2004) applied the diffusion model to data from nine LDT 
experiments they concluded that only drift rate differed 
between high and low frequency words. In other words, 
word frequency effects in the LDT were simply due to how 
‘wordlike’ the string of letters was, and not caused by other 
aspects of the non-decision processing, such as the time 
required for lexical access. Ratcliff et al. claimed that the 
shift of the RT distribution due to word frequency is 
captured by the inclusion of trial-to-trial variability in Ter 
and not due to systematic differences in Ter determined by 
the frequency of the word being identified.   

In the current paper we reanalyze Ratcliff et al.’s (2004) 
data and demonstrate that their fits of the diffusion model 
systematically fail to account for the word frequency effect 
on both fast and slow responses. We then show that the 
misfit is greatly reduced by allowing Ter to differ for words 
of different frequency. We finish by discussing the 
implications of our results and possible extensions. First, 
however, we begin by describing the diffusion model.  

The Diffusion Model 
The diffusion model with trial-to-trial variability in 

parameters is the most successful model of choice and 
reaction time for simple decisions between two alternatives 
(Ratcliff, 1978) and has been applied repeatedly to LDT 
data since Ratcliff et al.’s (2004) initial work (Gomez, 
Ratcliff & Perea, 2007; Ratcliff, Perea, Colangelo, & 
Buchanan, 2004; Wagenmakers, Ratcliff, Gomez & 
McKoon, 2008). The diffusion model assumes that 
participants sample evidence from the stimulus 
continuously, and this evidence stream updates an evidence 

total, say x, illustrated as a function of time by the irregular 
line in Figure 1. The accumulator begins the decision 
process in some intermediate state, say x=z. Evidence that 
favors the response “word” increases the value of x, and 
evidence that favors the other response (“non-word”) 
decreases the value of x. The evidence accumulation process 
continues until sufficient evidence favors one response over 
the other, causing the total to reach one of its two 
boundaries (the horizontal lines at x=0 and x=a in Figure 1). 
The choice made by the model depends on which boundary 
is reached (a for a “word” response or 0 for a “non-word” 
response) and decision time equals the accumulation time. 

Depending on the stimulus, evidence tends to accumulate 
more towards one boundary or another, and the average rate 
of this accumulation is called the “drift rate”, which we will 
label v. Larger positive or negative drift rates cause faster 
and more accurate responses as evidence heads towards the 
correct boundary at a faster rate. The evidence accumulation 
process also varies randomly from moment-to-moment 
during the accumulation process, and the amount of this 
variability is another parameter of the model, s. The 
diffusion model used in Ratcliff et al. (2004) also includes 
three extra variability parameters, the distribution of drift 
rates is assumed to vary from trial-to-trial according to a 
normal distribution with mean v and standard deviation η. 
Start point is also assumed to vary from trial-to-trial 
according to a uniform distribution with centre z and range 
sz. Finally, non-decision time is assumed to vary between 
trials according to a uniform distribution with centre Ter and 
range sT. Critically, non-decision variability enables the 
diffusion model to better account for shifts in RT 
distribution between conditions that differ only in drift rate. 
When there is no non-decision variability a change in drift 
rate almost exclusively slows RT by lengthening the right 
tail of the distribution, with only a small effect on the fastest 
RTs. When non-decision variability is added the effect of a 
drift rate change on fast RTs is increased sufficiently so that 
Ratcliff et al. (2004) were satisfied with an account of the 
word frequency effect in terms of a pure selective influence 
on drift rate.   

 
Figure 1: A graphical representation of a single diffusion model decision in an LDT task.  
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Ratcliff et al.’s (2004) LDT Data 

Fits reported in the original paper  
Ratcliff et al.’s (2004) fits to all experiments were 

accomplished by allowing only drift rate to vary between 
word frequency conditions. This is common practice when 
applying the diffusion model. Differences in non-decision 
process parameters cannot be the sole account for word 
frequency effects, as these processes cannot influence error 
rates. However, although less parsimonious, there is no 
reason why non-decision processes might not be affected by 
word frequency in addition to drift rates. Indeed, Ratcliff et 
al.’s (2004) application of the diffusion model to the LDT 
was one of the first occasions on which non-decision 
variability was used, with most earlier applications 
assuming a constant non-decision time (e.g., Ratcliff, 1978).    

When we looked closely at Ratcliff et al.’s (2004) 
published fits of the diffusion model to their LDT data 
averaged over participants, we found a systematic pattern of 
misfit that was highly consistent across all of the nine 
experiments which they report. In particular, despite the 
inclusion of between-trial variability in Ter, the diffusion 
model consistently under-predicted the magnitude of the 
word frequency effect on the .1 quantile results for correct 
responses reported by Ratcliff et al.. The .1 quantile 
characterizes the fastest responses from the RT distribution 
(i.e., it is the RT below which the fastest 10% of responses 
occur). Changes in the .1 quantile indicate a shift in the 
entire RT distribution. Averaging over their nine 
experiments, the .1 quantile estimate for high frequency 
words was 27ms and 33ms faster relative to low and very 
low frequency words respectively, whereas for the model it 
was only 16ms and 22ms faster. Although the under-
prediction is relatively small (11 ms on average), it is highly 
consistent, occurring in every one of the 19 fits reported in 
their Tables 3, 7 and 9 - a highly significant result using a 
binomial test (p<.001 for both low and very low frequency 
words). In contrast to results for the fast .1 quantile, the 
diffusion model consistently over-predicted the word 
frequency effect for the slow .9 quantile, for nine of ten fits 
comparing high and low frequency words (p<.001) and 
seven of nine fits comparing high and very low frequency 
words (p<.02).  

Figure 2 is a graphical summary of these analyses of data 
and model fits for high and low frequency words averaged 
over experiments from Ratcliff et al. (2004). Though it was 
excluded for brevity, the plot of the difference between high 
and very low frequency words looks almost identical. The 
vertical axis shows the difference in RT between low and 
high frequency words. Note that the positive value of this 
difference means that participants were slower to respond to 
low frequency words – the standard word frequency effect. 
The horizontal axis represents the quantile values of the RT 
distribution. The average model predictions (shown by the 
solid line) for the.1 quantile fall below the observed data 
averaged across all experiments. Note also that the opposite 

is true for the .9 quantile – the average model predictions sit 
higher than the data in both plots. The systematic and 
opposite misfit for fast and slow responses resulted in over 
prediction of the effect of word frequency on variability 
(i.e., a much larger range between the 10% and 90% 
quantiles than observed in data).  

 
Figure 2: Word frequency effect quantile function based on 
responses to high frequency (HF) and low frequency (LF) 
words in Ratcliff et al.’s (2004) experiments 1-9. Average 
model fits across experiments and conditions are plot as 
lines, and data as symbols. Standard error bars indicate 
variability across experiments and condition 

 
The diffusion model has clearly raised the bar for 

accounts of LDT performance by simultaneously fitting 
accuracy and RT distribution for both correct and error 
responses. Although we agree that the diffusion model 
provides an impressively comprehensive account of many 
aspects of performance in the LDT, the systematic misfit of 
the word frequency quantile functions indicates that there 
may be reason to re-examine the assumptions made by 
Ratcliff et al. (2004) in their application of the diffusion 
model.  

The diffusion model appears to have misfit Ratcliff et 
al.’s (2004) data largely because the assumptions underlying 
the mapping of the diffusion model to the LDT task are too 
simple. Although simplicity is a virtue in quantitative 
modeling, identifying word frequency effects entirely with 
drift rate may represent an over-application of Occam’s 
razor. Most models of reading assume that lexical access is 
accomplished more quickly as the frequency of a word 
increases (see Andrews & Heathcote, 2001, for a 
discussion). In the diffusion model framework, this could be 
interpreted as a faster non-decision time for high than low 
frequency words. Allowing for such a possibility might 
reduce the underestimation of the word frequency effect at 
the .1 quantile apparent in Figure 2. In other words, perhaps 
the diffusion model would provide a better account of the 
word frequency effect in LDT data if it were to also allow 
for changes in Ter for words of different frequency. We 
explore this possibility in the next section. 
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Exploring frequency effects on non-decision time 
We fit four different versions of the diffusion model to 

data averaged over participants from Experiments 3, 4 and 5 
from Ratcliff et al. (2004). All experiments were of nearly 
identical procedure, with differences being in the type of 
words used: Experiment 3 used high frequency, low 
frequency and pseudo-words, Experiment 4 was identical 
but used random letter strings instead of pseudo-words, and 
Experiment 5 was the same as Experiment 3 but also 
included very-low frequency words. Our re-analyses was 
limited to these three experiments because Ratcliff et al. did 
not publish critical information for fitting (e.g., quantiles for 
error RT) for the remaining experiments.  

The four versions of the diffusion models differ according 
to how non-decision time, Ter, varied. There were two ways 
in which Ter was allowed to vary – randomly between trials 
(cf. Ratcliff et al., 2004) or systematically between word 
frequency conditions. Between-trial variation was uniformly 
distributed with mean Ter and range sT. Between-condition 
variation in Ter, like between-condition variation in drift 
rate, meant that each of the word conditions had its own Ter 
value. The between-trial variability in Ter requires one 
parameter, sT, whereas between-condition variability in Ter 
requires the estimation of an additional k-1 parameters, 
where k is the number of word frequency conditions in the 
experiment being fit. The four different models were 
factorial combinations of these two methods: 1) neither 
between-trial nor between-conditions variability in Ter, 2) 
only between-trial variability in Ter, 3) only between-
conditions variability in Ter, and 4) both between-trial and 
between-conditions variability in Ter.  

The data to be fit were accuracy and quantile values for 
correct and error responses averaged over participants from 
each experiment. We fit the diffusion model using an 
adaptation of Voss and Voss’s (2008) diffusion model code 

to use quantile maximum likelihood estimation (Heathcote, 
Brown & Mewhort, 2002). The Bayesian information 
criterion (BIC) was calculated using the BIC statistic for N 
observations grouped into bins: 

BIC = -2( ∑i Npi ln(πi)) + M ln(N) 

where pi is the proportion of observations in the ith bin, and 
πi is the proportion of observations in the ith bin as predicted 
by the model. M is the number of parameters of the model 
used to generate predictions. The BIC is composed of two 
parts, the first is a measure of misfit, and a second part, 
M ln(N), penalizes a model for its complexity as indicated 
by the number of estimated parameters. When comparing 
two models, the model with the smaller BIC is thought to 
have provided a better fit after complexity has been taken 
into account. Best fitting parameter estimates for each of the 
four models to all three experiments and their respective 
BIC values are given in Table 1.  

Despite the complexity of the analysis, the pattern of 
results was relatively simple. Adding between-trial 
variability in Ter always improved the BIC value, and so too 
did adding between-condition variability in Ter. In all three 
experiments the model with both between-trial and 
between-condition variability in Ter had the lowest BIC. 
This implies that the improvement in fit due to the extra free 
parameters outweighed the penalty for added complexity. 
The next best fitting model in two out of three experiments 
was the model used to originally fit the data in Ratcliff et al. 
(2004) – the model with between-trial variability in Ter. In 
Experiment 5 not the model without between-trail 
variability in Ter, but with between-condition variability in 
Ter achieved the second best fit.  

The model with neither between-trial nor between-
condition variability in Ter consistently performed the worst 
of the four models. Inspection of the fits revealed that, as 
expected, this model predicted almost no change in the .1

 
Table 1: Parameter estimates from fits of four different versions of the diffusion model to Experiments 3-5. M1 was the 

model with no variability in Ter, M2 had variability between-trials, M3 had variability between-conditions and M4 had both. 
In all models starting point, z, was set at a/2. 

Ter  Model a sz η vh vl vo vv st Ter HF LF O VLF 
BIC 

M1 .128 .059 .037 .348 .176 -.226   .404     91887  
M2 .122 .069 .108 .446 .219 -.282  .17 .444     91126 
M3 .127 .065 .052 .335 .188 -.243    .396 .421 .422  91449 

Exp3 

M4 .122 .076 .113 .412 .226 -.301  .16  .428 .451 .461  90843 
M1 .133 .08 .089 .367 .361 -.302   .378     98571 
M2 .126 .075 .101 .381 .361 -.366  .11 .39     98415 
M3 .132 .081 .093 .37 .319 -.358    .379 .391 .375  98453 

Exp4 

M4 .127 .078 .011 .391 .334 -.374  .105  .392 .404 .387  98320 
M1 .147 .069 .069 .354 .214 -.259 .128  .409     89190 
M2 .144 .075 .01 .394 .234 -.253 .141 .139 .431     89000 
M3 .144 .074 .074 .336 .243 -.217 .132   .402 .435 .429 .425 88693 

Exp5 

M4 .148 .093 .124 .404 .257 -.296 .163 .125  .422 .451 .461 .454 88546 
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quantile due to changes in word frequency. Because of this 
it was also unable to capture other aspects of the RT 
distribution. Hence, we do not consider the model without 
variability in Ter any further. Although, for brevity, we do 
not show the complete fits of the model to quantiles for 
correct and error responses for all word frequency 
conditions, these graphs clearly agree with our conclusions 
based on BIC values (they may be obtained by emailing the 
authors). 

Our reason for investigating between-condition variability 
in Ter was based on the systematic misfit of the word 
frequency effect. Figure 3 shows that there is an 
improvement in the account of the word frequency effect 
when between-condition variability in Ter is added to the 
diffusion model. The plots in Figure 3 are like those in 
Figure 2, but are from individual experiments rather than 
averaged across all nine experiments in Ratcliff et al. 
(2004). Each of the three plots also now contains three sets 
of model predictions (represented by solid lines) rather than 
one. The filled black dots represent the difference between 
RTs from high and low frequency words at each of the .1, 
.3, .5, .7 and .9 quantiles from the data. For all experiments 
we again observe that the difference between low and high 
frequency words is positive at all quantile values. This 
suggests that the RT distribution for low frequency words is 
shifted above that of high frequency words.  

The models with between-condition variability in Ter both 
provide a good account of the word frequency effect, while 

the model with only within-condition variability in Ter still 
systematically fails to capture the effect. The lines 
connected by plus signs (+) are the predictions of the 
diffusion model with only between-trial (within-condition) 
variability in Ter (i.e. the same as the model used in Figure 2 
and Ratcliff et al., 2004). Note the systematic under-
prediction of the .1 quantile in all experiments, and the over-
prediction of the .9 quantile in Experiments 3 and 5. The 
predictions of the models with between-condition variability 
in Ter or both forms of variability in Ter (representing in 
Figure 3 by lines joined by crosses and triangles, 
respectively) provide a much better account of the word 
frequency effect. Indeed, the two models produce an almost 
identical account of the word frequency effect in 
Experiments 4 and 5. In these experiments both models 
provide an excellent account of the difference between RTs 
from high and low frequency conditions at all quantiles 
except for the .9 quantile in Experiment 5. In Experiment 3 
the model with both types of variability provides and 
excellent account of all but the .9 quantile, whereas the two 
other models also provide a less accurate account at three of 
the four remaining quantiles. Though we do not show it here 
due to space restrictions, a plot like Figure 3, but comparing 
high and very low frequency words from Experiment 5, 
showed the same pattern of results (once again this plot may 
be obtained by emailing the authors).  
 

 
 

Figure 3: Word frequency effect quantile function based on responses to high frequency (HF) and low frequency (LF) words 
in Ratcliff et al.’s (2004) experiments 3-5. Data are shown as filled black dots and model predictions from a diffusion model 
with between-trial variability in Ter, a model with between-condition variability in Ter and a model with both forms of 
variability are shown by lines connected with a plus symbol (+), a cross (x), and a triangle, respectively. 

2906



Discussion 
We were prompted to fit a diffusion model which allowed 

mean non-decision time (Ter) to vary as a function of word 
frequency because of a) results from previous analyses of 
RT distribution using the Ex-Gaussian distribution, b) 
systematic misfit of the word frequency effect by a diffusion 
model which allows only drift rate to vary between 
frequency conditions, and c) the fact that a shift is plausible 
according as most reading models, which assume that word 
frequency affects the time taken for lexical access. A 
diffusion model with both between-condition and between-
trial variability provided a better fit to the data, even after 
accounting for this models increased parametric complexity. 
In particular, the model with both forms of variability 
provided an improved account of the word frequency effect 
compared to Ratcliff et al.’s (2004) original model with only 
between-trial variability in Ter,  as it did not systematically 
under-predict the shift in the RT distribution between high 
and low frequency words.  

A diffusion model with between-condition variability in 
Ter, but without between-trial variability in Ter, was also able 
to account for the shift effect. However, in terms of overall 
fit, this model did worse in two of three experiments than 
the Ratcliff et al. (2004) original model. A diffusion model 
with no variability in Ter either between-conditions or 
between-trials fit had a poor overall fit and account of the 
word frequency effect. These results together suggest that 
the addition of between-condition variability in Ter greatly 
improves the account of the shift in RT distribution due to 
changes in word frequency (see also Ratcliff & Tuerlinckx, 
2002).  

Even the diffusion model with both forms of variability in 
Ter still over-predicted the slowest differences between high 
and low frequency words in two of the three experiments we 
examined. This suggests that our current account of the 
word frequency effect and the LDT may not be complete. 
Indeed, given the intricacies of the lexicon, an even more 
complex model of the effects of frequency on non-decision 
time seems quite plausible and may account for these 
failings. However, it has been argued that the .9 quantile 
estimate is much more variable than the other quantile 
estimates, and most subject to the influence of slow outlier 
responses, so this misfit is not necessarily indicative of a 
failed model. An alternative possibility is raised by Donkin, 
Brown and Heathcote’s (submitted) recent demonstration 
that the moment-to-moment variability parameter has been, 
without justification, over-constrained in all previous 
applications of the diffusion model. When we let this 
parameter vary across frequency conditions BIC improved 
and excellent fits were obtained to all quantiles of the word 
frequency effect, and all other aspects of the data. However, 
due to space restrictions, details concerning these fits will be 
reported elsewhere.  

Acknowledgments 
We acknowledge support from an ARC Discovery project 
grant to Andrews and Heathcote. 

References 
Andrews, S., & Heathcote, A. (2001). Distinguishing 

common and task-specific processes in word 
identification: A matter of some moment? Journal of 
Experimental Psychology: Human Perception and 
Performance, 27, 514-544.  

Balota, D. A., & Chumbley, J. I. (1984). Are lexical 
decisions a good measure of lexical access? The role of 
word frequency in the neglected decision stage. Journal 
of Experimental Psychology: Human Perception and 
Performance, 10, 340–357. 

Balota, D. A., & Spieler, D. H. (1999). Word frequency, 
repetition, and lexicality effects in word recognition tasks: 
beyond measures of central tendency. Journal of 
Experimental Psychology: General, 128, 32-55. 

Donkin, C., Brown, S., & Heathcoate, A. (submitted). The 
over-constraint of response time models. Psychological 
Review.  

Gomez, P., Ratcliff, R., & Perea, M. (2007). A model of the 
go/no-go task. Journal of Experimental Psychology: 
General, 136, 389-413 

Heathcote, A., Brown, S.D. & Mewhort, D.J.K. (2002). 
Quantile maximum likelihood estimation of response time 
distributions. Psychonomic Bulletin and Review, 9, 394-
401 

Luce, R. D. (1986) Response times: Their role in inferring 
elementary mental organization.  NY: Oxford University 
Press.  

Plourde, C. E., & Besner, D. (1997). On the locus of the 
word frequency effect in visual word recognition. 
Canadian Journal of Experimental Psychology, 51, 181-
194.  

Ratcliff, R. (1978). A theory of memory retrieval. 
Psychological Review, 88, 552-572. 

Ratcliff, R., Gomez, P., & McKoon, G. (2004). A diffusion 
model account of the lexical decision task. Psychological 
Review, 111, 159-182. 

Ratcliff, R., Perea, M., Colangelo, A., & Buchanan, L. 
(2004). A diffusion model account of normal and 
impaired readers, Brain and Cognition, 55, 374-382.  

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating of the 
diffusion model: Approaches to dealing with contaminant 
reaction times and parameter variability. Psychonomic 
Bulletin & Review, 9, 438-481.  

Voss, A., & Voss, J. (2008). A Fast Numerical Algorithm 
for the Estimation of Diffusion-Model Parameters. 
Journal of Mathematical Psychology, 52, 1-9 

Wagenmakers, E-J., Ratcliff, R., Gomez, P., & McKoon, G. 
(2008). A diffusion model account of criterion shifts in 
the lexical decision task. Journal of Memory and 
Language, 58, 140-159.  

Yap, M.J., Balota, D.A., Cortese, M.J. & Watson, J.M. 
(2006). Single- versus dual-process models of lexical 
decision performance: Insights from response time 
distributional analysis, Journal of Experimental 
Psychology: Human Perception and Performance, 32, 
1324-1344.   

2907


