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Abstract

Henson (1996) has argued that several results including fillin
effects, patterns of protrusions and performance on lists of
alternating similar and dissimilar items (the sandwich effect)
preclude a model of serial recall that relies on chaining
associations between items. However, this conclusion is
at odds with other data showing that serial recall improves
dramatically when study lists approximate language at the
letter and word levels and also is improved when circular lists
that maintain chaining information, but confound positional
information are repeated. In this paper, I demonstrate that the
objections to chaining models can be overcome if one assumes
that associations act as constraints on a whole of list resolution
process, rather than acting in a purely feedforward fashion.
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The problem of serial order has been a focus of memory re-
search since its inception (Nipher, 1878). The touchstone task
for studying serial order memory has been immediate serial
recall. Subjects are presented with a series of letters, digits
or words and are then required to reproduce them in order.
In response to the extensive empirical database that has been
collected a number of computational models have been devel-
oped (Henson, 1998; Burgess & Hitch, 1992; Lewandowsky
& Murdock, 1989; Page & Norris, 1998). These models can
be divided into three main classes: chaining, positional and
ordinal (Henson, 1998).

Chaining models assume that study of a serial list cre-
ates associations between successive items (Ebbinghaus,
1885/1913; Lewandowsky & Murdock, 1989; Murdock,
1995). At test, each item is used to retrieve the subsequent
item (Ebbinghaus, 1885/1913). The simplest form of this
theory would suggest that once an error had occurred perfor-
mance on the remaining items on the list should be serverely
degraded - a pattern which is not usually observed. To ac-
count for this problem, Lewandowsky and Murdock (1989)
proposed a distributed memory model based on the The-
ory of Distributed Associative Memory (TODAM, Murdock,
1982). In TODAM, the result of retrieval is a noisy version of
each item that may be insufficient to enable recall of that item,
but can nonetheless be used as a retrieval cue to allow recall
of the remaining items to continue. More complex chain-
ing models have also been proposed in which compound cues
constructed from multiple preceding items are utilized (Mur-
dock, 1995).

Positional models of serial memory propose that order in-
formation is maintained by a set of position cues (Lee &
Estes, 1977; Burgess & Hitch, 1999; Brown, Preece, &
Hulme, 2000; Henson, 1998). At study, the items from the
list are associated with these position cues. At test, the cues

are reinstated and the items associated with them retrieved.
Models differ in the nature of the cues they propose. Lee and
Estes (1977) proposed separate control nodes for each of the
positions in the list. Burgess and Hitch (1999) and Brown
et al. (2000) employ banks of oscillators of different periods
whose phase is reset by the start of the list. Henson (1998)
proposes that there is a start maker whose activation decreases
as the list progresses and an end marker whose activation in-
creases as the list progresses. The positional cue is the vector
containing the activations of these two markers.

Finally, ordinal models assume that the activation of the
items in the memory decreases as a function of the position
in the list (Page & Norris, 1998). At each stage, a general
retrieval is initiated that recalls the strongest item in mem-
ory. This item is then suppressed to allow retrieval of the next
strongest item etc. Ordinal models do not employ associative
processes at all, relying purely on the gradient of activation to
code order information.

Henson (1998, 1996) has argued for positional models and
against chaining models on several grounds including:

1. When an item is omitted in recall it tends to appear in the
next location - a phenomena called fill-in. So, for instance,
it is more common to see the pattern ACB than the pattern
ACD (Henson, 1996). Simple chaining models, however,
predict that ACD should be more common as C will be
associated with D and should be used as the retrieval cue
for the third item.

2. When an item from a preceding list is erroneously recalled
(a protrusion) it tends to be recalled in the position that it
appeared in the previous list (Conrad, 1960), which would
not be predicted by simple chaining accounts.

3. When lists are constructed from alternating confusable and
nonconfusable items such as DQTMPK (where D, T and P
share a rhyme), performance is degraded for the confusable
items, but not for the nonconfusable items (Henson, Nor-
ris, Page, & Baddeley, 1996). Simple chaining accounts
would predict that an error on one of the confusable items
should compromise performance on the subsequent non-
confusable item.

However, data also exists that suggests that some form of
chaining must underlie serial recall. In particular,

1. When lists are constructed from high probability letter bi-
grams (Baddeley, 1964) or words sequences that approxi-
mate language (Miller & Selfridge, 1951) they are easier
to learn despite the fact that the statistics that are relevant
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to these phenomena are not confined to any particular posi-
tions. Indeed, if we wish to entertain the hypothesis that the
representations that underlie serial recall are fundamentally
the same as those that underlie language, then it is critical
that the representation not be tied to any simple notion of
position, as languages are universally structure dependent
- not position dependent (Chomsky, 1965).

2. When rotated versions of a list are repeated (e.g. ABCDEF,
EFABCD, CDEFAB), retaining chaining information but
confounding position information learning is well above
baseline for permuted lists (Addis & Kahana, 2005), al-
though this advantage can be largely eliminated by inter-
posing a few novel items at the cut point (Hitch, Fastame,
& Flude, 2005).

The apparently conflicting data summarized above present
a puzzle. Do associations from item to item play an impor-
tant role in serial order memory or not? To resolve the im-
passe, we introduce a version of the Syntagmatic Paradig-
matic model (Dennis, 2003, 2005). In the SP model, order
information is retained purely by virtue of chained associa-
tions. Nonetheless, we will see that the model is capable of
accounting phenomena that have been proposed to rule out
chaining models.

The Syntagmatic Paradigmatic Model
The Syntagmatic Paradigmatic Model (SP) is a computational
account of verbal cognition (Dennis, 2005). It proposes that
many linguistic tasks can be conceptualized as the resolu-
tion of syntagmatic and paradigmatic associations that are re-
trieved from long term memory. Syntagmatic associations are
thought to form between items that follow each other in se-
quence (e.g. run fast). Paradigmatic associations are thought
to form between items that may not occur within the same se-
quence, but that fill similar slots in different sequences (e.g.
deep shallow).

Dennis (2005) formalized the notion of syntagmatic and
paradigmatic association in a Bayesian model that has been
used to account for a broad range of phenomena. These in-
clude syntactic structural analysis, long term grammatical de-
pendencies and structure sensitivity, transformations, genera-
tivity and systematicity, garden pathing, the extraction of sta-
tistical lexical knowledge, structural priming in comprehen-
sion, verbal categorization and property judgment tasks, ana-
logical, rule-based and statistical inference and unsupervised
thematic role analysis (Dennis, 2004, 2005).

In this paper, we will focus on the syntagmatic associations
proposed by the SP model, which can be seen as identical
to pairwise chaining associations that extend across all lags.
Unlike classic chaining models, however, the SP model as-
sumes that these associations are used as constraints to guide
a global resolution process rather than operating in a purely
forward fashion.

The idea that serial recall of short lists involves an assem-
bly phase followed by the ballistic output of assembled items

is supported by reaction time data. Thomas, Milner, and
Haberlandt (2003) found that time for first retrieval increased
as a function of list length, but that subsequent recalls occur
at constant intervals despite the fact that accuracy decreases
(see Ferreira (1991) for a similar result in the context of sen-
tence processing). If lists were constructed as they are output,
one item at a time, then one would expect that reaction times
would more closely mirror error rates.

Previous incarnations of the SP model have employed a
probabilistic version of string edit theory as the basic mathe-
matical framework (Dennis, 2005, 2004). In the next section,
however, we develop a simpler version of the model that fa-
cilitates interpretation.

The Formal Model
Let li be the representation of the item in the ith slot. To begin
with we assume that each item is locally coded (zeros in all
components except one which is a one). During study we
form the following syntagmatic matrix:

S = ∑
i

∑
i< j

lilT
j (1)

To determine the probability that a possible output list will
be emitted, we construct the syntagmatic matrix for that list
and then determine to what extent it satisfies the constraints
defined by the study list as represented by S.

E(l) =

∥∥∥∥∥∑
i

∑
i< j

lilT
j −S

∥∥∥∥∥ (2)

where ‖.‖ is the city block metric. The probability that a
given list will be produced at test follows the following dis-
tribution:

P(l) ∝ e−E(l) (3)

Figure 1 gives a simple example. If the study list con-
tained the items ABCDEF then the first matrix would be
its syntagmatic representation. To determine the probabil-
ity of producing ACBDEF, for example, we would construct
the second matrix and note that there are two components
on which it differs from the study matrix, that is, two con-
straints from the study set that are violated. As a conse-
quence, P(ACBDEF) ∝ e−2. Similarly, P(ACDEF) ∝ e−5.
By enumerating all lists with nonnegligible probability, we
can normalize appropriately and avoid the use of monte carlo
simulations.

Some Results with the Unparameterized Model
Primacy, Recency and the Locality Constraint
Perhaps the most fundamental result that a model of serial re-
call must account for is the pattern of errors that occur across
position. Figure 2 shows the performance of the SP model.
Each line shows the probability that items from each of the
input positions will be output in that position. The model
exhibits improved performance for initial items (the primacy
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ABCDEF Matrix

A B C D E F
A 0 1 1 1 1 1
B 0 0 1 1 1 1
C 0 0 0 1 1 1
D 0 0 0 0 1 1
E 0 0 0 0 0 1
F 0 0 0 0 0 0

ACBDEF Matrix

A B C D E F
A 0 1 1 1 1 1
B 0 0 0 1 1 1
C 0 1 0 1 1 1
D 0 0 0 0 1 1
E 0 0 0 0 0 1
F 0 0 0 0 0 0

ACDEF Matrix

A B C D E F
A 0 0 1 1 1 1
B 0 0 0 0 0 0
C 0 0 0 1 1 1
D 0 0 0 0 1 1
E 0 0 0 0 0 1
F 0 0 0 0 0 0

Figure 1: Matrices for an ABCDEF list, a ACBDEF list and
an ACDEF list. The ACDEF list induces greater error than
the ACBDEF list.

effect) and for final items (the recency effect). Furthermore,
when errors occur they tend to involve items from adjacent
positions. This observation has been dubbed the locality con-
straint by Henson (1998).

Repetition Errors

Repetition errors typically occur infrequently. Henson et al.
(1996) report an incidence of 2% and Vousden and Brown
(1998) report 5%. The SP model produces a repetition error
in 10% of lists. Just as important as the rate, however, is the
distribution of errors as a function of lag. Typically, repeti-
tion errors do not occur immediately, but rather are separated
by 3-4 items. Henson et al. (1996) found that the average
lag was 3.4 items. Figure 3 shows the proportion of errors
as a function of lag. The model produced an average lag of
3.446 and shows the bow shaped distribution of errors that is
typically of the human data.

Figure 2: Serial position curve and position errors for the SP
model. For each output position (labelled on the x axis), the
probability of producing an item from a given input position
is plotted.

The pattern of repetition errors is often used as evidence in
favour of a response suppression mechanism. For instance,
Lewandowsky (1999) uses a response suppression parameter
to control the repetition error rate. In the SP model, how-
ever, there is no response suppression. Furthermore, there
is no difference in the probability of recalling otherwise
equivalent lists with repeated items at different lags (at
least for the simple version of the model). For example,
the error associated with the list AABC when ABC was
studied is identical to that associated with ABCA (in both
cases, there are three syntagmatic mismatches and one
paradigmatic mismatch, so that P(l) ∝ e−3). What does
differ, however, is how many potential output lists are
associated with different lags. For example, the most prob-
able lists containing a repetition for a three item study list are:

Lag 1 Lag 2 Lag 3
AABC ABCB BACB
ABBC BABC CABC
ABCC ACBC ABCA

ABAC

Given that these lists are equiprobable, the fact that there
are more list types with lag two means that this will be the
more probable outcome. Response suppression may still oc-
cur, but the above result demonstrates that the pattern of rep-
etition errors does not provide compelling evidence.

Parameterizing the Model
The model presented above provides an interesting first ap-
proximation. However, to capture a number of other effects
we need to introduce some parameters. In particular, we will
define the error term as:
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Figure 3: Repetition error rates as a function of lag.

E = α

∥∥∥∥∥∑
i

∑
i< j

lilT
j e−λ j−Sn

∥∥∥∥∥+β

∥∥∥∥∥∑
i

∑
i< j

lilT
j e−λ j−Sn−1

∥∥∥∥∥
(4)

α parameterizes the strength of the list and can be manip-
ulated to account for changes in exposure time etc. λ indexes
the decrease in strength of encoding from the start of the list
to the end and allows the model to capture the fact that the
primacy effect is often stronger than the recency effect. At
this point, we will remain agnostic as to what actually causes
this difference. The chaining associations are assumed to be
stored in long term memory and to be able to be retrieved
given context cues. Of course, in immediate serial recall lit-
tle retrieval is likely to be necessary as one is still within the
same context. Nonetheless, there will be some retrieval from
similar contexts both from general background language ex-
perience and also as a consequence of previous lists in the
same experiment - in particular the preceding list. For our
current purposes, we are going to be concerned with pro-
trusions from the previous list (n-1) and so we assume that
the error signal takes these associations Sn−1 into account. β

parameterizes the degree to which these associations are in-
volved. Finally, in order to be able to talk about differences
between similar and dissimilar items we must extend our rep-
resentation of the input items to allow for overlap. Each
item vector will consist of a unique component su and a com-
mon component sc. Manipulating these parameters will allow
us to change similarity (i.e. lA = (su,0,0,0,0,0,0,0,0,sc)T ,
lB = (0,su,0,0,0,0,0,0,0,sc)T etc. We are now in a position
to address the arguments which might seem to be the most
problematic for a model that relies on a chaining representa-
tion. All parameters were found using a best first recursive
grid search optimizing a sum of squares error function. Un-
less otherwise noted, the values were α = 3.3, β = 1.05, λ =
0.12, su = 0.12, sc = 2.6.

Fillin Errors
As suggested in the introduction, a critical result for chain-
ing models of serial recall is the rate at which an omission
in sequence is followed by the omitted item as compared to
the next item in sequence. If a recalled list begins with AC,
how often is the next item B versus D? Simple chaining mod-
els would predict that the D should be more common as it is
the successor to C. Page and Norris (1998), however, found
that ACB patterns were more common than ABD patterns. A
higher proportion of fillin errors is a natural consequence of
the SP model. Figure 4 shows the human proportions beside
those for the SP model. The number of ACB errors exceeds
the number of ABD errors.

Figure 4: Fillin error rates from Henson (1996) for list lengths
7, 8, and 9 and from the model.

Figure 1 provides insight into why the model prefers ACB
patterns to ACD patterns. The figure shows the syntagmatic
matrices for a correct six item list (ABCDEF), and two error
lists ACDEF and ACBDEF. The probability of a list is de-
termined by the degree to which these matrices deviate from
the correct matrices. So, in the unparameterized SP model
P(ACBDEF)
P(ACDEF) = e−2

e−5 = 20.09. The ACBDEF is more likely than
ABDEF. Unlike simple chaining models, the SP model is af-
fected by the syntagmatic associations to items following the
omitted item.

Protrusions
Errors that occur as a consequence of protrusions from ear-
lier lists show a systematic positional pattern. Figure 5 shows
data from Conrad (1960) beside the fit of the SP model. At
first this may seem counter intuitive. Recall, however, that
each item vector now contains a common component sc. This
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common component accumulates across items. So, items that
appear at the start of the list have a strong association to the
common component appearing to their right. Items that ap-
pear at the end of list have a strong association to the common
component appearing to their left. Items that appear in the
middle of the list have about equal associations to the com-
mon component appearing to each side. These observations
are true both for items from the current list and for items from
the previous list, so when protrusions occur they will tend to
occur in place.

Figure 5: Patterns of protrusions. Data from Conrad (1960)
on the left and the model fit on the right.

Effects of Inter-item Similarity
When lists are constructed from items that are acoustically
similar (e.g. B, E, T, C, V, D) performance in serial recall
drops (Conrad & Hull, 1964). As outlined above, a more
discriminating result for models of serial recall, however, oc-
curs when lists are constructed from alternating confusable
and nonconfusable items (e.g. X, B, Y, E, K, T). Unsurpris-
ingly, the confusable items are recalled less accurately. What
is problematic for simple chaining models, however, is that
performance on the nonconfusable items does not seem to be
compromised as compared to a pure nonconfusable list (e.g.
X, Y, K, L, Q, H). A simple chaining model would predict
that performance on items immediately following confusable
items should suffer. In fact, Farrell and Lewandowsky (2003)
suggest that when conditions are designed to limit intrusions
and omissions the nonconfusable items actually benefit from
being embedded within confusable items as compared against
pure lists of nonconfusable items.

Figure 6 shows data from Baddeley (1968) beside the per-
formance of the model with the following parameters α = 4.7,
λ = 0.2, dissimilar items - su = 1.0, sc = 0.0, similar items -
su = 0.3, sc = 1.2. The model demonstrates reduced perfor-
mance for lists of confusable items and the saw pattern for
the alternating lists. Importantly, performance on the non-
confusable items in the alternating lists is equivalent to that

in pure nonconfusable lists. Furthermore, the model can also
account for data in which performance on the nonconfusable
items in confusable lists is superior than in pure nonconfus-
able lists as Farrell and Lewandowsky (2003) suggest is the
case, when intrusions and omissions are minimized (α = 5.5,
λ = 0.33, similar items - su = 0.39, sc = 1.25). The later re-
sult is possible because the common component of the similar
items accumulates and allows the dissimilar items to be better
localized.

Figure 6: Probability correct on lists containing confusable
items as a function of position in the human data (left) and the
SP model (right). The four list types are pure nonconfusable,
pure confusable, and alternating confusable - nonconfusable
lists in which either the odd or even items were confusable.
Data from Baddeley (1968).

Conclusions
The SP model takes a fundamentally different perspective on
the serial recall task from existing models. Rather than focus
on the item to item recall process, the model looks at the re-
construction of the list as a whole (c.f. Hitch et al., 2005;
Botvinick & Plaut, 2006), as is suggested by observed pat-
tern of reaction times (Thomas et al., 2003). The probability
of producing a particular list is determined by the number of
syntagmatic constraints established in the study episode that
must be violated. The success of the model suggests that this
shift in perspective may add important insight into the gov-
erning principles of serial recall.

In particular, fillin effects (Henson, 1996), patterns of pro-
trusions (Conrad, 1960) and the sandwich effect (Henson et
al., 1996) can all be accommodated within a model that uses
chaining representations. Furthermore, because the model
is based on chaining associations it is straightforward for it
to account for approximation to language (Baddeley, 1964;
Miller & Selfridge, 1951) and circular list Hebb effects (Ad-
dis & Kahana, 2005), by assuming that background associ-
ations like those responsible for protrusions are becoming
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stronger as a function of exposure to language at the letter
and word levels both pre-experimentally and during the ex-
periment. In this way, then the model resolves the apparent
conflict between these different datasets.

There are, of course, many other serial recall phenomena
that have yet to be considered. However, the current results
suggest that as a representational substrate chaining models
remain a viable alternative.
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