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Abstract (Steyvers et al., 2004; Andrews, Vigliocco, & Vinson, 2005;

We present a simple model that allows the extraction of se- Silberman, Bentin, & Miikkulainen, 2007).

mantic similarity relations from free association infotina. The description of semantic knowledge as a complex net-
In our study, we use two acclaimed databases of linguis- . . .
tic relationships between pairs of words, feature-basetl an work of interactions between words, does not suffice to get a

aSSC%Ci%t_ion-?aSﬁd- the apply a dCOTIE:JeX rrl]etwork? mc(eého?ol- clear picture of the specific relations between complex net-
(o] 0O disentangle reature pbased refationsnips on to e lr . . . ..
agg’ociaﬁon net\?vork. As a consequence, Wepbroadeﬂ complex works representing different semantic empirical data. sets

networks’ applications in the field of psycholinguisticorh a One of the main reasons for this is that while the notion of
merely descripie to apredicive level festltsare syate | node is quite uncontroversial (in our case a word), the con-
tational models (LSA and WAS). cept of edge is not so because it must be committed to a
Keywords: complex networks; random walks; Latent Seman-  definition of relationship. In what semantics is concerned,
]Eié?af‘u”r%'ﬁgaL\J’ggg‘?]"'}]f)?omcsiaﬁon Space; free associatiomt®r \ve can consider that a word is related to another one if they
belong to the same class (category-related, suataaand
Introduction wagor); or if they tend to co-occur in many contextsaf

. . androad); or if they have a cause-effect relationshijpgand
The problem of semantic representation has been one of thS 9 y Pl

focus of attention of the cognitive psychology community %Oké' and so on. For some of these types of refationship

over the past decades. Although computational approasches here exist empirical data that quantify how strong two vgord
P ) 9 P E)p ~are related. (Notice that two words may have several of these
such problem were proposed as soon as the late '60s (Collin

& Quillian, 1969; Collins & Loftus, 1975), only in the past r%latfonsmps). ) ) o
decade technology has made it feasible to deal with huge 't iS clear that different semantic networks will arise de-
amounts of empirical data, where models could be teste@€Nding on the type of association used to link words by the
with reliability. It is in this scenario where the most pow- Subjects of a cognitive experiment. Moreover, given the in-
erful models have emerged (Lund & Burgess, 1996 Lan_tr_|cz_ite comple_xny of human mind, the more fre_e the_aSS_O-
dauer & Dumais, 1997; Blei, Ng, & Jordan, 2003; Griffiths ciation scenario, the more rich the types of relationshiib wi
& Steyvers, 2004; Steyvers, Shiffrin, & Nelson, 2004; Grif- aPpear. Thege d?fferent association scenarios_ can reflect s
fiths, Steyvers, & Tenenbaum, 2007). Along with these, renantic or episodic memory contents, depending on the ex-
cent studies have used also the perspective offered byehe thP€riment. One of the main challenges is to understand the in-
ory of complex networks to gain insight on language-relatederaction between both memory representations. In Steyve_r
problems (Sigman & Cecchi, 2002; Steyvers & Tenenbaum€! &l- (2004) the authors propose the prediction of semantic
2005). The main idea behind these works is to map emsimilarity effects in gpls_od|c memory using empirical data
pirical data onto a graph (usually called complex network)The procedure applied is a modification of the general LSA
that summarizes the observed relations between words in $heme, using singular value decomposition and multidimen
given experiment. Once the structure is set up, it is passiblSional scaling over a specific data set (Nelson, McEvoy, &
to statistically characterize it (with a wide range of exigt ~ Schreiber, 1998). The results show the emergence of fea-
descriptors) and elucidate properties that can help tebett ture aSSOCIatloh groups in a multidimensional space known
understand the large-scale structure of semantic refation @S Word Association Space (WAS).
the specific set. We will consider the same problem from a complex net-
However, while the network approach has been merelwork perspective adding a different interpretation of tie d
descriptive up to now, computational models like LSA entanglement process with plausible cognitive impliaaio
(Landauer & Dumais, 1997), HAL (Lund & Burgess, 1996), In our work, this prediction is reformulated in the followgin
WAS (Steyvers et al., 2004) or the more recent Topic Modeterms: whether is possible to disentangle similarity refat
(Griffiths & Steyvers, 2004) have an intrinsic predictivpaa  ships from general association words networks by the nav-
bility. In particular, some of these models are used to revedgation of the semantic network. We address this question
interaction between episodic and semantic memory, consicdassuming that: (1) Each available data set is a partial expo-
ering empirical data that reflects the impact of environmensure to semantic knowledge; (2) Some data sets are more
tal (i.e. nonlinguistic) experience upon linguistic phemena  general than others, they grasp the heterogeneity of the se-
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mantic knowledge more precisely; and (3) as a consequenaeeights represent the frequency of association in the sampl
of (2), some information from a less general data set mighAlthough free association data is often transformed intno-sy

be partially implicit in a more general one. We will construc metric information (as in Steyvers et al., 2004), FA has been
upon these hypothesis and propose an algorithm that allowtseated here in its original form.

the disentanglement of a type of relationship embeddedeonth Generally speaking, Free-Association Norms (FA from
structure of a more general association network. In particunow on) represent a more complex scenario than FP when
lar, we will focus on two well-known data sets in English: the considering the semantics of edges. FA is heterogeneous by
free-association database constructed by Nelson et 88J19 construction, it may grasp any relation between words e.g.
and the semantic feature production norms by McRae, Cre, causal-temporal relatiofire andsmokg, an instrumental
Seidenberg, and McNorgan (2005). Interestingly, the algorelation proomandfloor) or a conceptual relatiorbgsand
rithm takes advantage of both a probabilistic and a semantitrain), among others. This heterogeneity will be on the ba-
space approach. sis of our approach because we assume that some similarity

. . inf tion is implicit in FA.
Feature Production Norms description niormation 1s fmpiett in

Feature Production Norms (FP from now on) were produced 1 he Random Inheritance Model (RIM)

by McRae et al. by asking subjects to conceptually recogniz©ur specific goal is to propose a computational model to ex-
features when confronted with a certain word. This featurdract a FP-like network from the track of a dynamical process
collection is used to build up a vector of characteristias fo upon FA.Dynamicss in this framework related to the naviga-
each word, where each dimension (vector component) region of the network (diffusion process), whereas tempoyal d
resents a feature, with a value that represents its pramucti namics (growth and change) of the network is not considered
frequency across participants. These norms include 544 coiin this work (see Steyvers & Tenenbaum, 2005 for a complex
cepts, for which semantic closenessinilarity is computed network approach to this problem).

as the cosine (overlap) between pairs of vectors of characte The idea is to simulate a naive cognitive navigation on top
istics. The cosine is obtained as follows: of a general association semantic network to relate words

with a certain similarity, in particular we want to recover
VIW1 + VoW2 + ... + VnWhn

cosh = (1) feature similarities. We schematize this process as uecorr
VIl latedrandom walksrom node to node that propagate an in-
that is, the dot product between two concept vectaradw,  heritance mechanism among words, converging to a feature
divided by the product of their lengths. vectors network. Our intuition about the expected succéss o

As a consequence, words likanjoandaccordionare very ~ our approach relies on two facts: the modular structure of
similar (i.e. they have a projection close to 1) because theithe FA network surely retains significant meta-similituée r
vector representations show a high overlap, essentiatty pr lationships, and random walks are a the most simple dynami-
voked by their shared features as musical instrumentsgwhilcal processes capable of revealing the local neighborhafods
the vectors fobanjoandspiderare very different, showing nodes when they persistently get trapped into modules. The
an overlap close to 0 (almost orthogonal vectors). inheritance mechanism is a simple reinforcement of similar

We will represent this information under the form of a net- ties within these groups. We call this algorithm the Random
work, where each node represents a word, and an edge (btheritance Model (RIM).
link) is set up between a pair of nodes whenever their vectors The results obtained show macro-statistical coincidences
projection is different from 0. The meaning of an edge in this(functional form of the distributions and descriptorsee¢n
network is thus the features similarity between two wordsthe real and the synthetic FP network, moreover, the model
The network is undirected (since similarity is symmetricjia  Yields also significant success at the microscopic level, i.

weighted by the value of the projections. is able to reproduce to a large extent FP empirical relation-
o Lo ships. These results support the general hypothesis abeut i
Free-Association Norms description plicit entangled information in FA, and also reveals a possi

Nelson et al. produced these norms by asking over 6000 pable mechanism of navigation to recover feature information
ticipants to write down the first worddrge) that came to in semantic networks. Finally, we compare these results wit
their mind when confronted with aue (word presented to those obtained using LSA and WAS on the same data sets.
the subject). The experiment was performed using more than FA and FP norms can be represented as semantic networks
5000 cues. Among other information, a frequency of coin-of words, which in turn can be analyzed in terms of descrip-
cidence between subjects for each pair of words is obtainedors (see last section). Both empirical networks are togielo

As an example, wordsiiceandcheeseare neighbors in this cally different, that is, the statistical local and globabper-
database, because a large fraction of the subjects refased t ties differ significantly from each other. The main diffeces
target to this cue. Note, however, that the associationesfdh are concerned to the sparsity of FA, in contrast to the strong
two words is not directly represented by similar featurets budensity of FP. Since our goal is to compare a synthetic net-
other relationships (in this case mice eat cheese). The netvork obtained from FA, to FP up to a microscopic level, we
work empirically obtained is directed and weighted, whereneed both networks to have the same nodes (words). To this
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end, we have extracted from the databases those words thEle process is performed in parallel, i.e. the update of the
appear in both, which has left two subnetworks of 376 node$eature vectors is done after completion of the inheritdace
each (polysemous words, suchlzs, were left aside). The everyword. Atthe end, we have a synthetic vector of features
statistical characteristics of the extracted subnetwddksot
differ very much from their complete versions but they do 3. Averaging:

between them, see Table 1. From now on, the subnetworks @nce the feature vectors have been computed, we build up a
376 words common in FA and FP will be used for comparisorsynthetic feature similarity network. The network is theui¢

for every word in the network.

purposes. of projecting all pairs of vectors and prescribing a weighte
link between two words according to this projection. The
Table 1 whole process is iterated (by simulating several runs) up to

Main statistical descriptors of the networks FA and FP data,convergence of the average of the synthetic feature siigilar
and their respective common words’ subnetworks (FA-s andetworks generated at each run. The average, after conver-
FP-s). N is the number of node&) is the average strength; gence, is the synthetic feature similarity network we corapa

L is the average shortest path length; D is the diameter of thevith FP.

network; C is clustering coefficient and r is the assortayivi

coefficient (see last section).

Let us define the transition probability of the FA network.
The elements of FAgj) correspond to frequency of first

Descriptor| FA (whole) FP (whole)| FA-s FP-s o e .
N 5018 541 376 376 association reported by the participants of the experiment
(s) 0.77 20.20 0.26 13.43  However, note that the 5018 words that appear on the data
L 3.04 1.68 4.41 1.68 set are not all the words that appeared at the experiment, but
D 5 5 9 3 only those that where at the same time cues in the experiment.
C 0.1862 0.6344 | 0.1926 0.6253 That means that the data have to be normalized before hav-
r 0.097 0.2609 | 0.3258 0.2951 ing a transition probability matrix. We define the transitio

probability matrixP as:
Finally, it is worthwhile to mention the fact that the ajj

Rij

databases, although they both belong to the psycholiriguist =3 a; )
field, they were created in different places and years (&ffec i o J ) o
ing the use of language); a different number of subjects were the that this matrix Is asymmetric, as well as the original
used to build up the norms (affecting the robustness of datajnatrix FA. We maintain this asymmetry property in our ap-

etc. Even the intention (i.e. the type of problem they seelProach to preserve the meaning of the empirical data. Once
to tackle) of the collections is different. It is importar t the matrixP is constructed, the random walkers of different

realize about all these facts in order to understand the amou'€ngths are simply represented by power&oFor example,

of uncertainty any model faces when trying to reproduce & We perform random walks of length 2, after averaging over
particular empirical dataset. many realizations we will converge to the transition matrix

2 2. ili
Keeping in mind all these general considerations we car? , every elemen(P<);; represents the probability of reach-

move on to specify how our model works. In what follows, ing j, fromi, ir_1 2 st_eps, and the same applies fo other Iength_
we first specify the logic behind our proposal and, after, wevalues. The inheritance process proposed, corresponds, in

describe the mathematical framework that unifies the differtr;'fhscﬁlngno’ to_a ckllange oftba:?s, frorr;)thg gar;ﬁmcal basi
ent steps. The main logic stages in RIM are: ofthe N-dimensional Space, 1o the new basis in the space o

L transitionsT :
1. Initialization:

First, every word in the FA network is tagged with an initial s
vector of characteristics. To avoid initial bias, we chotise T = Ilim ZP' (4)

. . . S—>oo.7
vectors to be orthogonal in the canonical basis. That means i=
that every word has associated a vectoNedimensions, be- The convergence of Eq.(4) is guaranteed by the Perron-
ing N the number of words in the network, with a componentFrobenius theorem. In practice, the summation in Eq.(4) con

at 1 and the rest at zero.

2. Navigation and Inheritance:
Then a random walk o$ step$ starting at a node is per-

verges very fast, limiting the dependence on indirect aasoc
tive strengths (Nelson & Zhang, 2000). We tested the behav-
ior up to S=10, although with S=4 we already achieve con-

formed. At every step of the walk, we propose an inheritancerergence in T up to 10" in terms of the Hamming distance.
mechanism that changes(the initial vector of the word)  All the results for RIM will be expressed f@= 4 from now
depending on the visited nodes. lset 51,%,...,S, the setof  on. Finally, the matrix that will represent in our model the
visited nodes. Then the new vector for nddecomputed as: feature similarity network (synthetic FP), where simiigpiis
calculated as the cosine of the vectors in the new space, is

1A random walk is a time-reversible finite Markov chain, see
(Lovasz, 1996) for a survey on the topic.

n
Vii=vit Y v 2)
J; J
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given by the scalar product of the matrix and its transposeTable 2

FS=TT". Statistical parameters for Free Association norms FA (sub-
strate of the dynamic process), Feature Production norms FP
(empirical target) , and the synthetic networks obtainedgis
Latent Semantic Analysis LSA, Word Association Space WAS
and Random Inheritance Model RIM.

In this section we present the performance of the RIM in

disentangling a Feature Production Norm from the empirical_Descriptor| FA FP_| LSA WAS RIM
FA. To compare the results with the empirical FP we define N 376 376 | 376 376 376
a set of measures that can be classified in macroscopic and (S 0.26  13.43) 39.60 10.29 15.62
microscopic similarities. To evaluate macroscopic sinila 4'941 1:'368 0‘202 2"100 13;77
ties we will use basic descriptors of complex networks (see 0192 0625 0961 0492 0584
Appendix), the strength distributid?(s), along with average 0.325 0295 0125 0303 0.305
(global) quantities already computed in Table 1. To evaluat

the microscopic similarities we will compute the success ra
on the local structure of the neighborhood of words in both C

real and synthetic networks. We will also compare the re—'vI acroscopic similarities

sults of our model with those obtained using the well knownFirst we plot the cumulative strength distribution of the-em
Latent Semantic Analysis (LSA; Landauer & Dumais, 1997;pirical network FP, and the respective synthetic networks p
Landauer, McNamara, Dennis, & Kintsch, 2007) and Wordvided by LSA or by applying WAS and RIM to FA, see Fig-
Association Space (WAS; Steyvers et al., 2004). Althoughure 1. The statistical agreement between FP and RIM and
LSA's applicability goes beyond the scope of this work, it WAS is remarkable. The general observation is that alliglistr
stands as an appropriate benchmark model to compare tigitions present an exponential decay instead of a power-law
performance of our proposal. In particular, we have usedlecay. This specific form of the distributions is charastesi
LSA vector representation based on the corpus TASA for thef random homogeneous networks. In Table 2 we present the
subset of common words in FA and FP, with a space dimenmain descriptors of the four previous networks, plus the sub
sionality ofd = 300. This LSA TASA-based representation strate of the dynamic process FA, for comparison purposes.
is suitable for comparison because it has been assessed &gain, the agreement between the empirical FP and RIM is
a simulation of human vocabulary test synonym judgmentsnarked, RIM reproduces with significant accuracy the aver-
(Landauer, Foltz, & Laham, 1998). WAS model is specially age strength, the average path length, diameter, clugtamnith
pertinent for the current comparison because: on one handssortativity, of the FP target network. WAS also succeeds
the model is formally similar to LSA; on the other, it makes largely on the determination of macroscopic propertiegef t
use of mediated strength between non-direct associates asnetwork, while LSA can not be so similar.

RIM, and has been reported on the same data set we use in_ o

order to extract semantic information. Accordingly, we dav Microscopic similarities

performed the procedure described in the cited article UpOfhe necessity for a detailed comparison between synthetic
the whole network, and after extracted the mentioned 376, empirical sets is double: first, the statistical charact
subset of words. We only compare to the best results of WAS ation presented before is informative and important, kot n
for this data set gWh'Ch correspond to Singular Value Decomyefinjtive to state the validity of the model to disentangte a
position undeiS?, N = 5018, andd = 400, see Steyvers et ] information in the original FA network. At most, it is

Resultsof RIM

- 00rw

al., 2004 for details). capable of a correct description of the empirical targétiscs
ture. And second, the difference between our particular net
lgr—rrrrm » g e eewes - work, and general examples used in complex networks theory
_ ] F is that nodes are tagged and then not interchangeable. The
e 01z ER specific neighborhood of every word matters, because it re-
(= _FP 1 fle tsA] veals semantic relations, and then the degree or the dhrgter
0-011 0.0t 10c become less relevant than the specific list of neighbors syn-
E T EUTTTTTT®,, T thetically obtained. Therefore a model dealing with tagged
s 01; i ; ] elements can only be predictive if it succeeds at this lefrel o
> @J % comparison. . . -
oot et L L OO P A I 1111 To this end, we pursue the evaluation of RIM in predicting
L 10 ! 10 10 the specific words of each node’s neighborhood.

) s . S .
Figure L Log-log plot of the cumulative strength distribution oéth ; ; ;
networks: Feature Production norms FP (empirical targety, the The first question concerning the models at stake (WAS

synthetic networks obtained using Latent Semantic Anali§A,  and RIM, since they are here built upon FA) is whether they
Word Association Space WAS and Random Inheritance Model.RIM gre yseful at all: that is. whether they are capable of uncov-

ering semantic relations which were not in FA already (i.e.
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Figure 2 Inheritance distance®’fbe= 15 for WAS and RIM, evi-  Figure 3 For each synthetic network (LSA, WAS and RIM) we
dencing the fact that both models are capable of capturimgustc  have measured the mean error (fer 1 to| = 15) against FP, ac-
relationships beyond a word’s immediate neighborhood. cording to Eq. 5.

as first neighbors). Figure 2 points at this question by evione. Notice that measuré is strongly increased when a
dencing that both WAS and RIM are actually collecting se-mismatch appears, whereas misplacements are less punished
mantic relationships further thath= 1. The bulk of words In particular,E = 0 when the vectors under comparison are
is inheriting features from approximatety= 2 on average, identical. In the other extreme, if a vector has only one imatc
which means that the models are in fact capturing semantiwith the other one, and the matching element is not placed
similarities from a significant distance (it is importankiep  correctly, thenE = |, wherel is the length of the involved
in mind that FA has a diameter of 5, see Table 1). vectors. Beyond this, there exists only a worse situatien, i

A second problem we face on this microscopic evaluatiorcomplete mismatch between vectors. In this cBse .
of the model is that of proposing pertinent measures. We proSince we intend to compute an average error score, we can not
ceed as follows, given a specific wordwe start sorting its  allow an value, and therefore we prescrige=1+1, ex-
neighbors according to their linking strength. We applgthi pressing the fact that such score is worse than any case where
for each word in our data sets forming lists. The referersteli any match occurs.
is the list of each word in FP, and the lists we wantto compare The error defined in formula 5 is plotted in Figure 3, on
with, are those obtained for each word in the synthetic dataverage the error of RIM is about 10% lower than the error of
sets, RIM, WAS and LSA. We restrict our analysis up to theLSA, and 4% lower than that of WAS.
first 15 ordered neighbors, assuming that these are the most
significant ones. We have designed an expression that assign Conclusions

an error score between a list and its reference, depending R this work, we have proposed an algorithm to extract featur

the number of mismatches between both lists, and also on trEefmilarity information from an empirical words’ Free As$oc

number of mlsplacemen_ts n them. A m|sm_atch M) COITE5tion network. Building upon the idea that free association
sponds to a word that exist in the reference list and not in th%ntangles in particular, semantic traits of associatiasel

o . dered the mas gl lar
synthetic list and vice versa, these are considered the mal similar characteristics between concepts, we have pro-

errors in our gppro_ach. Since the model seeks powerful P'osed a simple algorithm to disentangle this informatidre T
dlct|ye capacity, mlsplacementg are also taken into adeoun, o g it reproduce to a large extent the findings in an engpiric
A msplacer_nent (O).'S an error in the orde_r of appearance O_ eature Production norms network. The simple strategy of a
both words in each list. The error score E is then defined a8 2 ndom navigation process of the actual FA topology and a
E reinforcement inheritance mechanism suffice to produce re-
0 : ; : .
E=Ew+ T—Eu (5) lationships comparable to those experimentally obtained.

M The comparison with the powerful LSA and WAS models
whereEy stands for the number of mismatchEs,the num-  is indicative of the level of macroscopic and microscopic-su
ber of displacements ardhe length of the list. cess of our proposal, notwithstanding the fact that bothehe

This quantity recalls well-knowredit distancessuch as models provide useful semantic spaces, from a theoretical a
Levenshtein Distance (Levenshtein, 1966) or its generalan empirical point of view. Furthermore, beyond the level
ization, Damerau-Levenshtein Distance (Damerau, 1964pf success of any of these models, we propose that RIM is
where the similarity between two strings depends on then approach that enriches other existing models, in theesens
amount of insertions/deletions (mismatches in our case) anthat it introduces a dynamical perspective to the formation
transpositions (movements or misplacements) that onehas semantic spaces. The random navigation mechanism intro-
perform on a string in order to completely match the otherduced, far from been an optimal strategy in the search space,
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ought to start exploring dynamic approaches to the problerBarabasi, A., & Albert, R. (1999). Emergence of scalingdndom
of semantic cognition. Finally, the network representatio 5 ’_‘e[t)""olilks'ic'?iezga 52/?' (2003). Latent dirichlet allao
: - - P Blei, D., Ng, A., ordan, M. . Latent dirichlet a n.
and the _dynam!cs on it provide an mtu.ltlve and useffull rep Journal of Machine Learning Researd) 993-1022.
resentation, which can be broadened with more realistie navBoccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwaiby;U.
igation and inheritance strategies. gzz(zlo{i)jSC_:sg(gréplex networks: Structure and dynamRisys. Rep.
Assuming that Free Association semantic networks areollins, A., & Loftus, E. (r1]9|75). Alspreading activation trg of
i semantic memoryPsychological Reviev82, 407-428.
good exposures of human semantic knowledge, we speculafe, i “a %o Quillian, M. (1969). Retrieval time from semtic
that some cognitive tasks can rely on a specific navigation Eneomzc)ry, Journal of Verbal Learning and Verbal Behavjds,
. . . . e : 20-247
of this network, in particular a simple navigation mechgnls Damerau, F. J. (1964). A technique for computer detectiah an
based on randomness, structure of the network and reirforce " correction of spelling errorcomm. ACM
ment could be enough to reproduce non trivial reIationship@riffitha,, T, & fStt?\yveNrst"M' ?2'804&- Fi”di?QSS,CientifiC{@B'ls%%
of feature similarity between concepts represented assvord gggS{ngs of the National Academy of SciendH(1), )
Moreover, explicit metadata associated to semantic straict ~ Griffiths, T., Steyvers,_MrF.), & Lerllen_barg, J. V\(i2104(23 2Tlolp'r2¢ﬂ'a-
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patterns seem to play an important role on |.n_format|on reCOV| andauer, T., & Dumais, S. (1997). A solution to plato’s feab:
ery, that could be extended to other cognitive tasks. Given The latent semantic analysis theory of acquisition, indugtand

the already detected importance of modular structure in the '€presentation of knowledgePsychological Revieyl04, 211-

study of semantic representation (see Topic Model, Griffith Landauer, T., Foltz, P. W., & Laham, D. (1998). Introduction

et al., 2007) we think that disambiguation is perhaps thé neﬁar@aegé rse{_“amfN%”rﬁgiﬁgcoggﬁnf’srocseszﬁg}g,n%ggﬁz%‘\‘I- (Eds)

affordable challenge along this line of research. (2007). Handbook of latent semantic analysiMahwah, N.J.:
Lawrence Erlbaum Associates.
About Complex Networ k Theory Levenshtein, V. |. (1966). Binary codes capable of correctiele-

gggs?lir(l)sertions, and reversal§oviet Physics Doklad10(8),
COT“p'eX networlfs.refers to n-et-wqus (graphs)_whqse tOpol'_ovasz, L. (1996). Random walks on graphs: A suniglyai Soc.
logical characteristics amgon-trivial in contrast with simple Math. Stud, 2, 353-397.

networks where regularities and symmetries dominate theitund, K., & Burgess, C. (1.99|6)- Producing hiﬁh'qime”Simh
; c | work tound in th ot mantic spaces from lexical co-occurrencBehavior Researc
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: n A. Ludeling & M. Kyto (Eds.), (chap. Large Text Networks as
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