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Abstract the goal is often to model the group performance of cog-
N _ nitively normal individuals. In contrast, SDT models are
Efﬁogmthn ooy (t:SDt)S ?rethuseflul_forl und:ersttantd_mg used less often in AD research, where it is important to
zneimers aisease . In the clinical context, It IS
important to model performance at both the group level model perforr_nance E_‘t.bOth the group_level (e.g., fo_r th_e
(e.g., for the characterization of clinical subpopulations) c_haractenzatlon of CI|n|caI_subpo_pulatlons)_ and the indi-
and individual level (e.g., for the diagnosis of a patient).  vidual level (e.g., for the diagnosis of a patient).
Using a clinical data set from AD patients, we show how The goal of this paper is to use SDT to model recog-

a signal detection theory model that assumes hierarchical ... .
individual differences in discriminability and response nition memory performance of AD patients at both the

bias adequately describes these data at both the group 9roup and individual |9Ye|5- In the next section, we d_e-
and individual levels, and also present preliminary de-  scribe the SDT model in more detail. We then describe

scriptive and predictive analyses of the data at both levels. new clinical data, and evaluate three SDT approaches to
Keywords: Alzheimer's disease; Hierarchical Bayesian modeling the individual patients and_clmlcal groups in
modeling; Cognitive psychometrics; Signal detection these data. These models make different assumptions
theory; Recognition memory. about individual differences, and we show that only a
hierarchical model is satisfactory. Finally, we use this
. hierarchical model to present some first analyses of the
Introduction clinical data in terms of both the memory characteristics
Severe degradation of episodic memory is the hallmarkof groups of patients with different levels of cognitive
behavioral symptom of Alzheimer’s disease (AD). Dif- impairment, and in a predictive test of individual patient
ferences in the severity of this mnemonic degradationdiagnosis.
best distinguish adults who are aging normally from
those affected with AD on the basis of behavior alone Signal Detection Theory
(Locascio, Growdon, & Corkin, 1995). Given this diag- ) -
nostic power, it is not surprising that most neuropsycho-SDT models are often used in cognitive psychology as
logical testing for AD has tended to focus on episodic Simple models of how individuals make decisions. Un-
memory. Episodic memory may be measured using &ler this view, the parameters of the SDT model have psy-
variety of experimental paradigms, but the simplest ap-chological interpretations that give insight into the un-
proach is to use a yes/no recognition memory test. derlying memory and decision processes involved in a
In a yes/no recognition memory test, individuals are recognition task.
shown a study list of items to memorize and are then The basic SDT model shown in Figure 1 assumes
tested on their ability to discriminate these studtad  that, on each trial, the presented item evokes some la-
getitems from unstudiedistractoritems on subsequent tent memory strength. The memory strengths of both
test lists. On each trial of the experiment, an individ- target and distractor items are assumed to have Gaussian
ual is shown an item and simply indicates whether or notdistributions, with the mean of the distractor distribution
the item was on the study list. These responses fall ints¢separated from the mean of the target distribution by a
four classes: hits, misses, false alarms, and correct rejedistanced’. In this way,d’ measures theiscriminability
tions. Based on counts of these responses, performan@sﬁ the target and distractor items, and so represents the
on yes/no recognition memory tests is often measuredcuity of memory for the items.
using signal detection theory (SDT) models. Due to the assumed overlap of the target and distractor
SDT (Macmillan & Creelman, 2005) provides a gen- distributions, an individual needs a decision strategy for
eral framework for understanding how the variability in relating memory strength to responses in the recognition
the memory representations of target and distractor itemgest. SDT models assume this is done using a criterion
interacts with a cognitive decision process to affect per-level of memory strengt below which the individual
formance on recognition memory tests. Use of SDTwill respond ‘new’ and above which the individual will
models to characterize the results of recognition memoryespond ‘old’. The are& under the target distribution
experiments is common in cognitive psychology, whereabove the criterion corresponds to the hit rate, and the
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in stage 5, and 22 in stage*@n this data set, variability
on at least two qualitatively distinct levels is expected.
At an individual level, each patient is expected to dif-
fer in their mnemonic ability; at a group level, patients
with a given FAST stage are expected, on average, to
differ in mnemonic ability from patients with a different
FAST stage. The first row of Figure 3 summarizes pa-
tient performance , with the panels corresponding to the
six stages. Each point corresponds to a patient, showing
their combination of hits and false-alarms in the task. It
can be seen that, generally, performance worsens (i.e.,
there are fewer hits and/or more false-alarms) with in-
Z creasing stage, but also that there remains considerable
Memory Strelr:gt(rl; variability across patients within the same stage. This
means any attempt to model these data should account
) _ _ ) for this systematic variation both between groups (i.e.,
Figure 1: The unequal variance signal detection theory,q\ the funtional stages differ in terms of memory and
model and parameters. decision strategy) and within groups (i.e., how individual
patients differ in their memory and decision strategy).

Three SDT Models

In this section, we evaluate the ability of three SDT mod-
The di b his criteri d unbiased els to account for our clinical data. Although the three
e distance between this criterion and unbiased re- ., 4e|g share the basic SDT assumptions, each makes

sponding is_ cqmmonly used as a measureesbons_e different assumptions regarding individual differences in
biasdue to its independece df (Snodgrass & Corwin, discriminability and response bias

1988). The response bias measures the tendency of an| o.qer to perform Bayesian inference, we imple-

individual to give one response rather than another. mented the SDT models as probabilistic graphical mod-
Most SDT models in psychology assume that the stanels in WinBUGS (Lunn, Thomas, Best, & Spiegelhal-
dard deviations of the target and distractor distributionster, 2000), software that uses a variety of Markov chain
are equal. Results of recognition memory experimentsvionte Carlo (MCMC) algorithms (Gilks, Richardson,
(e.g., Mickes, Wixted, & Wais, 2007), however, sup- & Spiegelhalter, 1996) to obtain samples from the joint
port a version of SDT in which the standard deviation posterior distributions of these parameters. Probabilistic
of the target distribution is 25% larger than the stan- graphical models are widely used for Bayesian inference
dard deviation of the distractor distribution, so that within statistics (e.g., Jordan, 2004) and more recently

distractor target

Probability Density

areaf under the distractor distribution above the crite-
rion corresponds to the false alarm rate.

Odistractoy/ Otarget= 0.8. in cognitive science (Lee, 2008; Shiffrin, Lee, Kim, &
Wagenmakers, 2008), including in the current context of
Clinical Data Set recognition memory and SDT (Dennis, Lee, & Kinnell,

2008). All of our analyses used 2000 posterior samples
collected following a burn-in (i.e., a set of samples dis-

Our data come from a neurology clinic where 533 pa-
tients completed a yes/no recognition memory test Con_ca_rded to ensure that t_he _recc_)rded samples are represen-
sisting of 10 target and 10 distractor words selected fromfative of the posterior distribution) of 1000 samples.

the CERAD word list (e.g., Shankle et al., 2005). The No Individual Differences
majority of these patients had AD, vascular dementia, ) o
Our first attempt to account for the clinical data uses

lewy body disease, or a mixture of these diagnoses. _ ¢ C C _
an SDT model in which all patients with a given FAST

Independent of patient performance onthe recognition tage have the same discriminability and response bias.
memory test, a trained neurologist used the functloniﬁ/

assessment staging test (FAST) to classify each patie his approach is seen in the cognitive modeling literature

! X - . vhen SDT is fit to averaged or aggregated data, estimat-
The FAST (Reisberg, 1988) is a ngI-vallt_jated_dlagnos-ing one set of parameters to describe all the individuals
tic tool used by clinicians to classify patients into one

of seven stages, each of which corresponds to a level & 9"0UP:

of functional impairment. Specifically, progessing from Graphical Model The graphical model is shown in
stage 1 to stage 7 corresponds to ‘normal aging’, ‘possithe left panel of Figure 2. Consistent with the assump-
ble mild cognitive impairment’, ‘mild cognitive impair- tion that all patients with a given FAST stage have the

ment’, ‘mild dementia’, ‘moderate dementia’, ‘moder-

ate|y severe dementia’ and ‘severe dementia’. lSince patients with a diagnosis of FAST stage 7 can, at
best, speak approximately 5 or 6 words per day and, at worst,

Of the 533 patients, 145 were judged to be in FAST cannot lift their head, no data from patients with this diagnosis
stage 1, 93 in stage 2, 96 in stage 3, 131 in stage 4, 4fere included in our data set.
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Figure 2: Graphical models for the SDT models that assume no (left), full (middle), and hierarchical (right) individual
differences in discriminability and response bias.

same discriminability and response bias, the plate withthis, we conclude that the SDT model with no individual
i=1,...,6 corresponds to the six FAST stages. Within differences does not adequately describe the data.

this plate, thed; and ¢, nodes correspond to the dis-

criminability and response bias, respectively, for ttte  Full Individual Differences

FAST stage. The plate with=1,...,533 corresponds .

to the 533 patients. Within this plate, ttg node in- Our second attempt to account for the clinical data uses
dicates the FAST stage of thgh patient, which via an SDT model in which each patient is assumed to have
SDT determines the hit and false alarm ratgsand & different level of mnemonic ability. This approach is
f; for that patient. Formallyh; = ®(d,/2—c,) and ~ S€en in the cognitive modeling literature when SDT is
fj = ®(—(dy /24 C5) /1), Wheret Wasjset to 'éhe em- fit to individual participant data, and parameters are esti-

pirical value of 0.8. Based on the hit and false alarm mated for each separately.
rates and th& = 10 target and = 10 distractor words Graphical Model The graphical model is shown in the
presented to all patients during the recognition testsmiddle panel of Figure 2. Since each patient is assumed
the jth patient producesi; ~ Binomial(h;, T) hits and  to have a unique discriminability and response bias (and
F; ~ Binomial(fj,D) observed false alarms during the consequently hit and false alarm rates), the plate cor-
test. We used the standard non-informative pridys- responding to the patients now extends over the corre-
GaussiafD, 2) andc; ~ Gaussia(D,1/2). spondingdj, ¢, hj, andf; nodes. These variables have
the same definitions and priors as before, but now applied

Results We use posterior predictive distributions as a atthe level of individuals rather than stages.

standard Bayesian assessment the fit of models to daResults Posterior predictive distributions for the group
(e.g., Gelman, Carlin, Stern, & Rubin, 2004). These dis-analysis of the SDT model with full individual differ-
tributions for hits and false alarm counts are shown inences are shown in the third row of Figure 3. Each of
the second row of Figures 3 and 4, at the group and inthese distributions puts roughly equal mass on each pos-
dividual level respectively. In each panel, the box sizessible pair of hit and false alarm counts, which does not
are proportional to the mass of the posterior predictivematch the observed data. The basic problem is that, by
distribution. The second row of Figure 3 shows that thefitting at an individual level, the model cannot make in-
group level model only adequately accounts for the vari-ferences about groups of participants. Where the model
ability of FAST stage 1, perhaps stage 2, but no otherdoes fare well is at the individual level, shown in the third
stages. The second row of Figure 4 shows the posteriatow of Figure 4. Here, the posterior predictive fits to the
predictive distribution for a randomly selected individ- selected patients are excellent, as they should be. Never-
ual patient from each FAST stage. In all but one casetheless, the inability of the SDT model with full individ-
the mass of the posterior predictive distributions does notual differences to describe the FAST groups means that
contact the patient’s data, represented by the cross. Froihdoes not satisfy the dual goals we set at the outset.
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Figure 3: The first row shows the hit and false-alarm counts for each patient, according to their FAST stage. The

second, third, and fourth rows show the posterior predictive distributions for hit and false alarm counts for the no

difference, full difference, and hierarchical difference models. In the posterior predictive panels, the box sizes are
proportional to the mass of the posterior predictive distribution for that combination of hits and false-alarms.

Hierarchical Individual Differences both the group and individual level.

) ) ) This descriptive adequacy makes it sensible to exam-
Our third approach uses an SDT model in which eachine the parameter inferences made by the model. We
patient is assumed to have different discriminability andpresent two analyses of this type, one at the group and
response bias, depending on their FAST stage. We dgne at the individual level, to demonstrate what sort of
thl_s by assuming a structure to the individual d|fferences,ana|yses are possible. At the group level, Figure 5 shows
using a hierarchical model. scatterplots of 50 randomly sampled pairs of mean dis-
criminability oy and mean response bigsvalues from
4he joint posterior distribution over these parameters for
each FAST stage. The FAST stage groups are separated
with respect to mean discriminability, with progressive

Graphical Model The graphical model is shown in
the right panel of Figure 2. Since each patient has
unique discriminability and response bias, the plate

corresponding to the patients still extends over the X
corresgondingdj and ij nodes. However we now Stades having lower values. In contrast, the FAST stage

assume that these values are drawn from Gaussiaf OUPS have roughly eq_ual levels of response bias with
distributions, where the discriminability and response only a sllght_d_ecease evident as the stages progress.
bias distributions for theith FAST stage have means _ At the individual level, we evaluated the adequacy of
Hai and i and precisiond\; andAci. Formally, for t_he hierarchical model to predict the FAST stage of pa-
exampled; ~ Gaussiatigz ,Aqz). tients based on their test performance. To accomplish
A this, we used data from 483 of the 533 patients to ob-
Results Posterior predictive distributions for the group tain a posterior distribution over the discriminability and
analysis for the SDT model with hierarchical individ- response bias parametérsVe then found the posterior
ual differences are shown in the fourth row of Figure 3. distribution for the FAST stage variables of those pa-
In contrast to those produced by the two previous SDTtients whose true FAST stage was withheld, and made
models, these distributions provide a good description ofthe predicted staging corresponding to the mode of that
the data. Similarly, the fourth row of Figure 4 shows that distribution (i.e., the standard MAP estimate).
the posterior predictive distribution for the randomly se- —————— _ o ] _
ected patients are as good as those obtained using t, My of he 593 paentspariopalen s he e recogn-
SDT model with full individual dlffer_ences. Fro_m th's'_ was used for the posterior predictive analyses. For the predic-
we conclude that the SDT model with hierarchical indi- tion analysis, however, data from subsequent visits on which a
vidual differences does adequately describe the data giatient did not change FAST stage were combined.
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Figure 4: Posterior predictive distributions for hit and false alarm counts for one randomly selected patient from each
of the first six FAST stages.

Figure 6 presents the results of this analysis, showingridual level as well as the SDT model with full individual
how the model predictions relate to the true diagnosesdifferences may strike some as a surprising.
Each box corresponds to a (truth,prediction) pair, and Previous work using SDT to model data from patients
the box size is proportional to the frequency of that pair- with dementia (Snodgrass & Corwin, 1988). In this
ing. Black boxes on the diagonal are correct classificawork, a basic SDT model (assuming equal variances)
tions. The gray outline regions in Figure 6 correspondwas used to model recognition memory data from de-
to the broader classsification dividing FAST stages 1 andnentia patients (diagnosed with either AD or Parkinson’s
2, which essentially represent normal cognitive function-disease). One of the main results of this study was that
ing, from stages 3-6, which represent cognitive impair-patients with dementia have abnormally liberal response
ment with or without dementia. It can be seen that thebiases (as measured by While Figure 5 appears to
predictions of the model are generally good, especiallyshow a decreasing trend, there is no evidence of the lib-
at the broader level, but are certainly not perfect. Oureral criterion values found in the previous work.
main point is that it is straightforward to make predic-  |n our hierarchical SDT model, we assumed differ-
tions for individuals by assuming hierarchal individual ences betweemdividuals One potential limitation is
differences, and that these predictions are informed byhat we did not attempt to account for differences be-
the different group characteristics observed in Figure 5. tweenitems Some authors (e.g., Rouder & Lu, 2005)
. ) have noted that SDT parameters are systematically un-

Discussion derestimated when item variability is not accounted for.
We think the hierarchical approach to modeling groupsAdding such an assumption to the hierarchical model
and individuals is an important and useful one. The noproduced here is straightforward, and worth pursuing.
individual differences model failed to account for data at A final issue concerns the performance of the hier-
both the the group and individual levels, because it failedarchical SDT model on the prediction task. While the
to provide a mechanism to deal with the variability that model’s performance was imperfect, its predictions (both
existed within a given FAST stage. The full individual correct and incorrect) seem sensible. As the first row of
differences model failed to account for data at the groupFigures 3 and 4 show, a large number of patients with
level, because it had no representation of this group levelFAST stages 4 (and even some with stages 5 and 6) still
In contrast,the hierarchical individual differences model perform perfectly on the test. This may tell us more about
was able to account for data at both levels successfullythe utility of recognition memory tests as diagnostic tools
While it may not be surprising that this model was able for AD, rather than about any fundamental deficits in
to account for data at the group level better than the othethe hierarchical SDT model. Given these results, mod-
two models, its ability to account for the data at the indi- eling data from another recognition or recall paradigm
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Figure 5: Joint posterior for the means of the discrim-
inability and response bias parameters of the SDT model
that assumes hierarchical individual differences.

Figure 6: FAST stage prediction performance.
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