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Abstract

What is the nature of the representations acquired in
implicit statistical learning? Recent results in the field of
language learning have shown that adults and infants are
able to find the words of an artificial language when
exposed to a continuous auditory sequence consisting in a
random ordering of these words. Such performance can
only be based on processing the transitional probabilities
between sequence elements. Two different kinds of
mechanisms may account for these data: Participants
either parse the sequence into smaller chunks
corresponding to the words of the artificial language, or
they become progressively sensitive to the actual values
of the transitional probabilities. The two accounts are
difficult to differentiate because they tend to make similar
predictions in similar experimental settings. In this study,
we present two experiments aimed at disentangling these
two theories. In these experiments, participants had to
learn two sets of pseudo-linguistic regularities (L1 and
L2) presented in the context of a Serial Reaction Time
(SRT) task. L1 and L2 were either unrelated, or the intra-
words transitions of L1 became the inter-words transitions
of L2. The two models make opposite predictions in these
two situations. Our results indicate that the nature of the
representations depends on the learning conditions. When
cues are presented to facilitate parsing of the sequence,
participants learned the words of the artificial language.
However, when no cues were provided, their performance
was strongly influenced by the actual values of the
transitional probabilities.
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Introduction

A central issue in implicit learning research concerns the
nature of the acquired knowledge. Does it reflect the
abstract rules on which the training material is based or
the surface features of the material, such as the
frequencies of individual elements or chunks? According
to some theorists, cognition can be viewed as rule-based
symbol manipulation (Pinker & Price, 1988). From this
perspective, learning would consist in the formation of
new abstract, algebra-like rules. According to another
theoretical position, information processing is essentially
based on associative processes. In this view, learning
would not depend on rule acquisition but on mechanisms
capable of extracting the statistical regularities present in
the environment (e.g., Elman, 1990).

Over the last few years, a series of experimental
results have provided new insights into the question of
the nature of the representations involved in implicit
learning. Research on language acquisition has shown

that 8-months old infants are sensitive to statistical
information (Jusczyk et al., 1994; Saffran, Aslin, &
Newport, 1996; Saffran, Johnson, Aslin, & Newport,
1999) and capable of learning distributional
relationships between linguistic units (Gomez & Gerken,
1999; Jusczyk, Houston, & Newsome, 1999; Saffran,
Aslin, & Newport, 1996; Perruchet & Desaulty, 2008)
presented in the continuous speech stream formed by an
artificial language.

Other studies have indicated that adults are also
capable of extracting statistical regularities, and that
these mechanisms are not restricted to linguistic material
but also apply to auditory non-linguistic stimuli (Saffran,
Johnson, Aslin, & Newport, 1999) or to visual stimuli
(Fiser & Aslin, 2002).

In the same way, implicit sequence learning studies
have indicated that human learners are good at detecting
the statistical regularities present in a serial reaction time
(SRT) task. Altogether, these data suggest that statistical
learning depends on associative learning mechanisms
rather than on the existence of a “rule abstractor
device” (Perruchet, Tyler, Galland, & Peereman, 2004).
However, different models have been proposed to
account for the data. According to the Simple Recurrent
Network model (Elman, 1990; Cleeremans, &
McClelland, 1991; Cleeremans, 1993), learning is based
on the development of associations between the
temporal context in which the successive elements occur
and possible successors. Over training, the network
learns to provide the best prediction of the next target in
a given context, based on the transitional probabilities
between the different sequence elements. On the other
hand, chunking models, such as PARSER, consider
learning as an attention-based parsing process that
results in the formation of distinctive, unitary, rigid
representations or chunks (Perruchet & Vinter, 1998).
Thus, both models are based on processing statistical
regularities, but only PARSER leads to the formation of
“word-like” units.

Although the representations assumed by these two
classes of models are quite different, contrasting their
assumptions is made difficult by the fact that they tend
to make similar experimental predictions. For instance,
in a typical artificial language learning experiment,
participants are exposed to a continuous stream of
plurisyllabic non-words (e.g., BATUBI, DUTABA...)
presented in a random order, such that transitional
probabilities between syllables are stronger intra-word
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than between words. As the representations that emerge
in either model reflect the strength of the associations
between elements, both predict faster processing for
intra-words than for inter-words transitions as well as
successful recognition of the artificial language words.

In order to contrast the predictions of these two
models, we used a Serial Reaction Time (SRT) task in
which participants had to learn two different artificial
languages presented successively. In one (control)
condition, the two languages were not related to each
other, but in the other (experimental) condition, the
intra-words transitions of the first language (L1) became
inter-words transitions in the second language (L2). Two
different hypotheses can be formulated. On the one
hand, if learning depends on chunk formation, the
probability that one element will follow another is 100%
within-words and 0% between-words. In order to learn
L2 words, participants must first break the chunks
formed during training on L1 and then form the new L2
chunks. This task should be easier in the control than in
the experimental group since, in the former case, L1
transitions are no longer presented during L2. L1 chunks
will then progressively decay and be replaced by L2
chunks. By contrast, in the experimental condition, L1
transitions are still presented, although less frequently,
between L2 words presentation. As a result, L1 chunks
continue to be reinforced during L2 presentation. It will
then take more processing time in order to replace L1
chunks by L2 chunks in the experimental condition. One
might therefore expect better recognition of L2 “words”
in the control than in the experimental condition

On the other hand, if learning strictly reflects
transitional probabilities, the probability that one
element will follow another is 100% within-words and
33% between-words —since there are 4 different words
and no repetitions. Thus, when switching from L1 to L2,
the SRN must either develop new associations between
elements (in the control condition) or merely “tune” the
strength of the association between sequence elements
(in the experimental condition). One might therefore
expect better recognition of L2 “words” in the
experimental than in the control condition'.

Experiment 1

Participants

Twelve undergraduate students of the Université Libre
de Bruxelles took part in the experiment in exchange for
course credit. All reported normal or corrected-to-normal
vision.

Apparatus and display

The experiment was run on a Mac mini computer
equipped with a tactile monitor. The display consisted of
twelve invisible dots arranged in a square on the
computer’s screen. Each dot represented a possible

! This methodology is based on an original idea by Ronald
Peereman and Pierre Perruchet.

position of the visual moving target.

The stimulus was a small red circle 0.65 cm in
diameter that appeared on a gray background, centered
0.10 cm below one of the twelve invisible dots separated
by 2.20 cm.

Procedure

The experiment consisted of 9 training blocks during
which participants were exposed to two different
language-like sequences in a serial reaction time task. In
the three first training blocks, they were exposed to a
first language (L1) composed by four two-location
“words” or sequences. Each word was presented 200
times, for a total of 1600 trials. In the six subsequent
blocks, participants were exposed to a second language
(L2) composed by four three-location words presented
250 times each, for a total of 3000 trials. On each trial, a
stimulus appeared at one of the possible twelve
positions. Participants were instructed to press the
location of the target as fast as possible with the ad hoc
pen. The target was removed as soon as had been
pressed, and the next stimulus appeared either after a
250 msec response-stimulus interval (RSI) for intra-
words transitions or a 750 msec RSI for inter-word
transitions. Participants were not informed that the
sequence of locations corresponded to the succession, in
a random order, of the four “words” of the artificial
languages. They were allowed to take short rest breaks
between any two blocks.

Participants were randomly assigned to two
conditions. In the control condition L1 and L2 were
unrelated and in the experimental condition the intra-
word transitions of L1 became inter-words transitions in
L2. Thus, whereas L1 differed between control and
experimental conditions, L2 was the same in both
conditions.

All participants were subsequently asked to perform a
recognition task in which they were required to decide if
they had been exposed to each sequence during the
training phase or not. Three types of sequences were
presented: 8 “words” from L2 (each sequence presented
twice), 4 “part-words” (sequences spanning L2 word
boundaries) and 4 “non-words”, which corresponded to
visual sequences which had never been presented during
L2 training.

Stimulus material

The display consisted of twelve invisible dots arranged
in a square on the computer’s screen. Each dot
represented a possible position to the visual moving
target.

The stimulus set consisted of sequences of word-like
units in which the visual target could take 12 possible
positions (numbered to 1 to 12). In the control condition,
L1 consisted in four two-location words: 3-1, 6-4, 9-7
and 12-10. In the experimental condition, the words
were: 3-4, 6-7, 9-10 and 12-1. In both conditions, L2

2802



—O—Element 1 (Unpredictable)
—#-Element 2 (Predictable)
—A—Element 3 (Predictable)

Reaction time (msec)

600
550 \\O

%
500
450
400
350

300

250

Blockl Block2 Block3 Block4 Block5 Block6é Block7 Block8 Block9

L1 L2

Mean percentage of correct responses

OControl ®Experimental

120% q
110%
100% 1
90% A
80%
70% A

60% 1

50%

Non-words Part-words ‘Words

Figure 1. The figure shows mean RTs obtained for unpredictable (element 1) and predictable elements (elements 2
and 3) during L1 and L2 blocks. RTs are averaged over experimental and control conditions (left panel). Mean
percentage of correct responses during the recognition task for words, non-words and part-words in the control and
experimental conditions are displayed on the right panel. 50% is chance level.

consisted in four three-location words: 1-2-3, 4-5-6,
7-8-9 and 10-11-12. Stimuli were presented in a pseudo-
random manner: A word was never followed by itself.

A different mapping between the 12 sequence
elements and the 12 screen locations was used for each
participant.

Results

RT task

To assess whether participants were able to learn L1 and
L2, we examined separately mean reaction times (RTs)
for the first three blocks (L1) and the next six blocks
(L2) in the control and experimental conditions. Recall
that the stimulus material was such that the first element
of each word-like unit was unpredictable, whereas the
second (and third in L2) were completely predictable.
Figure 1 (left panel) shows the average reaction times
obtained over the entire experiment, plotted separately
for each element of the word-like sequences. Given that
participants performed similarly in the control and
experimental conditions (F(1,10)=2.113, p>.1 for L1 and
F(1,10)=.481, p>.5 for L2), we pooled them together.
The figure makes it clear that participants’ responses are
strongly influenced by the serial position within each
sequence: RTs decreased more and were faster for
predictable elements than for unpredictable elements.
Two two-way analyses of variance (ANOVA) conducted
on mean reaction times confirmed these impressions.
First we examined the first three blocks (L1) by using an
ANOVA with block [3 levels] and element [2 levels —
predictable and unpredictable] as repeated measures
factors. This analysis revealed a significant main effect
of Block, F(2,10)=56.007, p<.0001, and FElement,
F(1,10)=15.431, p<.005. The interaction also reached
significance, F(2,10) = 6.630, p< .0l. Second we
examined the next six blocks (L2) by using an ANOVA
with Block [6 levels] and Element [3 levels] as repeated
measures factors. A significant main effect of Block was

found, F(5,50)= 15.113, p<.0001. The analysis also
revealed a significant main effect of Element, F(2,20)=
25.141, p< .0001. The interaction also reached
significance, F(10,100) = 6.220, p<.0001.

Recognition task

Figure 1 (right panel) shows recognition performance for
the three types of test sequences plotted separately for
control and experimental conditions. The figure
indicates that the participants recognized L2 words, non-
words and part-words in the two conditions. These
impressions are confirmed by a series of one-tailed t-
tests (see Table 1).

Table 1: ¢ values comparing recognition scores to
chance level in control and experimental conditions
for the three types of test sequences. * indicates that
the test reached significance (one-tailed, p <.05).

Words Non-words  Part-words

Control 5.82% 2.91%* 3.79%

Experimental 2.89* 2.44* 2.15%

More importantly, performance was reliably better for
L2 words in the control condition as compared to the
experimental condition, one-tailed t(47) = 1.70, p < .05.
As clearly illustrated on Figure 1 (right panel), all the
other comparisons were not significant.

Discussion

SRT results indicate that participants learned the first
and second “languages” in both the experimental and
control conditions. The recognition results showed that
participants were able to discriminate the word-like units
of the second language. Importantly, performance was
improved in the control condition as compared to the
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Figure 2. The figure shows mean RTs obtained for unpredictable (element 1) and predictable elements (elements 2
and 3) during L1 and L2 blocks. RTs are average over experimental and control conditions (left panel). Mean
percentage of correct responses during the recognition task for words, non-words and part-words in the control and
experimental conditions are displayed on the right panel. 50% is chance level.

experimental condition, i.e. when the two language-like
sequences did not share any transitions between
elements.

Taken together, these results are in line with the notion
that participants learn the word-like sequences based on
parsing mechanisms.

Recall that, in the experimental condition, L1
transitions (e.g., 3-4) were still presented between words
during L2 presentation (e.g., between 1-2-3 and 4-5-6).
As a result, L1 chunks continue to be reinforced during
L2 presentation. As a result, a chunking model such as
PARSER would predict better L2 recognition in the
control than in the experimental condition. The
observation that non-words and part-words rejection did
not differ between these two conditions also fits with the
prediction of a chunking model. The representational
units that result from learning in such a model do not
reflect the actual transitional probabilities present in the
training sequence. The probability to erroneously
consider a test sequence as a word of L2 should not be
higher for part-word than for non-words even though the
transitional probabilities between elements are higher in
the former cases.

In Experiment 1, however, word-like sequences were
clearly identified by the use of a larger RSI for inter-
words than for intra-word transitions. Therefore, it
remains possible that our results depend on this
particular presentation mode. To address this possibility,
we conducted a second experiment in which the RSI was
set to a constant value.

Experiment 2
Participants

Ten undergraduate students of the Université Libre de
Bruxelles took part in the experiment in exchange for
course credit. All reported normal or corrected-to-normal
vision.

Apparatus and Display

The apparatus and display were identical to those used in
Experiment 1.

Procedure

The procedure was identical to the one used in
Experiment 1 except that the RSI was fixed at 250 msec
for intra-word transitions and inter-word transitions.

Stimulus material

The stimuli were identical to those used in Experiment
1.

Results

Reaction Time
Figure 2 (left panel) shows the average reaction times
obtained over the entire experiment, plotted separately
for each element of the word-like sequences. As in
Experiment 1, we pooled control and experimental
conditions together since there was no difference in
performance between both conditions (F(1,8)= 1.114, p
>.1 for L1 and F(1,8)= .042, p >.5 for L2). The figure
clearly indicates that RTs are strongly influenced by the
position: RTs decreased more and were faster for
predictable elements than for unpredictable elements.
Two two-way ANOVA conducted on mean RTs
confirmed these impressions. First we examined the first
three blocks (L1) by using an ANOVA with Block [3
levels] and Element [2 levels — predictable and
unpredictable] as repeated measures factors. This
analysis revealed a significant main effect of Block,
F(2,16)=37.227, p<.0001 and of Element, F(1, 8) =
9.720, p<.05. The interaction also reached significance,
F(2, 16) = 7.337, p<.005. Second we examined the next
six blocks (L2) by using an ANOVA with Block [6
levels] and Element [3 levels] as repeated measures
factors. We found a significant main effect of Block,
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F(5, 40) = 9.657, p<.005. The analysis also revealed a
main effect of Element, F(2, 16) = 8.404, p<.005. The
interaction also reached significance, F(10, 80) = 6.914,
p<.0001.

Recognition task

Correct recognitions are plotted in Figure 2 (right panel).
As indicated in Table 2, participants were able to
correctly reject non-words in both conditions. They did
not, however, correctly reject part-words. Concerning L2
words, experimental participants recognize them above
chance but this was not the case in control participants.

Table 2: ¢t values comparing recognition scores to
chance level in control and experimental conditions
for the three types of test sequences. * indicates that
the test reached significance (one-tailed, p <.05).

Words Non-words  Part-words

Control 1,24 3.21%* 1,63

Experimental 2.36* 3.17* 0,41

Overall, performance did not significantly differ
between control and experimental conditions (all ps >.
05). Therefore, we pooled control and experimental
conditions together and compared performance for non-
words, part-words and L2 words. This analysis revealed
a significant difference between non-words and part-
words, paired t(78)= 1.574, p <.05: non-words rejection
was better than part-words rejection (see Figure 2, right
panel). The other comparisons failed to reach
significance.

Discussion

In Experiment 2, L1 and L2 were presented using a
constant RSI. However, relying exclusively on the only
available cue, i.e. the statistical regularities, participants
learned the first and second languages. Indeed,
throughout training, mean RTs decreased more for
predictable than for unpredictable elements. Moreover,
participants recognized L2 words, at least in the
experimental condition and correctly rejected non-
words. Interestingly, in both experimental and control
conditions, participants performed better in rejecting
non-words than part-words, which were not correctly
rejected.

According to PARSER, performance should be the
same for non-words and part-words. If participants
formed L2 chunks during training, it should be as easy to
reject non-words than part-words as these sequences do
not match the units formed during training. On the
contrary, the SRN predicts that participants should
recognize L2 words, which correspond to high
transitional probabilities and reject non-words, which
correspond to low transitional probabilities. However, as
part-words involved high transitional probabilities, the
SRN may have more difficulties in rejecting them.
Experiments 2 results fit nicely with the SRN

predictions, suggesting that participants are indeed
sensitive to the actual values of the transitional
probabilities between sequence elements. When
considering Experiments 1 and 2 together, our results
suggest that the values of transitional probabilities
influence performance when no temporal cues guide the
chunking process.

General Discussion

In this paper, we aimed at clarifying the nature of the
representations involved in implicit and statistical
learning. The question is to assess whether participants
form chunks of the training material or merely develop a
sensitivity to the transitional probabilities present in the
training sequence. We showed that, in the context of a
visuo-motor reaction time task, participants learn the
statistical regularities present in a random succession of
word-like sequences of visual targets. They are able to
learn two different languages (L1 and L2) presented
successively. Moreover, they are also able to recognize
the word-like units of L2 in a subsequent recognition
task. When word-like units are clearly separated from
each other, recognition performance is improved in a
control condition in which L1 and L2 do not share any
pairwise transitions between language elements. These
results are in line with the notion that word-like, rigid,
disjunctive units are developed during learning.
However, chunk formation seems not to be automatic.
When the word-like units are not clearly marked — i.e.
when they are presented in a continuous stream without
any temporal cue to guide the chunking process —
recognition performance is more influenced by the
actual values of the transitional probabilities between
sequence elements. This is reflected in Experiment 2 by
better rejection of non-words than part-words in the
recognition task.

Another potential explanation for this result could be
that participants did form chunks in Experiment 2 but
that they did not correspond to the actual L2 words. It is
possible that participants indeed parsed the continuous
sequence of visual stimuli into smaller chunks but that
these chunks did not respect the actual boundaries
between words. They may have focused, for instance, on
particularly salient transitions (for example between
elements that were spatially close to each other or
between alternating locations) and end up with larger,
smaller or different chunks than those corresponding to
the words of the artificial language. In other words, if
chunking is not directly induced by the presentation
mode, attentional factors may also influence chunk
formation. As a consequence, the actual chunks may
differ from one participant to another and may not
strictly reflect the transitional probabilities between the
different sequence elements. This may, of course,
influence recognition performance.

Both the SRN and PARSER implement elementary
associative learning mechanisms such that, in both cases,
the system tends to associate elements that occur often
in succession. As a consequence, even if the chunks
resulting from training do not correspond to the actual
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words of the artificial language, there is a good chance
that they involve highly frequent transitions.
Participants may therefore tend to erroneously consider
these part-words as words of the artificial language
because they involve such high-frequency transitions.

In summary, this study shows that when units are
marked, the chunking models provide reliable
assumptions concerning the nature of the representations
developed during learning. However, when no cues are
provided in order to guide the chunking processes,
performance reflects sensitivity to the strength of the
transitional probabilities and seems also to depend on
attentional factors. Further modeling studies are needed
in order to test the ability of the SRN and PARSER
models to account for the experimental results described
in our study.
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