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Abstract
What is the nature of the representations acquired in 
implicit statistical  learning?  Recent results in the field  of 
language learning have shown that adults and infants are 
able to find the words of an artificial  language when 
exposed to  a continuous auditory  sequence consisting in a 
random ordering of these words. Such performance can 
only  be based on processing the transitional probabilities 
between sequence elements. Two different kinds of 
mechanisms may account for these data: Participants 
either parse the sequence into  smaller chunks 
corresponding to the words of the artificial language, or 
they become progressively  sensitive to the actual  values 
of the transitional probabilities. The two accounts are 
difficult to differentiate because they tend to make similar 
predictions in similar experimental settings. In this study, 
we present two experiments  aimed at disentangling these 
two theories. In these experiments, participants had to 
learn two sets of pseudo-linguistic regularities (L1 and 
L2) presented in the context of a Serial Reaction Time 
(SRT) task. L1 and L2 were either unrelated, or the intra-
words transitions of L1  became the inter-words transitions 
of L2. The two models make opposite predictions in these 
two situations. Our results indicate that the nature of the 
representations depends on the learning conditions. When 
cues are presented to facilitate parsing of the sequence, 
participants learned the words of the artificial language. 
However, when no cues were provided, their performance 
was strongly influenced by the actual values of the 
transitional probabilities.
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Introduction
A central issue in implicit learning research concerns the 
nature of the acquired knowledge. Does it reflect the 
abstract rules on which the training material is based or 
the surface features of the material,  such as the 
frequencies of individual elements or chunks? According 
to some theorists,  cognition can be viewed as rule-based 
symbol manipulation (Pinker & Price, 1988). From this 
perspective,  learning would consist in the formation of 
new abstract,  algebra-like rules. According to another 
theoretical position, information processing is essentially 
based on associative processes. In this view, learning 
would not depend on rule acquisition but on mechanisms 
capable of extracting the statistical regularities present in 
the environment (e.g., Elman, 1990).

Over the last few years, a series of experimental 
results have provided new insights into the question of 
the nature of the representations involved in implicit 
learning. Research on language acquisition has shown 

that 8-months old infants are sensitive to statistical 
information (Jusczyk et al., 1994; Saffran, Aslin,  & 
Newport, 1996; Saffran, Johnson, Aslin, & Newport, 
1999) and capable of learning distributional 
relationships between linguistic units (Gomez & Gerken, 
1999; Jusczyk,  Houston, & Newsome,  1999; Saffran, 
Aslin, & Newport, 1996; Perruchet & Desaulty, 2008) 
presented in the continuous speech stream formed by an 
artificial language.

Other studies have indicated that adults are also 
capable of extracting statistical regularities, and that 
these mechanisms are not restricted to linguistic material 
but also apply to auditory non-linguistic stimuli (Saffran, 
Johnson, Aslin,  & Newport, 1999) or to visual stimuli 
(Fiser & Aslin, 2002).

In the same way, implicit sequence learning studies 
have indicated that human learners are good at detecting 
the statistical regularities present in a serial reaction time 
(SRT) task.  Altogether, these data suggest that statistical 
learning depends on associative learning mechanisms 
rather than on the existence of a “rule abstractor 
device” (Perruchet, Tyler, Galland, & Peereman, 2004). 
However, different models have been proposed to 
account for the data. According to the Simple Recurrent 
Network model (Elman, 1990; Cleeremans, & 
McClelland, 1991; Cleeremans, 1993), learning is based 
on the development of associations between the 
temporal context in which the successive elements occur 
and possible successors. Over training,  the network 
learns to provide the best prediction of the next target in 
a given context, based on the transitional probabilities 
between the different sequence elements. On the other 
hand, chunking models, such as PARSER, consider 
learning as an attention-based parsing process that 
results in the formation of distinctive, unitary, rigid 
representations or chunks (Perruchet & Vinter,  1998). 
Thus, both models are based on processing statistical 
regularities, but only PARSER leads to the formation of 
“word-like” units.

Although the representations assumed by these two 
classes of models are quite different, contrasting their 
assumptions is made difficult by the fact that they tend 
to make similar experimental predictions. For instance, 
in a typical artificial language learning experiment, 
participants are exposed to a continuous stream of 
plurisyllabic non-words (e.g., BATUBI, DUTABA…) 
presented in a random order, such that transitional 
probabilities between syllables are stronger intra-word 
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than between words. As the representations that emerge 
in either model reflect the strength of the associations 
between elements, both predict faster processing for 
intra-words than for inter-words transitions as well as 
successful recognition of the artificial language words.

In order to contrast the predictions of these two 
models, we used a Serial Reaction Time (SRT) task in 
which participants had to learn two different artificial 
languages presented successively. In one (control) 
condition, the two languages were not related to each 
other, but in the other (experimental) condition, the 
intra-words transitions of the first language (L1) became 
inter-words transitions in the second language (L2). Two 
different hypotheses can be formulated.  On the one 
hand, if learning depends on chunk formation, the 
probability that one element will follow another is 100% 
within-words and 0% between-words. In order to learn 
L2 words, participants must first break the chunks 
formed during training on L1 and then form the new L2 
chunks. This task should be easier in the control than in 
the experimental group since, in the former case, L1 
transitions are no longer presented during L2. L1 chunks 
will then progressively decay and be replaced by L2 
chunks. By contrast, in the experimental condition, L1 
transitions are still presented, although less frequently, 
between L2 words presentation. As a result, L1 chunks 
continue to be reinforced during L2 presentation. It will 
then take more processing time in order to replace L1 
chunks by L2 chunks in the experimental condition. One 
might therefore expect better recognition of L2 “words” 
in the control than in the experimental condition

On the other hand, if learning strictly reflects 
transitional probabilities, the probability that one 
element will follow another is 100% within-words and 
33% between-words —since there are 4 different words 
and no repetitions. Thus, when switching from L1 to L2, 
the SRN must either develop new associations between 
elements (in the control condition) or merely “tune” the 
strength of the association between sequence elements 
(in the experimental condition). One might therefore 
expect better recognition of L2 “words” in the 
experimental than in the control condition1.

Experiment 1

Participants
Twelve undergraduate students of the Université Libre 
de Bruxelles took part in the experiment in exchange for 
course credit. All reported normal or corrected-to-normal 
vision.

Apparatus and display
The experiment was run on a Mac mini computer 
equipped with a tactile monitor. The display consisted of 
twelve invisible dots arranged in a square on the 
computer’s screen. Each dot represented a possible 

position of the visual moving target.
The stimulus was a small red circle 0.65 cm in 

diameter that appeared on a gray background,  centered 
0.10 cm below one of the twelve invisible dots separated 
by 2.20 cm.

Procedure
The experiment consisted of 9 training blocks during 
which participants were exposed to two different 
language-like sequences in a serial reaction time task. In 
the three first training blocks, they were exposed to a 
first language (L1) composed by four two-location 
“words” or sequences. Each word was presented 200 
times, for a total of 1600 trials. In the six subsequent 
blocks, participants were exposed to a second language 
(L2) composed by four three-location words presented 
250 times each, for a total of 3000 trials. On each trial, a 
stimulus appeared at one of the possible twelve 
positions. Participants were instructed to press the 
location of the target as fast as possible with the ad hoc 
pen. The target was removed as soon as had been 
pressed, and the next stimulus appeared either after a 
250 msec response-stimulus interval (RSI) for intra-
words transitions or a 750 msec RSI for inter-word 
transitions. Participants were not informed that the 
sequence of locations corresponded to the succession,  in 
a random order, of the four “words” of the artificial 
languages. They were allowed to take short rest breaks 
between any two blocks. 

Participants were randomly assigned to two 
conditions. In the control condition L1 and L2 were 
unrelated and in the experimental condition the intra-
word transitions of L1 became inter-words transitions in 
L2. Thus, whereas L1 differed between control and 
experimental conditions, L2 was the same in both 
conditions.

All participants were subsequently asked to perform a 
recognition task in which they were required to decide if 
they had been exposed to each sequence during the 
training phase or not.  Three types of sequences were 
presented: 8 “words” from L2 (each sequence presented 
twice), 4 “part-words” (sequences spanning L2 word 
boundaries) and 4 “non-words”, which corresponded to 
visual sequences which had never been presented during 
L2 training.

Stimulus material
The display consisted of twelve invisible dots arranged 
in a square on the computer’s screen. Each dot 
represented a possible position to the visual moving 
target. 

The stimulus set consisted of sequences of word-like 
units in which the visual target could take 12 possible 
positions (numbered to 1 to 12).  In the control condition, 
L1 consisted in four two-location words: 3-1, 6-4, 9-7 
and 12-10. In the experimental condition,  the words 
were: 3-4, 6-7, 9-10 and 12-1. In both conditions, L2  

1 This methodology is based on an original idea by Ronald 
Peereman and Pierre Perruchet. 
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Figure 1. The figure shows mean RTs obtained for unpredictable (element 1) and predictable elements (elements 2 
and 3) during L1 and L2 blocks. RTs are averaged over experimental and control conditions (left panel). Mean 
percentage of correct responses during the recognition task for words, non-words and part-words in the control and 
experimental conditions are displayed on the right panel. 50% is chance level.

consisted in four three-location words: 1-2-3, 4-5-6,
7-8-9 and 10-11-12. Stimuli were presented in a pseudo-
random manner: A word was never followed by itself.

A different mapping between the 12 sequence 
elements and the 12 screen locations was used for each 
participant.

Results

RT task
To assess whether participants were able to learn L1 and 
L2, we examined separately mean reaction times (RTs) 
for the first three blocks (L1) and the next six blocks 
(L2) in the control and experimental conditions. Recall 
that the stimulus material was such that the first element 
of each word-like unit was unpredictable, whereas the 
second (and third in L2) were completely predictable. 
Figure 1 (left panel) shows the average reaction times 
obtained over the entire experiment, plotted separately 
for each element of the word-like sequences.  Given that 
participants performed similarly in the control and 
experimental conditions (F(1,10)=2.113, p>.1 for L1 and 
F(1,10)=.481, p>.5 for L2), we pooled them together. 
The figure makes it clear that participants’ responses are 
strongly influenced by the serial position within each 
sequence: RTs decreased more and were faster for 
predictable elements than for unpredictable elements. 
Two two-way analyses of variance (ANOVA) conducted 
on mean reaction times confirmed these impressions. 
First we examined the first three blocks (L1) by using an 
ANOVA with block [3 levels] and element [2 levels – 
predictable and unpredictable] as repeated measures 
factors. This analysis revealed a significant main effect 
of Block, F(2,10)=56.007, p<.0001, and Element, 
F(1,10)=15.431, p<.005. The interaction also reached 
significance, F(2,10) = 6.630, p< .01. Second we 
examined the next six blocks (L2) by using an ANOVA 
with Block [6 levels] and Element [3 levels] as repeated 
measures factors. A significant main effect of Block was 

found, F(5,50)= 15.113, p<.0001. The analysis also 
revealed a significant main effect of Element, F(2,20)= 
25.141, p< .0001. The interaction also reached 
significance, F(10,100) = 6.220, p<.0001. 

Recognition task
Figure 1 (right panel) shows recognition performance for 
the three types of test sequences plotted separately for 
control and experimental conditions. The figure 
indicates that the participants recognized L2 words, non-
words and part-words in the two conditions. These 
impressions are confirmed by a series of one-tailed t-
tests (see Table 1).

Table 1: t values comparing recognition scores to 
chance level in control and experimental conditions 
for the three types of test sequences. * indicates that 
the test reached significance (one-tailed, p < .05).

Words Non-words Part-words

Control 5.82* 2.91* 3.79*

Experimental 2.89* 2.44* 2.15*

More importantly, performance was reliably better for 
L2 words in the control condition as compared to the 
experimental condition, one-tailed t(47) = 1.70, p < .05. 
As clearly illustrated on Figure 1 (right panel), all the 
other comparisons were not significant.

Discussion
SRT  results indicate that participants learned the first 
and second “languages” in both the experimental and 
control conditions. The recognition results showed that 
participants were able to discriminate the word-like units 
of the second language. Importantly, performance was 
improved in the control condition as compared to the 
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Figure 2. The figure shows mean RTs obtained for unpredictable (element 1) and predictable elements (elements 2 
and 3) during L1 and L2 blocks. RTs are average over experimental and control conditions (left panel). Mean 
percentage of correct responses during the recognition task for words, non-words and part-words in the control and 
experimental conditions are displayed on the right panel. 50% is chance level.

experimental condition, i.e. when the two language-like 
sequences did not share any transitions between 
elements.

Taken together, these results are in line with the notion 
that participants learn the word-like sequences based on 
parsing mechanisms.

Recall that, in the experimental condition, L1 
transitions (e.g., 3-4) were still presented between words 
during L2 presentation (e.g., between 1-2-3 and 4-5-6). 
As a result, L1 chunks continue to be reinforced during 
L2 presentation. As a result, a chunking model such as 
PARSER would predict better L2 recognition in the 
control than in the experimental condition. The 
observation that non-words and part-words rejection did 
not differ between these two conditions also fits with the 
prediction of a chunking model.  The representational 
units that result from learning in such a model do not 
reflect the actual transitional probabilities present in the 
training sequence. The probability to erroneously 
consider a test sequence as a word of L2 should not be 
higher for part-word than for non-words even though the 
transitional probabilities between elements are higher in 
the former cases. 

In Experiment 1, however, word-like sequences were 
clearly identified by the use of a larger RSI for inter-
words than for intra-word transitions. Therefore, it 
remains possible that our results depend on this 
particular presentation mode. To address this possibility, 
we conducted a second experiment in which the RSI was 
set to a constant value. 

Experiment 2
Participants
Ten undergraduate students of the Université Libre de 
Bruxelles took part in the experiment in exchange for 
course credit. All reported normal or corrected-to-normal 
vision.

Apparatus and Display
The apparatus and display were identical to those used in 
Experiment 1. 

Procedure
The procedure was identical to the one used in 
Experiment 1 except that the RSI was fixed at 250 msec 
for intra-word transitions and inter-word transitions. 

Stimulus material
The stimuli were identical to those used in Experiment 
1.

Results
Reaction Time
Figure 2 (left panel) shows the average reaction times 
obtained over the entire experiment, plotted separately 
for each element of the word-like sequences. As in 
Experiment 1, we pooled control and experimental 
conditions together since there was no difference in 
performance between both conditions (F(1,8)= 1.114,  p 
>.1 for L1 and F(1,8)= .042, p >.5 for L2). The figure 
clearly indicates that RTs are strongly influenced by the 
position: RTs decreased more and were faster for 
predictable elements than for unpredictable elements. 

Two two-way ANOVA conducted on mean RTs 
confirmed these impressions. First we examined the first 
three blocks (L1) by using an ANOVA with Block [3 
levels] and Element [2 levels – predictable and 
unpredictable] as repeated measures factors.  This 
analysis revealed a significant main effect of Block, 
F(2,16)=37.227, p<.0001 and of Element, F(1, 8) = 
9.720,  p<.05. The interaction also reached significance, 
F(2, 16) = 7.337, p<.005. Second we examined the next 
six blocks (L2) by using an ANOVA with Block [6 
levels] and Element [3 levels] as repeated measures 
factors. We found a significant main effect of Block, 
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F(5, 40) = 9.657, p<.005. The analysis also revealed a 
main effect of Element, F(2, 16) = 8.404, p<.005. The 
interaction also reached significance, F(10,  80) = 6.914, 
p<.0001.

Recognition task
Correct recognitions are plotted in Figure 2 (right panel). 
As indicated in Table 2, participants were able to 
correctly reject non-words in both conditions. They did 
not, however, correctly reject part-words. Concerning L2 
words, experimental participants recognize them above 
chance but this was not the case in control participants. 

Table 2: t values comparing recognition scores to 
chance level in control and experimental conditions 
for the three types of test sequences. * indicates that 
the test reached significance (one-tailed, p < .05).

Words Non-words Part-words

Control 1,24 3.21* 1,63

Experimental 2.36* 3.17* 0,41

Overall, performance did not significantly differ 
between control and experimental conditions (all ps >.
05). Therefore, we pooled control and experimental 
conditions together and compared performance for non-
words, part-words and L2 words. This analysis revealed 
a significant difference between non-words and part-
words, paired t(78)= 1.574, p <.05: non-words rejection 
was better than part-words rejection (see Figure 2, right 
panel). The other comparisons failed to reach 
significance.

Discussion
  In Experiment 2,  L1 and L2 were presented using a 
constant RSI. However, relying exclusively on the only 
available cue, i.e. the statistical regularities, participants 
learned the first and second languages. Indeed, 
throughout training, mean RTs decreased more for 
predictable than for unpredictable elements. Moreover, 
participants recognized L2 words, at least in the 
experimental condition and correctly rejected non-
words. Interestingly, in both experimental and control 
conditions, participants performed better in rejecting 
non-words than part-words,  which were not correctly 
rejected.

According to PARSER, performance should be the 
same for non-words and part-words.  If participants 
formed L2 chunks during training, it should be as easy to 
reject non-words than part-words as these sequences do 
not match the units formed during training. On the 
contrary, the SRN predicts that participants should 
recognize L2 words, which correspond to high 
transitional probabilities and reject non-words, which 
correspond to low transitional probabilities.  However, as 
part-words involved high transitional probabilities, the 
SRN may have more difficulties in rejecting them. 
Experiments 2 results fit nicely with the SRN 

predictions, suggesting that participants are indeed 
sensitive to the actual values of the transitional 
probabilities between sequence elements. When 
considering Experiments 1 and 2 together, our results  
suggest that the values of transitional probabilities 
influence performance when no temporal cues guide the 
chunking process.

 
General Discussion

In this paper, we aimed at clarifying the nature of the 
representations involved in implicit and statistical 
learning. The question is to assess whether participants 
form chunks of the training material or merely develop a 
sensitivity to the transitional probabilities present in the 
training sequence. We showed that, in the context of a 
visuo-motor reaction time task, participants learn the 
statistical regularities present in a random succession of 
word-like sequences of visual targets. They are able to 
learn two different languages (L1 and L2) presented 
successively. Moreover, they are also able to recognize 
the word-like units of L2 in a subsequent recognition 
task. When word-like units are clearly separated from 
each other, recognition performance is improved in a 
control condition in which L1 and L2 do not share any 
pairwise transitions between language elements. These 
results are in line with the notion that word-like, rigid, 
disjunctive units are developed during learning. 
However, chunk formation seems not to be automatic. 
When the word-like units are not clearly marked – i.e. 
when they are presented in a continuous stream without 
any temporal cue to guide the chunking process – 
recognition performance is more influenced by the 
actual values of the transitional probabilities between 
sequence elements. This is reflected in Experiment 2 by 
better rejection of non-words than part-words in the 
recognition task.

Another potential explanation for this result could be 
that participants did form chunks in Experiment 2 but 
that they did not correspond to the actual L2 words. It is 
possible that participants indeed parsed the continuous 
sequence of visual stimuli into smaller chunks but that 
these chunks did not respect the actual boundaries 
between words. They may have focused, for instance,  on 
particularly salient transitions (for example between 
elements that were spatially close to each other or 
between alternating locations) and end up with larger, 
smaller or different chunks than those corresponding to 
the words of the artificial language. In other words, if 
chunking is not directly induced by the presentation 
mode, attentional factors may also influence chunk 
formation. As a consequence, the actual chunks may 
differ from one participant to another and may not 
strictly reflect the transitional probabilities between the 
different sequence elements. This may, of course, 
influence recognition performance.

Both the SRN and PARSER implement elementary 
associative learning mechanisms such that,  in both cases, 
the system tends to associate elements that occur  often 
in succession. As a consequence, even if the chunks 
resulting from training do not correspond to the actual 
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words of the artificial language, there is a good chance 
that they involve highly frequent transitions.  
Participants may therefore tend to erroneously consider 
these part-words as words of the artificial language 
because they involve such high-frequency transitions.

In summary, this study shows that when units are 
marked, the chunking models provide reliable 
assumptions concerning the nature of the representations 
developed during learning. However, when no cues are 
provided in order to guide the chunking processes, 
performance reflects sensitivity to the strength of the 
transitional probabilities and seems also to depend on 
attentional factors. Further modeling studies are needed 
in order to test the ability of the SRN and PARSER 
models to account for the experimental results described 
in our study.
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