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Abstract collected during two experiments where participants had to
. : . . . rch for information.
This study aims at presenting a computational model of visual search fo ormatio
search including a visual, a semantic and a memory process in .
order to simulate human behavior during information seeking. Model architecture

We implemented the memory process, which is the most im- ; : : : ; L
portant part of the model based on the Variable Memory Model In this section we will describe our model. This model sim

(Arani, Karwan, & G., 1984; Horowitz, 2006). To compare ulates human eye movements during a simple task of infor-
model and humans, we designed two experiments where par- mation seeking involving text and visual features. We devel

ticipants were asked to find the word among forty distributed ; ; ; ;
on F;he display, which best answers a queg'[ion.y The results oped an architecture in 3 parts, (see Figure 1), correspgndi

showed good fits on different features extracted between em- t0 3 main cognitive processes involved in a task of informa-

pirical and simulated scanpaths. tion search. These three processes are respectivelydétate
Keywords: Visual Memory; Information Seeking; Computa-  bottom-up visual information, top-down semantic informa-
tional Model; Eye Movements; Semantic Similarities tion and memory. These processes will be detailed thereafte
. The principle of the model is to predict from a fixed location
Introduction and an history of previous fixations where will be the next

Nowadays information seeking, on a Web page for examdixation. It is assumed that from a given point each location
ple, is a very common task. That is why for several yearsf the image has a visual weight (calculated by the visual pro
research has been conducted to try to answer this questiotess) and a semantic weight (calculated by the semantic pro-
what guide user’s attention in this particular task, esiBci  cess). These values are modulated by the process of memory.
on the web? The literature contains theoretical models-of inThe basic process of memory is that if a location has already
formation seeking activity (Marchionini, 1997), espelgiah been visited it has less interest than if it never was. At each
electronic documents, and also computational models whicheration the location of the fixation is thus determinedilunt
simulate navigation between pages, with cognitive archite the end of the scanpath. The number of fixations is fixed.
tures like ACT-R (Pirolli & Fu, 2003). There are also a lot

of studies based on the Feature Integration Theory (TreismaYisual part

& Gelade, 1980) with models which take into account the vi-The visual part of the model is itself divided into 2 partseTh
sual features of stimuli: colors, orientation, contrasi & first part is a very simple retinal filter which provide a good
Koch, 2000) to determine the most salient part of the stimdit to acuity limitations in the visual human field (Zelinsky,
ulus. However even if some models take into account th&hang, Yu, Chen, & Samaras, 2006; Geisler & Perry, 2002)
semantic information of the material, in addition to visimal . The filtering output has a maximal resolution in areas near
formation (Navalpakkam & Itti, 2005), experiments and mod-the fixation point, and the resolution decreases with eccen-
elling are missing in this field. The purpose of this paper istricity. More practically, locations close to the currentafi

to describe a cognitively plausible model that takes into action will have a strong visual weight, and those further away
count semantic and visual features of stimuli when seagchina low weight. The second part of this process concerns visual
for information. This model is an improvement of a simpler stimuli. As in many models of visual attention (ltti & Koch,
one (Chanceaux, @uin-Dugte, Lemaire, & Baccino, 2008). 2001) we also take into account this information in a pseudo
It has been implemented and compared to experimental dagaliency map. In the first experiment, this information is th
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Figure 1: Model's architecture if the similarity between the current fixated word and the in-

struction is under 02 the weights are decreased following
a Gaussian around the current fixation. If the similarity is

size of items, and in the second one, their color. Our visuaiabove 0.2, the weights are increased still following a Gaus-
model is defined as such: sian around the current fixation.

VisualWeighti) = VisualSalienci) « Visual Acuityi, c) Memory part

Most computational models of attention have implemented

i represents each location in the display artble current fix-  an Inhibition Of Return (IOR) mechanism for driving atten-
ation. tion through a scene (Klein & Maclnnes, 1999). However,

; evidence for IOR during scene viewing is inconclusive (Mot-
ngantlc part ) ) ter & Belky, 1998; Hooge, Over, Wezel, & Frens, 2005). In
Itis well known that the semantic meaning of the search hag,ese studies, results indicate that there is a tendensater
an impact on eye movement (Yarbus, 1967), but this informagades to continue the trajectory of the previous saccade, bu
tion is tricky to implement. That is why our semantic model ¢qnirary to théoraging facilitatorhypothesis of IOR, there is
takes into account the semantic similarity between a word,|sq g gistinct population of saccades directed back torthe p

and the goal of the search. This similarity is calculated by;ioys fixation location. To capture the pattern of saccagc e
LSA (Latent Semantic Analysis). This method, popularized,,ovements during scene viewing we need to model the dy-

by Landauer and Dumais (1997), takes a huge corpus as inpltmics of visual encoding. That is why we implemented the

and yields a high-dimensional vector representation fohea \s3/iaple Memory Model instead of using the simple mecha-
word, usually about 300 dimensions. It is based on a singUaism of I0R.

lar value decomposition of a word paragraph occurrence ) )

matrix, which implements the idea that words occurring inVariable Memory Model = The memory partis based on the
similar contexts are represented by close vectors. Sucb-a veVariable Memory Model (VMM), developed by Arani et al.
tor representation is very convenient to give a representat (1984) and revisited by Horowitz (2006). VMM is a non-

to sentences that were not in the corpus: the meaning of @eterministic model originally designed to accomodate eye
sentence is represented as a linear combination of its wordlovements data. It is based on 2 parametérthe proba-
vectors. Therefore, we can virtually take any sentence anfility of encoding andp the probability of recovering infor-
give it a representation. Once this vector is computed, wénation in memor§. When an item is attended, the location
can compute the semantic similarity between any word an@f that item could be encoded by the model, or not, depend-
this sentence, using the cosine function. The higher the cdnd of the encoding probabilit. The second parametafr,

sine value, the more similar the words are. The results ofimulates a forgetting mechanism. In fact when a stimulus is
this method have been experimentally tested and are close g§'coded, it will be gradually deteriorated following thene

the capabilities of human in judging of semantic similasti drawn in Figure 2. When the memory weight is 1 the item
(Landauer, McNamara, Dennis, & Kintsch, 2007). Specif-1S perfectly remembered, when itis O there is no trace of this
ically in our model, our assumption is that elements whichitém in memory. When an item is attended, its weight is 1 if
are spatially close are also semantically close, as it Enoft it is @ncoded then progressively goes back to 0: at each step,
the case in reality, and it is the case by construction in ouftS memory weight decreases as a function of the number of
stimuli. If a fixated word is semantically close to the goal, INt€rvening items.

elements nearby will receive a high weight. On the contrar
if that word is fgr from the goal, elt_ements close to it will re- 4 ochold under which items are unrelated.

ceive weak weight. The model will therefore tend to move 2 third parameter is used in the original model, representing the
away from the areas considered unrelevant. More preciselyrobability of correctly identifying the target.

IThis value of 0.2 is usually considered in thea literature as a

2832



At the ith fixation the model will remember or not that a sportf ament oot P
particular item was encoding during tkth fixation, as fol- !
|0Wing: variation o .
MemoryWe|gl‘(l],k) _ ¢|,k bétail aine assiette

provision coquille
The last point about this part is the importance of the meganin planche

of the stimulus® is modulated by semantics. If the stimulus | muaton nstinct ainge beleine
is really close (semantically similar) to the user’s gohk t symbole canard cochon
encoding is more difficult, because the treatment of thimsti | . ... forme _ fererd

ulus takes more time and cognitive resources. In contrary, i  berger M tigre
the stimulus has anything to do with the information search - buisson  vaisselle
the encoding will be easier. This point explains why when & poursuite cachette
stimulus is interesting we sometimes need to go back to it. | caresse

fact in the observed data there are more return on words s¢

mantically close to the information seeking goal, than athe appel besogne

docteur

graisse

chocolat

ﬂ .
anc chien étable

collier

Integration
Each part of the model (visual, semantic and memory) genelElgure 3: Example of image. The instructionfnd the

ates a map. On this map each location has a weight for thitgIggeSt animalThe answer isvhale ("baleine” in french)
component. The integration of maps to form the main map is

a weighted sum of these three components: ) ) o .
on a 19 inch CRT monitor at a viewing distance of 50 cm.

Participants were told to read the instruction, to fix a fiati
cross and to view the display in order to find the best answer
Oy +as+ay=1 to the instruction, with no time limitation. Participantere
presented 18 1024 x 768 pixels images (subtending 42 hori-
zontal deg. of visual angle). These 2 experiments have the
same methods, but differ in one point: the visual features of
the stimuli.

Mgeneral = Ov .Myisual + 0s.Msemantict Am-Mmemory

The weightsay, as anday are not fixed a priori. We are
instead looking at the respective role of each component.

Experiments

In order to test the model, we will now present two exper-Experiment 1 In the first experiment the visual feature is
iments, which enabled to compare the computational moddhe font size of the stimuli. Each word has a font size be-
with experimental data. We formalized the goal the user igween 13 and 19, allocated in this way (19: 5 words, 18: 5
pursuing by considering that this user is seeking a particuwords, 17: 6 words, 16: 7 words, 15: 6 words, 14: 6 words
lar piece of information. Our goal is to apply our model to @nd 13: 5 words). They can be grouped into two classes: V+
complex Web pages, but before that we tested it on a simpleize 18-19) and V- (size 13-17). There are three visual con-
task. The user is asked to find the best answer to a questiofiitions which are (1) random assignments of visual features
40 words are spread on the display, and the target is defind@ Words; (2) no visual features at all; (3) visual features-c

by the class it belongs to and its specific features withis thi 9ruent to spatial locations: words that are close to theetarg
class. For instance, the instruction could be: Find thedsgg have bigger font size. In this experiment the visual featsire
animal (class: animal and feature: big), as in Figure 3. Eacinulti-varied and gradual. 43 students of Grenoble Univgrsi
of the 40 words of each image has a visual feature and a s@articipated (30 female; mean age = 20.9 years). All par-
mantic feature. We also organized the 40 words in order tdicipants had normal or corrected to normal vision and were
reproduce the fact that in our world objects that are semantinave with respect to the purposes of the study.

cally similar are also often close to each other; in supermargyperiment 2 In the second experiment the visual feature
ket, vegetables are in the same place and they are close {{the color of the stimuli. Each word is black or red (black:
fruits. In each image, seven words, including the targetivor 30 \yords, red: 10 words). There are then two classes: V+
belong to the same category (i.e. category of the instmctio (red) and V- (black). There are two visual conditions which
in our exampleanima), and all 33 other words are of de- 4re (1) random assignments of color; (2) visual features con
creasing semantic similarity with the instruction. To cééte  gryent to spatial locations: words that are close to thestarg
these similarities we used the LSA method, briefly describeire red. In this experiment the visual feature is bimodal and
above. dichotomic. 29 students of Grenoble University particiuiat
Methods (14 female; mean age = 21.2 years). All participants had nor-

. ) mal or corrected to normal vision and werévewith respect
In both experiments, eye movements were monitored by ag, {he purposes of the study.

SR Research Eyelink 2 eyetracker. Viewing was binocular,
but only one eye was tracked. The images were presented

2833



30 1

%
O Theoritical
T0% @ Chserved

@ 28 09 £
= oo __ I i 2 50%
o 26 D 1 08 © 2 60%
9 24 g 0,7 g & 50%
§ 22 I 06 g 8 40%
o o 20 05 % £ am
T8 | o g
g 18 { i 04 5 & 209 |
% 16 | - i 03 \.56" 10% A
]
2 14 ‘ 0,2 £ o . . .
2 12 i 01 X 1819 1317 Red Black

10 i 0 Visual features {size in pixel or color}

+ V-
Visual condition . . ' .
_ Figure 5: Theoritical and observed percentage of fixations
nbwords_expeSize nbwords_expeColor K A
—— rateProgression_expeSize - = - rateProgression_expeColor dependlng on visual features

Figure 4:Number of wordsindrate of progression saccades _ o
according to visual conditions for both experiments ously described on these quite different tasks.

Comparisons between model and human
Results scanpaths

We have here two different experiments, with different tssu  YVeights combination
and we will see if the model can account for both data. InWe have done 50 iterations of the model for each experiment,
both experiments we identified three features that allovous tlike a simulation of 50 participants. The total number of fix-
characterize the performance of participants and to comparations was fixed for each image and equals to the average
them afterwards with model data. The selected features areumber of fixations made by the participants who saw this
the number of words seen before reaching the target, the rapicture. We made these simulations for all combinations of
of progression saccades, i.e. the number of fixations ctoser Ov, as anday from 0 to 1 with 0.05 steps. For the exper-
the target than the previous one divided by the number of aliment with the factoicolor we also varied the weight of the
fixations and the angles in the scanpath. These features welied words for the visual map (representing the visual sejien
chosen for their discriminating power between the difféeren of the words). We also varied the parameters of the memory
conditions of the experiment. We are interested in the waluemodel$ and®, to compare them thereafter with data from the
of all these features for the last 6 maps seen by the particiiterature.
pants, once they were well aware of the task and the semantic To select the best parameters of the model we compared the
organization of words on the display. average relative errors between the model and particifants
The difference between the 2 experiments was the visughe two features described above, the number of words seen
factor. The results show (see Figure 4) gains in performanckefore the target and the rate of progression saccades. The
for the experimentolor that are not in experimersizebe-  average angle of the scanpath gives us similar results at w
tween the two visual conditions (colored words help, but bigdo not present here. We took into account for each feature the
words do not). For the featureuimber of wordsT(17)=2.06, 10 best combinations, to average the parameters. In fact the
p=0.055 against T(17)=0.96, p=0.349 and for the featurdlifference in the relative errors are too weak to only take th
rate of progression saccadé17)=4.07, p<0.001 against bestone. These results are shown in Table 1.
T(17)=0.73, p=0.474.

To see why there are differences in performance between Table 1: Best combination of weights

the 2 experiments, and especially, why the faciiae does

not affect performance unlike the factoolor, we looked at Experimentsize Experimentcolor
whether the words in color were over fixated compared to the Rate prog\ Nb words | Rate prog\ Nb words
words in black and similarly if the biggest words were more [ q,, 0,4 0,34 0,38 0,31
fixated than smaller words (in random visual condition) Re- [q, 0,50 0,62 0,45 0,58
sults show (Figure 5) that the words with more salient visual [~gg 0,11 0,05 0,18 0,12
features are not more fixated than others. There is no sig-g 0,83 0,84 0,83 0,85
nificant difference between observed and theoretical galue ) 0.84 0.86 0.84 0.86

(factorsize x2 = 1,26, dl = 1, p = 0.26 and facteolor: X2

=2.36, dl =1, p =0.12). The gradualness of factreis

certainly the reason for the difference previously obsgrve We can first notice that the best parameters are very close
We will now see what is the behavior of the model previ- for the 2 experiments, i.e. the model is suitable for 2 tyffes o
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visual feature, bimodalcplor) or gradual Gize). If we now
look at the meaning of these values the most important weight
is for the memory component, which enables the model to re-
member where it has already been. The visual component o e 00
also plays an important role, because it takes into accbent t
visual acuity and guide the attention on the closest worgls, a
human do. Finally the semantic part is less important, espe-. .
cially in the first ezl(periment. SeC(F))nd the paramF:eBaaSqu) P _F|gure 8: Comparisons between model and data on the exper-
are also close to those found in literature which &0,82 imentcolor
et $=0,86 (Horowitz, 2006).

Finally looking at the distinction between images with red
words around the target and images with red words randoml
displayed both models and participants have differences if© have a more complete comparison between humans and

Percentage of allfixations (%)
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Saccade absolute angle (degre)
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performances, as shown for example in Figure 6 for the feanodel, we studied two distributions which are typical of hu-
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man scanpath: saccade length distribution, and angléuxistr
tions (both relative and absolute angles). A relative aigle

an angle between two saccades, an absolute angle is between
a saccade and the horizontal line.

Figure 7 describes the first experiment comparisons and
Figure 8 the second ones. There is a good fit of the data for
the saccade amplitude distribution curve (upper panel tf bo
figures) with a peak at about 4 degrees of saccade amplitude
in all cases.

In the case of relative angles the results show a curve for
participants with more return saccades (0 °) and forware sac
cades (180°), same results that those found by Tatler and
Vincent (2008). For the model, the curve is more horizon-
tal (middle panel of both figures).

The values that we get in the case of absolute angles are
very interesting. They show very clearly an horizontal tren
(peaks at 0° and 180°) rather than vertical (small peaks at
90° and 270°) for both humans and model.

X? tests give us no significant differences for each compar-
ison (all p>0.9), meaning the model distributions are similar
to human’s ones for experiments 1 and 2.

Conclusion

Figure 7: Comparisons between model and data on the expeWe have considered two experiments in order to validate a

imentsize

model. This model takes into account both semantic and
visual information, associated with a model of visual mem-
ory. There are many parameters we had to determined, and
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to do that we tried first of all to make cognitively plausible ltti, L., & Koch, C. (2000). A saliency-based search mecha-
choices. In fact the visual part takes into account bothalisu  nism for overt and covert shifts of visual attentiovision
human acuity and the saliency of the stimuli. This saliency Research40, 1489-1506.

is here really simple because of the simplicity of the stimul Itti, L., & Koch, C. (2001). Computational modeling of vidua
but could be more complex if necessary. For the semantic attention.Nature Reviews Neuroscien@ 194-203.

part we used a well known method and theory which proKlein, R. M., & Maclnnes, J. W. (1999). Inhibition of re-
vides us a good measure of similarity between the aim of the turn is a foraging facilitator in visual searcRsychological
information search and the items. Finally the memory com- Sciencel0, 346-352.

ponent, which is the most important according to the resultdé andauer, T., & Dumais, S. (1997). A Solution to Plato’s
enables the model to remember items previously seen and toProblem: The Latent Semantic Analysis Theory of Acqui-
forgetting them without being too strict, unlike a classica sition, Induction, and Representation of Knowleddrsy-
hibition of return, which is generally used in such a model. chological Reviewl04, 211-240.

In fact it is more realistic, because humans often go back thandauer, T., McNamara, D., Dennis, S., & Kintsch, W.
the previously fixated item, as shown in the relative angles (Eds.). (2007). Handbook of latent semantic analysis.
distribution. Lawrence Erlbaum Associates.

We chose two different scales for visual saliency of stimuli Marchionini, G. (1997). Information seeking in electronic
bimodal for color and linear for size. The color is not linear environments (Cambridge series on Human-Computer in-
the reverse would have been difficult to control on effects of teraction) Cambridge University Press.
saliency. This choice allowed us to see differences in perfo Motter, B. C., & Belky, E. J. (1998). The guidance of eye
mance, and even if the two experiments are not similar, the movements during active visual searctfision Research
best parameters for the model are almost the same, meaning38(12) 1805-1815.
that this model is robust to, at least, such a change. Navalpakkam, V., & Itti, L. (2005). Modeling the influence

In further experiments with text paragraphs instead of sin- 0f task on attentionVision Researgh5, 205-31.
gle words, more similar to Web pages, we will test this modelPirolli, P., & Fu, W. (2003). SNIF-ACT: a model of infor-
again, to see if in a new task the weight of these components mation foraging on the world wide web. In P. Brusilovsky,
are always the same or not. This model, able to explain simple A. Corbett, & F. de Rosis (Eds.)JJser modeling 2003, 9th
stimuli, tends to be more complex, integrating for example a International Conference, UM 20030l. 2702, p. 45-54).

reading model. Johnstown, PA: Springer-Verlag.
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