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Abstract

It is widely accepted that feedback is critical to guide the
learning process and to make effective decisions. However,
ideal feedback is relatively rare in our daily environments.
Two multiple-cue judgment experiments examined whether
biased and incomplete feedback leads to less accurate learning
than comprehensive feedback. Experiment 1 found that
participants given selective feedback produce equivalently
accurate predictions, learned equally rapidly, and exhibited
equivalent task structure knowledge to those given full
feedback. Experiment 2 showed that selective feedback led to
more accurate outcome predictions and task structure
knowledge in a dynamic task environment. These results are
problematic for error-based models of learning.
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Introduction

The importance of feedback in learning can scarcely be
overstated. Feedback can be seen in many aspects of our
lives: at work (audits, trial and error approach, quality
control), while shopping (customer service evaluations), at
home (reward/punishment of children) and, of course, in
educational settings (exam marks, final grades).

Consequently, most formal learning theories suggest that
appropriate feedback is necessary for learning (excluding
models of unsupervised learning). For example, error-based
models of associative learning (e.g. Rescorla & Wagner,
1972; Mackintosh, 1975), error-based models of
categorization (e.g. Nosofsky, 1986; Kruschke, 1992),
connectionist learning models based upon the delta-rule
(Rumelhart & McClelland, 1986) and Bayesian models of
learning/reasoning (for a review, see Oaksford & Chater,
2008) all suggest that learning only occurs when feedback is
received. (We will hereafter cumulatively refer to these
models as error-based models). By extension, these error-
based models suggest that optimal learning is achieved
when accurate, unbiased feedback is delivered as often as
possible.

Selective Feedback

Unfortunately, optimal feedback conditions like these are
rare outside of the laboratory (e.g. Hogarth, 2005). To
illustrate, suppose your friend Susan wants to learn how to
make good investments in the stock market. To do this, she
picks 10 companies that she thinks will be profitable,
invests in them and monitors the share prices of these
companies over the following 6 months. However, she

probably will not monitor the share prices of 10 companies
that she did not invest in. Thus, the feedback that Susan
receives will be both incomplete and biased. It is incomplete
because she received feedback on only a portion of the
relevant learning opportunities, and it is biased because the
companies about which she received feedback were
systematically related; they were the companies that she
predicted to be profitable. What impact would this biased,
selective feedback have upon Susan’s learning? According
to the aforementioned learning models it ought to be
detrimental to her learning, relative to a scenario in which
she was provided with balanced, comprehensive feedback.

Elwin, Juslin, Olsson & Enkvist (2007; see also
Henriksson, Elwin & Juslin, 2008) examined this question
using an experiment based on the prior example. On each
trial participants were shown how well a particular company
scored on four performance indices (e.g. market share,
turnover; hereafter referred to as cues), which were each
scored between 0 and 10. Participants were asked to predict
how many percentage points profit (or loss) that company
would make in the following year. Importantly the feedback
provided differed between participants. After generating
their predictions, the full feedback group was always told
how much profit each company made. In contrast, the
selective feedback group was only told about the
profitability of companies that they predicted would be
profitable. At test, the two groups did not differ in their
abilities to predict the profit made by each company (if
anything, a non-significant advantage was seen for those
given selective feedback). That is, the extra feedback given
to the full feedback group did not improve performance over
those given selective feedback. This lack of a difference
does not appear to be due to a ceiling or floor effect, as the
mean prediction accuracy at test ranged from 0.75 — 0.9. At
first glance, this result does not seem to be supportive of the
standard, error-based view of learning.

However, there are alternative explanations of this result
which are consistent with error-based learning. The
selective group in the Elwin et al. (2007) study were given
twice as many training trials as those in the full feedback
group. This was done in order to equate the number of trials
in which feedback was provided between the groups.
However, it meant that from an error-based learning view,
both groups experienced an equivalent number of learning
opportunities (trials in which feedback was provided)
making it less surprising that the groups performed
equivalently at test.
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Further, it is not clear to what extent participants in either
group understood the task structure, such as the cue-
weightings and the base-rate of profitability. It is possible
that participants in the full feedback group had a richer
understanding of the task structure but, for some reason, this
understanding was not translated into more accurate
prediction performance. In support of this suggestion, the
full feedback group predicted profit at a rate that was closer
to the objective base-rate of profitability (0.5) than the
selective feedback group. Finally, Elwin et al. only reported
prediction accuracy for the test trials. The benefit of full
feedback may best be seen in the training phase (for
example, the full feedback group may learn more rapidly).

Experiment 1

Experiment 1 was conducted to examine these alternative
explanations of Elwin et al.’s data, and to seek a replication
of their main findings. Four changes were made to Elwin et
al.’s experiment in order to address these alternative
explanations. First, the number of trials was equated for the
full and selective feedback groups. This meant that the full
feedback groups received up to twice as much feedback as
the selective groups. Secondly, trial-by-trial training
performance was analyzed in order to examine any
differences in the rate at which learning occurred. Thirdly,
at test, participants were asked to rate how important each
cue was when generating their predictions (a measure of
their knowledge of the cue-weightings). They were also
asked to estimate the percentage of companies that were
profitable in training (a measure of their knowledge of the
base-rate of profitability).

Finally, two different base-rates were used. For half of the
participants (the 50% groups), 50% of the companies shown
in training were profitable, while for the remainder (the 80%
groups) 80% were profitable. If the extra feedback allowed
participants in the full feedback condition to learn more
accurately about the task structure, including the base-rate,
then they should be more sensitive to these different base-
rates. In all other respects Experiment 1 was identical to that
conducted by Elwin et al.

Method

Participants. Forty-eight introductory Psychology students
from UNSW participated for course credit.

Design. Two between-subject manipulations were
conducted. Half of the participants were given feedback on
every trial (full feedback groups) and half were only given
feedback on trials in which they predicted profit (selective
feedback groups). Orthogonal to this manipulation, for half
of the participants 50% of the companies shown in training
were profitable, and for the remaining half, 80% were
profitable. Participants were evenly and randomly allocated
into these four groups.

Materials & Procedure. The materials and procedure were
based upon those of Elwin et al. Participants were given a
computerized profit prediction task. On each trial,
participants were given four cues, which were the

company’s scores (0 — 10; higher scores indicate better
performance) on each of four economic indices (market
share, turnover, staff experience, expenses). Once shown the
cues, participants made a prediction as to how many
percentage points of profit (or loss) that company would
make in the following year, on a scale ranging from 50%
loss to 50% profit.

The profit made by each company was calculated by
taking each cue value and multiplying it by the weight of
that cue (1, 2, 3 or 4) and then summing these values. This
yields a value between 0 and 100. For the 50% base-rate
groups, 50 was then subtracted from this sum so as to make
the company profits range from -50 (loss) to +50 (profit).
For the 80% group, 35 was subtracted from the weighted
sum of the cue-values. This yielded values between -35 and
65, in which approximately 80% of the values were positive.
These values were then adjusted to fit the -50 to +50 scale
(scores greater than 0 were multiplied by 50/65 and scores
below 0 were multiplied by 50/35). The profit scores were
calculated in this manner in order to (i) keep the profit range
in the 80% groups equal to that for the 50% groups (-50 to
+50), and (ii) to keep the distribution of the profit scores
similar between the 80% and 50% groups.

After making each profit prediction, the full feedback
groups were shown the correct answer. The selective
feedback group, in contrast, were only shown the actual
profit of that company if they had predicted the company to
be profitable (i.e. had predicted a profit greater than 0).
Otherwise these participants were simply moved to the next
trial. All participants were given 4 blocks of 60 training
trials (240 training trials in total). The transition between
blocks was not signaled to participants, and participants
were not provided with any breaks in training.

Upon completion of training, all participants were told
that their ability to predict profitability was to be tested, and
that they were to re-rate a small selection of the companies
that they had previously seen. The test procedure was very
similar to the training procedure, except that only 60 trials
were given and no feedback was provided.

Immediately before the first test-trial, participants were
asked to estimate the percentage of companies that were
profitable in training (a measure of the base-rate) on a scale
ranging from 0 — 100%. Then, immediately after completing
the last test-trial, participants were asked to rate how
important each cue had been when making their predictions,
on a scale of 0 to 100 (a measure of cue-weights).

Results & Discussion

Prediction Data. The absolute value of the difference
between the predicted profit and actual profit on each trial
was calculated, and averaged across all of the trials in each
block to yield participants’ mean prediction error per trial.
Low error scores indicate accurate predictions. Participants’
prediction accuracies across training and test are shown in
Figure 1.

Participants’ prediction accuracy scores in training were
analyzed using planned, orthogonal contrasts in a
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multivariate ANOVA. Type | error was controlled at .05.
Averaged across the four training blocks, no significant
differences in accuracy were observed between the 50%
groups, and the 80% groups, F(1,44) = 1.92. Within each of
these base-rate groups, no significant differences in
prediction accuracy were observed between participants
given full feedback and those given selective feedback; for
the 50% groups, F(1,44) = 2.45; for the 80% groups, F < 1.
Thus, selective feedback did not impair overall prediction
accuracy during training.
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Figure 1: The mean prediction errors in Experiment 1. Error
bars indicate the SEM for all figures.

To examine whether selective feedback impaired the
learning rate, a linear trend analysis of participants’
prediction error was conducted. Averaged across the four
groups, a significant negative linear trend in prediction error
was observed, F(1,44) = 39.21. This indicates that overall
prediction accuracy increased across training. Amongst the
50% groups, participants given selective feedback showed a
numerically larger decline in error across training than those
given full-feedback, but this difference was not significant,
F < 1. Similarly, amongst the 80% groups, the decline in
error was numerically larger for the selective group, but
again this difference was not significant, F(1,44) = 2.47. In
summary, full feedback did not appear to benefit overall
training accuracy or learning rate. If anything, the decline in
error (a measure of learning-rate) was greater for the
selective feedback groups, but these differences were not
reliable.

The same between-subjects contrasts used to analyze

participants’ prediction accuracy in training were used to
analyze their accuracy at test. No significant differences
were observed, maximum F(1,44) = 254. Thus any
differences in training performance were not transferred to
the test phase.
Knowledge of task structure. Although no benefit for the
full feedback groups was observed in participants’
prediction accuracy (in training or test), these groups may
have learned more about the task structure than the selective
groups. To examine this prediction, participants’ ratings of
cue-importance and their estimates of the proportion of
profitable companies were analyzed.

Participants’ mean importance ratings for each cue are
shown in Figure 2. A linear trend analysis shows that,
averaged across the four groups, participants correctly rated
the most heavily weighted cues as more important than the
least weighted cues, F(1,44) = 31.50. This linear trend did
not interact with the any of the between-subject, main effect
contrasts, all Fs < 1. This suggests that neither the base-rate
nor the feedback manipulation affected participants’
knowledge of the cue-weightings.
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Figure 2: Mean ratings of cue importance in Experiment 1.

Participants mean estimates of the proportion of profitable
companies were compared against the objective base-rate
(either 50 or 80) with one-sample t-tests. Of the 50% base-
rate groups, the full-feedback group significantly
overestimated the base-rate, M = 58.42, t(11) = 4.64, but the
selective feedback group’s estimate did not significantly
differ from the correct value, M = 51.17, t(11) < 1. Of the
80% groups, the mean estimate of the full feedback group
(M = 74.25) was closer to the correct value than the
selective feedback group (M = 71.75), but both groups
significantly underestimated the base-rate, t(11) = 2.21and
3.68, respectively. Thus, there is mixed evidence regarding
whether selective feedback impaired (or improved)
participants’ ability to monitor the base-rate of profitable
companies.

In summary, the present data support and extend Elwin et
al.’s findings. No evidence was found to suggest that
selective feedback impaired learning or reduced
participants’ knowledge of the task structure, relative to
participants given full feedback. Unlike Elwin et al.’s study,
this cannot be due to uneven numbers of trials. The number
of trials was equated between groups and thus, in the present
study, the full feedback groups received more feedback than
the selective groups. On average, the 50% and 80% base
rate selective groups received feedback on only 61% and
80% of the trials, respectively. Nevertheless, no
corresponding decrease in performance was observed.

One may wonder why no decrease was seen. Perhaps the
present scenario was too simple to demonstrate the benefits
of full feedback. For example, participants in the present
task may have initially learned quite rapidly until they
reached a performance level with which they were satisfied,
and then ceased learning. On this account, the present study
may not be sensitive to the influence of feedback because
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only a small amount of feedback may be required: enough
to drive the initial learning process and then all further
feedback could be ignored.

Experiment 2

To examine this possibility, the difficulty of the learning
task was increased in Experiment 2 by reversing the cue-
weightings during training for half of the participants (the
change groups). For the remainder (the same groups), the
cue-weightings did not change. In order to achieve accurate
profit predictions, the change groups must engage in
learning at least twice: once initially, and once when the cue
weights reverse. Thus, this design may be more sensitive to
the influence of feedback on learning.

This weighting reversal manipulation may increase
sensitivity in a second way, as it changes the task
environment from static to dynamic. Full feedback may be
particularly valuable in a dynamic environment because it
may allow participants to detect any changes earlier, and
thus to begin learning about the new environment sooner.
Indeed, it has been shown that when the task-structure is
abruptly changed, it is very difficult for participants to
respond, even if they are given full feedback (Brdder &
Schiffer, 2006; Rieskamp, 2006). Thus, Experiment 2
should be sensitive to any benefit offered by comprehensive
feedback over selective feedback. It is predicted that the
decrease in prediction accuracy due to the cue-weighting
reversal will be briefer in duration, and perhaps smaller in
magnitude, for the full feedback group than the selective
feedback group. Further, the full feedback group is
predicted to show more accurate knowledge of the new
(changed) cue-weightings than the selective feedback group.

Method

The method for Experiment 2 is similar to Experiment 1,
except where noted.

Participants. Forty-eight psychology students from UNSW
participated for course credit.

Design. Two between subject manipulations were
conducted. The feedback manipulation was the same as in
Experiment 1. Orthogonal to this manipulation, the cue-
weightings were reversed after the first training block for
half of the participants (the change groups) but were not for
the remainder (the same groups). Participants were evenly
and randomly allocated into these four groups.

Procedure & Materials. The procedure & materials
differed from those of Experiment 1 in five respects. First,
the base rate of company profitability was 50% for all
participants. Second, training was divided into three blocks
of 88 trials (rather than four blocks of 60). Third, after the
first training block, the weightings of the four cues were
reversed for the change groups. Thereby the most heavily
weighted cue became the least weighted cue, and the second
heaviest weighted cue became the second least heavily
weighted, etc. Fourth, the pre-test instructions were altered
to explicitly state that no feedback would be given in the test
phase.

Finally, we required an online measure of participants’
cue-weighting and base-rate estimates, such that it could be
delivered both before and after the cue-weighting reversal.
To this end, 10 data missing (DM) trials were randomly
interspersed in the last 30 trials before the cue-weighting
reversal, and a further 10 were interspersed in the last 30
trials of the final training block. There were two types of
DM trials: type (i), which assessed the perceived cue-
weightings and type (ii), which assessed the perceived base-
rate. On each type (i) trial, participants were shown one cue
with a maximal score (10) but were told that the data
regarding the remaining three cues was missing. There were
2 such trials for each cue, and thus there were 8 type (i)
data-missing trials per testing occasion. On each type (ii)
trial, participants were told that all information regarding
that company had been lost. Two type (ii) trials were given
per testing occasion. On all DM trials, as on the normal
trials, participants were required to generate a profit
prediction. No feedback was given on DM trials.

Results & Discussion

We were primarily interested in how participants would
respond to the cue-weighting reversal, and thus it was
important that participants had learned the initial cue-
weightings. To ensure this, all participants who had a mean
error-score of 15 or larger in the first training block were
excluded from subsequent analyses. This criterion was
selected by examining participants’ prediction data from
Experiment 1. Fifteen participants were removed, leaving
between 7 — 9 participants in each group.

Prediction Data. The accuracy scores for each group are
shown in Figure 3. Averaged across all the training blocks,
no differences were observed between the same and change
groups, F(1,29) = 2.02. Within the same groups, no
differences in accuracy were seen between those given
selective versus full feedback, F < 1, replicating Experiment
1. However, within the change groups, the predictions of the
selective feedback group were significantly more accurate
than those of the full feedback group, F(1,29) = 7.12.
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Figure 3: Mean prediction accuracy in Experiment 2.

Averaged across all groups, predictions were more
accurate on the last two training blocks (after the weighting-
reversal; the Post blocks) than on the training block before
the reversal (the Pre block). As expected, the increase in
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accuracy between the Pre and Post blocks was significantly
larger for the same groups (1.71 points) than for the change
groups (0.06 points), F(1,29) = 5.23. The magnitude of
improvement between Pre and Post did not differ between
the same groups, F < 1. However, amongst the change
groups, the predictions of the full feedback group was
significantly impaired by the reversal, but the predictions of
the selective feedback group were relatively unaffected,
F(1,29) = 4.12.

Finally, no between-group differences in prediction

performance were seen at test, all Fs < 1. In summary,
contrary to our predictions, the cue-weighting reversal did
not appear to reduce the prediction accuracy of the selective
feedback group. Instead, the reversal specifically impaired
the performance of the full feedback group.
Knowledge of task structure. Participants’ predictions on
the DM trials are summarized in Figure 4. If participants
were sensitive to the weightings of the cues, they ought to
have predicted more profit on trials in which information
was available for the most heavily weighted cue (40%), and
least on trials in which information was only available on
the least weighted cue (10%). As expected, averaged across
groups, a significant linear trend was observed in
participants’ prediction on the Pre DM trials in which high
profits tended to be predicted on trials in which the more
heavily weighted cues were shown, F(1,29) = 41.93. This
trend did not interact with any main-effect, between-group
contrasts, all Fs < 1.This indicates that the groups did not
differ in their knowledge of the cue-weights before the
reversal.
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Figure 4: Mean profit predictions on data missing trials in

Experiment 2.

The Post DM trials (delivered after the weighting reversal)
show a different pattern. Note that for the change groups,
that the cue labeled 10% in Figure 4 was the most heavily
weighted cue in the Post training blocks. Thus, ideally the
change groups should show a negative linear trend on the
Post DM trials, while the same group should show a
positive linear trend. Averaged across all groups, a
significant positive linear trend was observed on the Post
DM trials, F(1,29) = 7.52. Surprisingly, this linear trend did
not interact with the contrast comparing the same and

change groups, F(1,29) = 2.53. However, it did interact with
the contrast comparing the two change groups, F(1,29) =
4.95. This interaction reflects the full feedback group’s
continued use of the initial cue-weighting scheme to
produce predictions on the Post DM trials, as contrasted
with the selective feedback group’s use of the new cue-
weighting scheme. Thus, contrary to our hypothesis (but
consistent with the training data), the change group given
selective feedback learned more about the new cue-
weightings than the change group given full feedback. Put
simply, full feedback impaired learning in a dynamic
environment.

General Discussion

The present experiments examined the benefits of
comprehensive feedback in a multiple cue, deterministic
prediction task. Consistent with Elwin et al. (2007),
Experiment 1 showed that full feedback did not lead to
improved prediction accuracy at test, even when the number
of training trials was held constant. Further, full feedback
did not improve prediction accuracy in training, or increase
participants’ learning rate (if anything, the opposite was
found), or provide better knowledge of the task structure.
Experiment 2 showed that full feedback can impair
prediction accuracy in training, due to decreased sensitivity
to change.

These results are counter-intuitive, and are not consistent
with standard error-based models of learning. As noted
earlier, these accounts suggest that learning can only occur
when feedback is provided. On these accounts, all else being
equal, more trials with feedback (or “reinforced” trials)
should produce more learning. The present findings go
further than prior studies that have shown learning in the
absence of prediction error (e.g. Bott, Hoffman & Murphy,
2007) because the present data demonstrate that prediction
error can impair learning performance.

One might argue that learning had reached asymptote in
the present experiments, and thus further feedback ought not
to improve prediction accuracy. However, performance did
not approach ceiling in either experiment, as the task was
deterministic, and thus perfect performance was possible (in
principle). Further, performance does not appear to have
been limited by cognitive resources; our computer
simulations (not reported here) show that cognitively
undemanding strategies could achieve much better
performance than was observed. Thus, optimal or
asymptotic performance was not reached.

Instead, a more parsimonious account of the data is that, in
Experiment 2 at least, selective feedback facilitated
learning. This raises a question as to what participants
learned on the feedback absent trials. Elwin et al. and
Henriksson et al. argue (on the basis of participants’ base-
rate estimates) that participants simply assume that their
prediction was correct on feedback absent trials (termed
constructivist coding). Consistent with their hypothesis,
base-rate estimates were systematically lower for the
selective feedback groups in the present task. However, if
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participants simply assume that they are correct unless
shown otherwisg, this should lead to systematic decreases in
prediction accuracy, especially in an environment where the
cue-weightings were abruptly reversed. No such impairment
was observed.

However, a combination of this idea with two further
assumptions may account for the present data. First,
following Elwin et al. let it be assumed that (i) participants
believe themselves to be correct on feedback absent trials
and consequently do not encode the details of these trials
into working memory. Further, suppose (ii) that participants
can only hold information about a small number of trials (a
focal set) in working memory at any time (Miller, 1956).
Finally, suppose (iii) that participants are more easily able to
reason about trials in which high cue-values are shown than
on trials in which low cue-values are shown. This
assumption may be analogous to the greater ease with which
participants learn on cue-present than on cue-absent trials
(which has been suggested to explain the differences
between cue-competition and retrospective revaluation; Van
Hamme & Wasserman, 1994).

If one accepts these assumptions, then the selective
feedback condition may facilitate learning by maximizing
the efficiency of limited working memory resources.
Specifically, selective feedback allows participants to
populate their working memory solely with examples which
are easy to reason about (high cue-value instances), and this
may lead to more rapid learning of the cue-weights and
hence more accurate profit predictions. Perhaps the most
straightforward test of this speculative account is to modify
Experiment 2 such that the selective feedback group only
gets feedback on trials in which they predict a loss.
According to assumption (iii) this should result in impaired
learning relative to the full feedback group.

Alternatively, participants in the full feedback groups may
have sought to learn about two outcomes, profit and loss,
whereas those in the selective feedback group may have
focused on only one outcome, profit. In this case, the two
outcomes are symmetrical, and thus learning about both is
redundant. Nevertheless, participants did not necessarily
know this, and those in the full feedback groups may have
sought to learn about both. If so, then the greater difficulty
of the dual-outcome prediction task may explain why those
in the full feedback condition were most affected by the
cue-weighting reversal in Experiment 2. A simple test of
this account is to recode participants’ predictions and the
correct answers on to a scale varying from 0% to 100%
profit, rather than from 50% loss to 50% profit. Under these
circumstances, this account predicts that the difficulty of the
task is equated for the selective and full feedback groups,
and thus any performance differences in response to change
should disappear.
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