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Abstract
How efficiently do we combine information across facial 
features when recognizing a face? Previous  studies have 
suggested that the perception of a face is not simply the result 
of an independent analysis  of individual facial features, but 
instead involves a coding of the relationships amongst 
features. This additional  coding of the relationships amongst 
features is thought to enhance our ability to recognize a face. 
In our experiments, we tested whether an observer’s ability to 
recognize a face is in fact better than what one would expect 
from their ability  to recognize the individual facial features in 
isolation. We tested this by using a psychophysical 
summation-at-threshold technique that has  been used 
extensively to measure how efficiently observers integrate 
information across spatial locations and spatial frequencies. 
Surprisingly, we found that observers integrated information 
across facial features less efficiently  than would  be predicted 
by their ability to recognize the individual parts.

Keywords: Face Recognition; Ideal Observer; Information 
Integration.

Introduction
The ability to accurately recognize human faces is vitally 
important to human social interactions. As such, there has 
been a great deal of interest in exploring the psychological 
and neurophysiological mechanisms that mediate human 
face recognition. Much of this research has focused on 
determining whether the individual elements in a face (e.g., 
eyes, nose, mouth) are processed independently or if the 
relationships amongst the elements are also encoded in the 
facial representation. 

Several lines of evidence are consistent with the idea that 
the spatial relationships amongst facial features play a 
crucial role in face identification. Some of this evidence 
draws upon the “face inversion effect”: the finding that, 
unlike most other objects, faces tend to be much more 
difficult to identify when they are inverted than when they 
are upright (Maurer, Grand, & Mondloch, 2002; Valentine, 
1988; Yin, 1969). This effect is typically accounted for by 
positing that upright faces are processed as single units with 
the spatial relationships amongst elements encoded in the 
representation, whereas the elements of inverted faces are 

processed independently. As a result, the extra information 
that is encoded for upright faces allows an observer to 
identify an upright face more quickly and accurately than an 
inverted face. Other experiments (Tanaka & Farah, 1993) 
have found that observers are more accurate at identifying 
facial features (e.g.,  a nose) within the context of a normal 
face than either in isolation or in the context of a face whose 
features have been spatially scrambled.

The results of these experiments suggest that observers 
benefit from the spatial arrangement of features within a 
face in a way that would not be predicted by their ability to 
recognize the individual features in isolation. In our 
experiments, we wished to directly test this idea by 
measuring how efficiently observers integrate information 
across features in a face identification task. The technique 
we used is based on a summation-at-threshold method 
developed previously to measure the efficiency of 
information integration across spatial and spatial frequency 
tuned analyzers (Graham, 1989; Graham, Robson, & 
Nachmias, 1978; Nandy & Tjan, 2008).  In our experiments, 
we measured observers’  contrast sensitivities (i.e., the 
reciprocal of contrast threshold) for identifying facial 
features (i.e.,  left eye, right eye, nose, mouth) either in 
isolation or all together in combination. Optimal 
information integration predicts that an observer’s squared 
contrast sensitivity to features when shown in combination 
should be the same as the sum of their squared contrast 
sensitivities to the individual features when shown in 
isolation (i.e.,  the ratio of the combined squared contrast 
sensitivity to the sum of the individual squared contrast 
sensitivities should be equal to one). Sub-optimal 
integration predicts this ratio should be less than one, and 
super-optimal integration predicts this ratio should be 
greater than one (Nandy & Tjan, 2008).  

Based on the results of previous experiments with faces, 
we would expect to see super-optimal integration, because 
observers are thought to derive an additional benefit from 
the use of the relationships amongst features when they are 
shown together in combination as opposed to when they are 
shown in isolation. Contrary to this prediction, we found 
that most observers integrated information sub-optimally, in 
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a fashion more in line with basing their decision on the 
individual feature to which they are most sensitive.

Methods

Subjects
Six subjects (three women and three men, aged 18-37) 
participated in this study. All subjects except for two authors 
(MS and JMG) were naive to the purposes of the 
experiment. All had normal or corrected-to-normal visual 
acuity. Each naive subject was paid for his or her 
participation.  All subjects had given their informed consent.

Stimuli
Stimuli were modified from a set used in previous 
experiments on human face recognition (Gold, Bennett, & 
Sekuler, 1999a, 1999b). Six grayscale faces were used 
(three male, three female). Each face was 256 x 256 pixels 
in size (2.5° x 2.5°, from a viewing distance of 130 cm), and 
was multiplied by a set of four Gaussian windows (σ = 9 
pixels), each centered on a different facial feature (left eye, 
right eye, nose and mouth). These windows were used to 
isolate the facial features. The locations of the four windows 
were the same across all the faces, and they were chosen to 

insure that a given feature fell within a given window for 
each face (see Figure 1a).

The value of each pixel in each image was expressed in 
terms of contrast, where contrast is defined as (Lpix - Lbg)/
Lbg, where Lpix is the luminance of a given pixel and Lbg is 
the background luminance. The regions of the faces not 
falling within the Gaussian windows were set to zero 
contrast (i.e., Lbg).

Four additional sets of six face images were generated 
from this first set of images. One set contained only the left 
eyes of each face (Figure 1b); a second set only the right 
eyes (Figure 1c); a third set only the noses (Figure 1d); and 
a fourth set only the mouths (Figure 1e).  In each of the 
images that contained only a single feature, the regions 
where the other features appeared in the original images  
were set to zero contrast.

White Gaussian contrast noise was added to each pixel of 
the image that was shown on each trial (µ = 0; σ = 0.1). A 
unique sample of noise was generated for each pixel on each 
trial.

Procedure
A one-of-six identification task was used to estimate 
identification thresholds for each feature condition (left eye, 
right eye,  nose, mouth, combined). The contrast of the 
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Figure 1: Stimuli used in the face identification experiments. All stimuli were based on the six  combined faces shown in row 
A. Row B shows the left eye stimuli, row C the right eye stimuli, row D the mouth stimuli and row E the nose stimuli.  
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images was manipulated across trials according to a 1-down 
1-up staircase in each condition to obtain an observer’s 50% 
correct identification threshold (chance performance was 
~16% correct). The staircases were randomly interleaved 
during each experimental session, which meant that the 
stimulus types were also randomly mixed within each 
session. On each trial, the observer saw a noisy stimulus and 
was presented with the set of six noise-free images from 
which the noisy image had been chosen (e.g., if a left eye 
had been shown, the six possible left eye images were 
shown in a selection screen for the observer to choose 
from). 

On each trial, a box appeared around the region where the 
stimulus was going to appear. The observer started the trial 
with a mouse click, and the noisy image was shown for 
~500 ms, after which the image was replaced with a 
selection window. The observer used the mouse to click on 
the image they thought had appeared in the stimulus 
interval.  Accuracy feedback was given in the form of a high 
or low beep.

Each observer participated in five sessions of 500 trials. 
The first two sessions were not included in the analyses to 
remove any initial learning effects from the data. A Weibull 
psychometric function was fit to the staircase data (i.e., a fit 
to percent correct as a function of stimulus contrast) in each 
condition and the 50% correct identification threshold was 
estimated from each fit. Bootstrap simulations were used to 
estimated confidence intervals for the thresholds. 

Integration Index
Following Nandy & Tjan (2008),  an integration index Փ was 
defined as follows:

where c is an observer’s contrast threshold and CS,  an 
observer’s sensitivity, is equal to 1/c. Nandy and Tjan 
(2008) have shown that the integration index for a 
statistically optimal observer in this task will be equal to 1. 
Sub-optimal integration will yield an index less than 1, and 
super-optimal integration will yield an integration index 
greater than 1. Note that only a sub-ideal observer can 
actually achieve super-optimal integration: an integration 
index greater than 1 implies additional information is used 

when identifying the composite that is not used when 
identifying the individual elements in isolation.

Results
Figure 2a shows contrast sensitivities in each condition for 
the ideal observer1 (dashed line) and three human observers2 
(solid lines with symbols). Figure 2b shows the 
corresponding integration index for each observer. Figure 2b 
also shows the predictions of the “best-feature” model 
(where each feature is analyzed independently and the 
decision is based on the feature to which the observer is 
most sensitive3), plotted as a dashed line with triangle 
symbols. The best-feature model is intended to provide a 
lower-bound for performance.

There are several interesting things to note about these 
data. First, the pattern of sensitivities across conditions is 
similar for all the observers, including the ideal observer. 
The fact that the ideal observer shows a similar pattern of 
performance to the human observers is interesting, because 
it indicates that the variations in human performance across 
conditions can largely be accounted for by the amount of 
physically available information in each set of stimuli. In 
this case, it shows that performance was worse for mouths 
and noses in isolation largely because there was simply less 
information physically present in those conditions (i.e., the 
stimuli were more physically similar to each other).

Second, the integration index for two of the human 
observers was significantly less than 1, indicating they were 
integrating information sub-optimally in the combined 
condition. In fact, these two observers were closer to the 
predictions of the best-feature model than optimal or super-
optimal integration. This result is the opposite of what one 
would predict if observers were using the relationships 
amongst features to improve their performance when facial 
features are shown together rather than in isolation. Such a 
result is surprising, given that previous experiments on face 
recognition have suggested observers greatly benefit from 
using the relationships amongst facial features when 
recognizing faces. The one exception was observer VMD, 
who integrated information super-optimally.  Apparently, this 
observer did in fact derive an additional benefit from 
viewing the facial features together rather than in isolation.

It is possible that the sub-optimal integration we found for 
two of the three human observers was somehow related to 
their conditional uncertainty in the experiment (recall that 
they did not know which condition would appear on each 
trial). For example, the conditional uncertainty may have 

3

1 The ideal decision rule can be derived using Bayes’ rule (Green & Swets, 1966). For our task and stimuli, it is equivalent to choosing the 
noise-free signal that produces the highest cross-correlation with the noisy stimulus (Tjan, Braje, Legge, & Kersten, 1995).

2 One additional human observer was excluded due to an inability to perform the task at a level sufficiently above chance.

3 The “best-feature” model is closely related to the model of probability summation for signal detection (Graham, 1989). The integration 
index of the best-feature model is computed as the expected value of the maximum of the observer’s squared contrast sensitivities to the 
individual face features to that of the sum of the squared contrast sensitivities to all of the face features (Nandy & Tjan, 2008), i.e.
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max[CSleft eye

2 ,CSright eye
2 ,CSmouth

2 ,CSnose
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induced observers to use an individual feature-oriented 
strategy on all trials, including those where the entire set of 
features was present (i.e., the combined condition). We 
tested this possibility by running a second set of observers 
through the same experiment, but with the conditions 
blocked rather than randomized.  Specifically, each session 
contained a series of blocks,  where the same condition was 
tested within each block for 50 consecutive trials. The order 

of conditions was randomized across blocks within each 
session and there were two blocks tested for each condition 
(a total 100 trials per condition within each session, for 5 
sessions). Importantly, the observers were told at the 
beginning of each new block which condition they would be 
tested on for the next 50 trials.

The results of this experiment are shown in Figure 3. 
Figure 3a shows contrast sensitivities in each condition for 

4

Figure 3: (A) Squared contrast sensitivities and (B) integration indexes for the ideal observer and three human observers. The 
conditions in this experiment were presented in blocks of 50 trials rather than randomly permuted as in the first experiment 
(Figure 2).  Error bars correspond to ± 1 s.e.

Figure 2: (A) Squared contrast sensitivities and (B) integration indexes for the ideal observer and three human observers. 
Error bars correspond to ± 1 s.e., estimated by bootstrap simulations (Efron & Tibshirani, 1993). 
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the ideal observer and three human observers. Figure 3b 
shows the corresponding integration index for each observer 
and the predictions of the best-feature model. Contrary to 
the idea that conditional uncertainty was responsible for the 
sub-optimal integration found in the first experiment, these 
data show that observers were generally less efficient at 
integrating information when the conditions were blocked 
rather than randomized. Two observers (JEH, MTA) were 
actually numerically worse than the lower bound set by the 
best-feature model4.

Discussion
Our experiments were designed to test the prediction that 

observers make use of information from facial features 
when recognizing a complete face in a manner that is better 
than one would predict from their ability to detect the 
individual features in isolation. Contrary to this prediction, 
our results are more consistent with the idea that observers 
analyze each feature independently and base their decision 
on the single feature to which they are most sensitive.

Previous experiments with much simpler tasks and 
stimuli, such as the detection of sinusoidal gratings across 
space, have yielded results similar to our own (and have 
referred to this as “probability summation”) (Graham, 
1989). Pelli,  Farell and Moore (2003) have also found that 
observers combine information sub-optimally across letters 
when recognizing English words. Taken together, these 
results suggest that the sub-optimal integration of 
information across facial features that we observed in our 
experiments may reflect a more general inefficiency in 
visual spatial information integration. One possible account 
for this effect could be that such tasks push against an upper 
limit on the processing capacity of visual spatial attention 
(Driver, 2001). Such a limitation could reduce the amount of 
information an observer is able to use at any given feature 
location when they are forced to simultaneously attend to 
more than one spatial feature at a time (as in the case of a 
composite face). If so,  it is possible that observers do make 
use of relational properties when recognizing faces, but that 
the limitations imposed by spatial attention reduce the 
processing efficiency of individual features more than is 

gained by the use of relational or other second-order coding 
strategies. 

One way to directly address the issue of limited spatial 
attention would be measure ‘classification images’ for each 
of the conditions in our experiments (Ahumada,  2002; 
Murray, Bennett,  & Sekuler, 2002). A classification image is 
a spatial map that describes the relative weight given to each 
image location by an observer over the course of an 
experiment. Classification images are measured by 
correlating random pixel noise with an observer’s decisions 
across trials. The efficiency of an observer’s classification 
image can be measured by comparing their classification 
image with that of an ideal observer (Murray, Bennett,  & 
Sekuler, 2005). Measurement of human and ideal 
classification images for individual and combined facial 
features would allow us to a) directly determine the 
efficiency of a human observer’s weighting when the 
features are shown in combination vs. in isolation; and b) 
reveal the specific nature of any differences in weighting 
when the features are shown in combination vs. in isolation.

A second less direct way to address the issue of limited 
spatial attention would be to carry out our experiment with 
inverted facial features, where the attentional bottleneck 
would be identical to our original task. If observers rely on 
relational codes when identifying normal faces but not 
inverted faces (as previous experiments would suggest),  we 
would expect integration efficiency to be higher for normal 
than inverted faces.. 

It is worth noting that inefficiencies similar to those we 
obtained with faces are also found with respect to the 
integration of information across spatial frequencies with 
simple compound grating detection tasks (Graham, 1989). 
However, recent experiments by Nandy and Tjan (2008) 
have found that observers optimally integrate information 
across spatial frequencies when identifying English letters. 
One obvious difference between spatial frequency 
integration and spatial integration is that stimuli filtered 
with respect to spatial frequency will occupy the same 
region of space. It would be interesting to see if, like letters, 
spatial frequency information in faces is integrated in an 
optimal fashion.

5

4 The other observer in this second experiment (JMG) was an author and, unlike all the other observers, was very familiar with original 
face stimuli. The integration index for this observer was much higher than the other two observers in the second experiment, albeit still sub-
optimal. This suggests the possibility that information may be integrated less efficiently when recognizing unfamiliar faces, and that 
training may serve to increase information integration efficiency.   

Figure 4: Face images from taken from Figure 1A, but with a constant background image added to each face. The area 
surrounding the features (the background image) is an average computed from the six original faces. 
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One additional factor that may have contributed to the 
inefficient processing of composite faces that we observed 
in our experiments is the relatively unnatural viewing of 
faces through a set of Gaussian windows. That is,  viewing 
features through a set of Gaussian windows may have 
disrupted any relational processing that normally takes place 
when recognizing a face. One way to address this issue 
would be to place the features within a fixed ‘average’ 
background image, as shown in Figure 4. In this figure, the 
Gaussian windowed faces from Figure 1A have been added 
to an image that was generated by averaging the regions 
surrounding the Gaussian windows in each of the six 
original face images. If the sub-optimal integration across 
features in our experiments was due to a lack of facial 
‘context’  around the Gaussian windows, we would expect 
the faces shown in Figure 4 to greatly increase integration 
efficiency.

Conclusions
In this paper, we have reported the results of two 

experiments that indicate human observers are inefficient at 
integrating information across facial features.  We have 
suggested several possible accounts for our results, 
including limits on spatial attention and the use of unnatural 
face stimuli. We are currently conducting experiments to 
test each of these possibilities.
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