Integration of Facial Information is Sub-Optimal
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Abstract

How efficiently do we combine information across facial
features when recognizing a face? Previous studies have
suggested that the perception of a face is not simply the result
of an independent analysis of individual facial features, but
instead involves a coding of the relationships amongst
features. This additional coding of the relationships amongst
features is thought to enhance our ability to recognize a face.
In our experiments, we tested whether an observer’s ability to
recognize a face is in fact better than what one would expect
from their ability to recognize the individual facial features in
isolation. We tested this by using a psychophysical
summation-at-threshold technique that has been used
extensively to measure how efficiently observers integrate
information across spatial locations and spatial frequencies.
Surprisingly, we found that observers integrated information
across facial features less efficiently than would be predicted
by their ability to recognize the individual parts.

Keywords: Face Recognition; Ideal Observer; Information
Integration.

Introduction

The ability to accurately recognize human faces is vitally
important to human social interactions. As such, there has
been a great deal of interest in exploring the psychological
and neurophysiological mechanisms that mediate human
face recognition. Much of this research has focused on
determining whether the individual elements in a face (e.g.,
eyes, nose, mouth) are processed independently or if the
relationships amongst the elements are also encoded in the
facial representation.

Several lines of evidence are consistent with the idea that
the spatial relationships amongst facial features play a
crucial role in face identification. Some of this evidence
draws upon the “face inversion effect”: the finding that,
unlike most other objects, faces tend to be much more
difficult to identify when they are inverted than when they
are upright (Maurer, Grand, & Mondloch, 2002; Valentine,
1988; Yin, 1969). This effect is typically accounted for by
positing that upright faces are processed as single units with
the spatial relationships amongst elements encoded in the
representation, whereas the elements of inverted faces are

processed independently. As a result, the extra information
that is encoded for upright faces allows an observer to
identify an upright face more quickly and accurately than an
inverted face. Other experiments (Tanaka & Farah, 1993)
have found that observers are more accurate at identifying
facial features (e.g., a nose) within the context of a normal
face than either in isolation or in the context of a face whose
features have been spatially scrambled.

The results of these experiments suggest that observers
benefit from the spatial arrangement of features within a
face in a way that would not be predicted by their ability to
recognize the individual features in isolation. In our
experiments, we wished to directly test this idea by
measuring how efficiently observers integrate information
across features in a face identification task. The technique
we used is based on a summation-at-threshold method
developed previously to measure the efficiency of
information integration across spatial and spatial frequency
tuned analyzers (Graham, 1989; Graham, Robson, &
Nachmias, 1978; Nandy & Tjan, 2008). In our experiments,
we measured observers’ contrast sensitivities (i.e., the
reciprocal of contrast threshold) for identifying facial
features (i.e., left eye, right eye, nose, mouth) either in
isolation or all together in combination. Optimal
information integration predicts that an observer’s squared
contrast sensitivity to features when shown in combination
should be the same as the sum of their squared contrast
sensitivities to the individual features when shown in
isolation (i.e., the ratio of the combined squared contrast
sensitivity to the sum of the individual squared contrast
sensitivities should be equal to one). Sub-optimal
integration predicts this ratio should be less than one, and
super-optimal integration predicts this ratio should be
greater than one (Nandy & Tjan, 2008).

Based on the results of previous experiments with faces,
we would expect to see super-optimal integration, because
observers are thought to derive an additional benefit from
the use of the relationships amongst features when they are
shown together in combination as opposed to when they are
shown in isolation. Contrary to this prediction, we found
that most observers integrated information sub-optimally, in

2896


mailto:jgold@indiana.edu
mailto:jgold@indiana.edu
mailto:btjan@usc.edu
mailto:btjan@usc.edu
mailto:mshotts@indiana.edu
mailto:mshotts@indiana.edu

E

Figure 1: Stimuli used in the face identification experiments. All stimuli were based on the six combined faces shown in row
A. Row B shows the left eye stimuli, row C the right eye stimuli, row D the mouth stimuli and row E the nose stimuli.

a fashion more in line with basing their decision on the
individual feature to which they are most sensitive.

Methods

Subjects

Six subjects (three women and three men, aged 18-37)
participated in this study. All subjects except for two authors
(MS and JMG) were naive to the purposes of the
experiment. All had normal or corrected-to-normal visual
acuity. Each naive subject was paid for his or her
participation. All subjects had given their informed consent.

Stimuli

Stimuli were modified from a set used in previous
experiments on human face recognition (Gold, Bennett, &
Sekuler, 1999a, 1999b). Six grayscale faces were used
(three male, three female). Each face was 256 x 256 pixels
in size (2.5° x 2.5°, from a viewing distance of 130 cm), and
was multiplied by a set of four Gaussian windows (¢ = 9
pixels), each centered on a different facial feature (left eye,
right eye, nose and mouth). These windows were used to
isolate the facial features. The locations of the four windows
were the same across all the faces, and they were chosen to

insure that a given feature fell within a given window for
each face (see Figure 1a).

The value of each pixel in each image was expressed in
terms of contrast, where contrast is defined as (Lpix - Lig)/
Lpg, where Ly is the luminance of a given pixel and L is
the background luminance. The regions of the faces not
falling within the Gaussian windows were set to zero
contrast (i.e., Lpg).

Four additional sets of six face images were generated
from this first set of images. One set contained only the left
eyes of each face (Figure 1b); a second set only the right
eyes (Figure 1c); a third set only the noses (Figure 1d); and
a fourth set only the mouths (Figure le). In each of the
images that contained only a single feature, the regions
where the other features appeared in the original images
were set to zero contrast.

White Gaussian contrast noise was added to each pixel of
the image that was shown on each trial (u = 0; 6 =0.1). A
unique sample of noise was generated for each pixel on each
trial.

Procedure

A one-of-six identification task was used to estimate
identification thresholds for each feature condition (left eye,
right eye, nose, mouth, combined). The contrast of the
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images was manipulated across trials according to a 1-down
1-up staircase in each condition to obtain an observer’s 50%
correct identification threshold (chance performance was
~16% correct). The staircases were randomly interleaved
during each experimental session, which meant that the
stimulus types were also randomly mixed within each
session. On each trial, the observer saw a noisy stimulus and
was presented with the set of six noise-free images from
which the noisy image had been chosen (e.g., if a left eye
had been shown, the six possible left eye images were
shown in a selection screen for the observer to choose
from).

On each trial, a box appeared around the region where the
stimulus was going to appear. The observer started the trial
with a mouse click, and the noisy image was shown for
~500 ms, after which the image was replaced with a
selection window. The observer used the mouse to click on
the image they thought had appeared in the stimulus
interval. Accuracy feedback was given in the form of a high
or low beep.

Each observer participated in five sessions of 500 trials.
The first two sessions were not included in the analyses to
remove any initial learning effects from the data. A Weibull
psychometric function was fit to the staircase data (i.e., a fit
to percent correct as a function of stimulus contrast) in each
condition and the 50% correct identification threshold was
estimated from each fit. Bootstrap simulations were used to
estimated confidence intervals for the thresholds.

Integration Index

Following Nandy & Tjan (2008), an integration index ® was
defined as follows:

2
q) _ CSleft eye + right eye + mouth + nose
- 2 2 2 2
CSIeft eye + CSright eye + CSmauth + CSnose

where ¢ is an observer’s contrast threshold and CS, an
observer’s sensitivity, is equal to 1/c. Nandy and Tjan
(2008) have shown that the integration index for a
statistically optimal observer in this task will be equal to 1.
Sub-optimal integration will yield an index less than 1, and
super-optimal integration will yield an integration index
greater than 1. Note that only a sub-ideal observer can
actually achieve super-optimal integration: an integration
index greater than 1 implies additional information is used

when identifying the composite that is not used when
identifying the individual elements in isolation.

Results

Figure 2a shows contrast sensitivities in each condition for
the ideal observer' (dashed line) and three human observers?
(solid lines with symbols). Figure 2b shows the
corresponding integration index for each observer. Figure 2b
also shows the predictions of the “best-feature” model
(where each feature is analyzed independently and the
decision is based on the feature to which the observer is
most sensitive’), plotted as a dashed line with triangle
symbols. The best-feature model is intended to provide a
lower-bound for performance.

There are several interesting things to note about these
data. First, the pattern of sensitivities across conditions is
similar for all the observers, including the ideal observer.
The fact that the ideal observer shows a similar pattern of
performance to the human observers is interesting, because
it indicates that the variations in human performance across
conditions can largely be accounted for by the amount of
physically available information in each set of stimuli. In
this case, it shows that performance was worse for mouths
and noses in isolation largely because there was simply less
information physically present in those conditions (i.e., the
stimuli were more physically similar to each other).

Second, the integration index for two of the human
observers was significantly less than 1, indicating they were
integrating information sub-optimally in the combined
condition. In fact, these two observers were closer to the
predictions of the best-feature model than optimal or super-
optimal integration. This result is the opposite of what one
would predict if observers were using the relationships
amongst features to improve their performance when facial
features are shown together rather than in isolation. Such a
result is surprising, given that previous experiments on face
recognition have suggested observers greatly benefit from
using the relationships amongst facial features when
recognizing faces. The one exception was observer VMD,
who integrated information super-optimally. Apparently, this
observer did in fact derive an additional benefit from
viewing the facial features together rather than in isolation.

It is possible that the sub-optimal integration we found for
two of the three human observers was somehow related to
their conditional uncertainty in the experiment (recall that
they did not know which condition would appear on each
trial). For example, the conditional uncertainty may have

! The ideal decision rule can be derived using Bayes’ rule (Green & Swets, 1966). For our task and stimuli, it is equivalent to choosing the
noise-free signal that produces the highest cross-correlation with the noisy stimulus (Tjan, Braje, Legge, & Kersten, 1995).

2 One additional human observer was excluded due to an inability to perform the task at a level sufficiently above chance.

3 The “best-feature” model is closely related to the model of probability summation for signal detection (Graham, 1989). The integration
index of the best-feature model is computed as the expected value of the maximum of the observer’s squared contrast sensitivities to the
individual face features to that of the sum of the squared contrast sensitivities to all of the face features (Nandy & Tjan, 2008), i.e.
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Figure 2: (A) Squared contrast sensitivities and (B) integration indexes for the ideal observer and three human observers.
Error bars correspond to £1 s.e., estimated by bootstrap simulations (Efron & Tibshirani, 1993).
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Figure 3: (A) Squared contrast sensitivities and (B) integration indexes for the ideal observer and three human observers. The
conditions in this experiment were presented in blocks of 50 trials rather than randomly permuted as in the first experiment

(Figure 2). Error bars correspond to = 1 s.e.

induced observers to use an individual feature-oriented
strategy on all trials, including those where the entire set of
features was present (i.e., the combined condition). We
tested this possibility by running a second set of observers
through the same experiment, but with the conditions
blocked rather than randomized. Specifically, each session
contained a series of blocks, where the same condition was
tested within each block for 50 consecutive trials. The order

of conditions was randomized across blocks within each
session and there were two blocks tested for each condition
(a total 100 trials per condition within each session, for 5
sessions). Importantly, the observers were told at the
beginning of each new block which condition they would be
tested on for the next 50 trials.

The results of this experiment are shown in Figure 3.
Figure 3a shows contrast sensitivities in each condition for
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Figure 4: Face images from taken from Figure 1A, but with a constant background image added to each face. The area
surrounding the features (the background image) is an average computed from the six original faces.

the ideal observer and three human observers. Figure 3b
shows the corresponding integration index for each observer
and the predictions of the best-feature model. Contrary to
the idea that conditional uncertainty was responsible for the
sub-optimal integration found in the first experiment, these
data show that observers were generally /less efficient at
integrating information when the conditions were blocked
rather than randomized. Two observers (JEH, MTA) were
actually numerically worse than the lower bound set by the
best-feature model*.

Discussion

Our experiments were designed to test the prediction that
observers make use of information from facial features
when recognizing a complete face in a manner that is better
than one would predict from their ability to detect the
individual features in isolation. Contrary to this prediction,
our results are more consistent with the idea that observers
analyze each feature independently and base their decision
on the single feature to which they are most sensitive.

Previous experiments with much simpler tasks and
stimuli, such as the detection of sinusoidal gratings across
space, have yielded results similar to our own (and have
referred to this as “probability summation”) (Graham,
1989). Pelli, Farell and Moore (2003) have also found that
observers combine information sub-optimally across letters
when recognizing English words. Taken together, these
results suggest that the sub-optimal integration of
information across facial features that we observed in our
experiments may reflect a more general inefficiency in
visual spatial information integration. One possible account
for this effect could be that such tasks push against an upper
limit on the processing capacity of visual spatial attention
(Driver, 2001). Such a limitation could reduce the amount of
information an observer is able to use at any given feature
location when they are forced to simultaneously attend to
more than one spatial feature at a time (as in the case of a
composite face). If so, it is possible that observers do make
use of relational properties when recognizing faces, but that
the limitations imposed by spatial attention reduce the
processing efficiency of individual features more than is

gained by the use of relational or other second-order coding
strategies.

One way to directly address the issue of limited spatial
attention would be measure ‘classification images’ for each
of the conditions in our experiments (Ahumada, 2002;
Murray, Bennett, & Sekuler, 2002). A classification image is
a spatial map that describes the relative weight given to each
image location by an observer over the course of an
experiment. Classification images are measured by
correlating random pixel noise with an observer’s decisions
across trials. The efficiency of an observer’s classification
image can be measured by comparing their classification
image with that of an ideal observer (Murray, Bennett, &
Sekuler, 2005). Measurement of human and ideal
classification images for individual and combined facial
features would allow us to a) directly determine the
efficiency of a human observer’s weighting when the
features are shown in combination vs. in isolation; and b)
reveal the specific nature of any differences in weighting
when the features are shown in combination vs. in isolation.

A second less direct way to address the issue of limited
spatial attention would be to carry out our experiment with
inverted facial features, where the attentional bottleneck
would be identical to our original task. If observers rely on
relational codes when identifying normal faces but not
inverted faces (as previous experiments would suggest), we
would expect integration efficiency to be higher for normal
than inverted faces..

It is worth noting that inefficiencies similar to those we
obtained with faces are also found with respect to the
integration of information across spatial frequencies with
simple compound grating detection tasks (Graham, 1989).
However, recent experiments by Nandy and Tjan (2008)
have found that observers optimally integrate information
across spatial frequencies when identifying English letters.
One obvious difference between spatial frequency
integration and spatial integration is that stimuli filtered
with respect to spatial frequency will occupy the same
region of space. It would be interesting to see if, like letters,
spatial frequency information in faces is integrated in an
optimal fashion.

4 The other observer in this second experiment (JMG) was an author and, unlike all the other observers, was very familiar with original
face stimuli. The integration index for this observer was much higher than the other two observers in the second experiment, albeit still sub-
optimal. This suggests the possibility that information may be integrated less efficiently when recognizing unfamiliar faces, and that

training may serve to increase information integration efficiency.
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One additional factor that may have contributed to the
inefficient processing of composite faces that we observed
in our experiments is the relatively unnatural viewing of
faces through a set of Gaussian windows. That is, viewing
features through a set of Gaussian windows may have
disrupted any relational processing that normally takes place
when recognizing a face. One way to address this issue
would be to place the features within a fixed ‘average’
background image, as shown in Figure 4. In this figure, the
Gaussian windowed faces from Figure 1A have been added
to an image that was generated by averaging the regions
surrounding the Gaussian windows in each of the six
original face images. If the sub-optimal integration across
features in our experiments was due to a lack of facial
‘context’ around the Gaussian windows, we would expect
the faces shown in Figure 4 to greatly increase integration
efficiency.

Conclusions

In this paper, we have reported the results of two
experiments that indicate human observers are inefficient at
integrating information across facial features. We have
suggested several possible accounts for our results,
including limits on spatial attention and the use of unnatural
face stimuli. We are currently conducting experiments to
test each of these possibilities.
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