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Abstract

We present a simple model that allows the extraction of se-
mantic similarity relations from free association information.
In our study, we use two acclaimed databases of linguis-
tic relationships between pairs of words, feature-based and
association-based. We apply a complex networks methodol-
ogy to disentangle feature based relationships on top of a free
association network. As a consequence, we broaden complex
networks’ applications in the field of psycholinguistics, from a
merely descriptive to a predictive level. Results are systemat-
ically compared to those of two powerful well-known compu-
tational models (LSA and WAS).
Keywords: complex networks; random walks; Latent Seman-
tic Analysis; Word Association Space; free association norms;
feature production norms

Introduction
The problem of semantic representation has been one of the
focus of attention of the cognitive psychology community
over the past decades. Although computational approaches to
such problem were proposed as soon as the late ’60s (Collins
& Quillian, 1969; Collins & Loftus, 1975), only in the past
decade technology has made it feasible to deal with huge
amounts of empirical data, where models could be tested
with reliability. It is in this scenario where the most pow-
erful models have emerged (Lund & Burgess, 1996; Lan-
dauer & Dumais, 1997; Blei, Ng, & Jordan, 2003; Griffiths
& Steyvers, 2004; Steyvers, Shiffrin, & Nelson, 2004; Grif-
fiths, Steyvers, & Tenenbaum, 2007). Along with these, re-
cent studies have used also the perspective offered by the the-
ory of complex networks to gain insight on language-related
problems (Sigman & Cecchi, 2002; Steyvers & Tenenbaum,
2005). The main idea behind these works is to map em-
pirical data onto a graph (usually called complex network)
that summarizes the observed relations between words in a
given experiment. Once the structure is set up, it is possible
to statistically characterize it (with a wide range of existing
descriptors) and elucidate properties that can help to better
understand the large-scale structure of semantic relations in
the specific set.

However, while the network approach has been merely
descriptive up to now, computational models like LSA
(Landauer & Dumais, 1997), HAL (Lund & Burgess, 1996),
WAS (Steyvers et al., 2004) or the more recent Topic Model
(Griffiths & Steyvers, 2004) have an intrinsic predictive capa-
bility. In particular, some of these models are used to reveal
interaction between episodic and semantic memory, consid-
ering empirical data that reflects the impact of environmen-
tal (i.e. nonlinguistic) experience upon linguistic phenomena

(Steyvers et al., 2004; Andrews, Vigliocco, & Vinson, 2005;
Silberman, Bentin, & Miikkulainen, 2007).

The description of semantic knowledge as a complex net-
work of interactions between words, does not suffice to get a
clear picture of the specific relations between complex net-
works representing different semantic empirical data sets.
One of the main reasons for this is that while the notion of
node is quite uncontroversial (in our case a word), the con-
cept of edge is not so because it must be committed to a
definition of relationship. In what semantics is concerned,
we can consider that a word is related to another one if they
belong to the same class (category-related, such ascar and
wagon); or if they tend to co-occur in many contexts (car
androad); or if they have a cause-effect relationship (fire and
smoke), and so on. For some of these types of relationship
there exist empirical data that quantify how strong two words
are related. (Notice that two words may have several of these
relationships).

It is clear that different semantic networks will arise de-
pending on the type of association used to link words by the
subjects of a cognitive experiment. Moreover, given the in-
tricate complexity of human mind, the more free the asso-
ciation scenario, the more rich the types of relationship will
appear. These different association scenarios can reflect se-
mantic or episodic memory contents, depending on the ex-
periment. One of the main challenges is to understand the in-
teraction between both memory representations. In Steyvers
et al. (2004) the authors propose the prediction of semantic
similarity effects in episodic memory using empirical data.
The procedure applied is a modification of the general LSA
scheme, using singular value decomposition and multidimen-
sional scaling over a specific data set (Nelson, McEvoy, &
Schreiber, 1998). The results show the emergence of fea-
ture association groups in a multidimensional space known
as Word Association Space (WAS).

We will consider the same problem from a complex net-
work perspective adding a different interpretation of the dis-
entanglement process with plausible cognitive implications.
In our work, this prediction is reformulated in the following
terms: whether is possible to disentangle similarity relation-
ships from general association words networks by the nav-
igation of the semantic network. We address this question
assuming that: (1) Each available data set is a partial expo-
sure to semantic knowledge; (2) Some data sets are more
general than others, they grasp the heterogeneity of the se-
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mantic knowledge more precisely; and (3) as a consequence
of (2), some information from a less general data set might
be partially implicit in a more general one. We will construct
upon these hypothesis and propose an algorithm that allows
the disentanglement of a type of relationship embedded on the
structure of a more general association network. In particu-
lar, we will focus on two well-known data sets in English: the
free-association database constructed by Nelson et al. (1998),
and the semantic feature production norms by McRae, Cree,
Seidenberg, and McNorgan (2005). Interestingly, the algo-
rithm takes advantage of both a probabilistic and a semantic
space approach.

Feature Production Norms description
Feature Production Norms (FP from now on) were produced
by McRae et al. by asking subjects to conceptually recognize
features when confronted with a certain word. This feature
collection is used to build up a vector of characteristics for
each word, where each dimension (vector component) rep-
resents a feature, with a value that represents its production
frequency across participants. These norms include 541 con-
cepts, for which semantic closeness orsimilarity is computed
as the cosine (overlap) between pairs of vectors of character-
istics. The cosine is obtained as follows:

cosθ =
v1w1 +v2w2 + . . .+vnwn

‖ v ‖‖ w ‖
(1)

that is, the dot product between two concept vectorsv andw,
divided by the product of their lengths.

As a consequence, words likebanjoandaccordionare very
similar (i.e. they have a projection close to 1) because their
vector representations show a high overlap, essentially pro-
voked by their shared features as musical instruments, while
the vectors forbanjoandspiderare very different, showing
an overlap close to 0 (almost orthogonal vectors).

We will represent this information under the form of a net-
work, where each node represents a word, and an edge (or
link) is set up between a pair of nodes whenever their vectors
projection is different from 0. The meaning of an edge in this
network is thus the features similarity between two words.
The network is undirected (since similarity is symmetric) and
weighted by the value of the projections.

Free-Association Norms description
Nelson et al. produced these norms by asking over 6000 par-
ticipants to write down the first word (target) that came to
their mind when confronted with acue (word presented to
the subject). The experiment was performed using more than
5000 cues. Among other information, a frequency of coin-
cidence between subjects for each pair of words is obtained.
As an example, wordsmiceandcheeseare neighbors in this
database, because a large fraction of the subjects related this
target to this cue. Note, however, that the association of these
two words is not directly represented by similar features but
other relationships (in this case mice eat cheese). The net-
work empirically obtained is directed and weighted, where

weights represent the frequency of association in the sample.
Although free association data is often transformed into sym-
metric information (as in Steyvers et al., 2004), FA has been
treated here in its original form.

Generally speaking, Free-Association Norms (FA from
now on) represent a more complex scenario than FP when
considering the semantics of edges. FA is heterogeneous by
construction, it may grasp any relation between words e.g.
a causal-temporal relation (fire andsmoke), an instrumental
relation (broomandfloor) or a conceptual relation (busand
train), among others. This heterogeneity will be on the ba-
sis of our approach because we assume that some similarity
information is implicit in FA.

The Random Inheritance Model (RIM)
Our specific goal is to propose a computational model to ex-
tract a FP-like network from the track of a dynamical process
upon FA.Dynamicsis in this framework related to the naviga-
tion of the network (diffusion process), whereas temporal dy-
namics (growth and change) of the network is not considered
in this work (see Steyvers & Tenenbaum, 2005 for a complex
network approach to this problem).

The idea is to simulate a naı̈ve cognitive navigation on top
of a general association semantic network to relate words
with a certain similarity, in particular we want to recover
feature similarities. We schematize this process as uncorre-
latedrandom walksfrom node to node that propagate an in-
heritance mechanism among words, converging to a feature
vectors network. Our intuition about the expected success of
our approach relies on two facts: the modular structure of
the FA network surely retains significant meta-similitude re-
lationships, and random walks are a the most simple dynami-
cal processes capable of revealing the local neighborhoodsof
nodes when they persistently get trapped into modules. The
inheritance mechanism is a simple reinforcement of similari-
ties within these groups. We call this algorithm the Random
Inheritance Model (RIM).

The results obtained show macro-statistical coincidences
(functional form of the distributions and descriptors) between
the real and the synthetic FP network, moreover, the model
yields also significant success at the microscopic level, i.e.
is able to reproduce to a large extent FP empirical relation-
ships. These results support the general hypothesis about im-
plicit entangled information in FA, and also reveals a possi-
ble mechanism of navigation to recover feature information
in semantic networks. Finally, we compare these results with
those obtained using LSA and WAS on the same data sets.

FA and FP norms can be represented as semantic networks
of words, which in turn can be analyzed in terms of descrip-
tors (see last section). Both empirical networks are topologi-
cally different, that is, the statistical local and global proper-
ties differ significantly from each other. The main differences
are concerned to the sparsity of FA, in contrast to the strong
density of FP. Since our goal is to compare a synthetic net-
work obtained from FA, to FP up to a microscopic level, we
need both networks to have the same nodes (words). To this
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end, we have extracted from the databases those words that
appear in both, which has left two subnetworks of 376 nodes
each (polysemous words, such asbat, were left aside). The
statistical characteristics of the extracted subnetworksdo not
differ very much from their complete versions but they do
between them, see Table 1. From now on, the subnetworks of
376 words common in FA and FP will be used for comparison
purposes.

Table 1
Main statistical descriptors of the networks FA and FP data,
and their respective common words’ subnetworks (FA-s and
FP-s). N is the number of nodes;〈s〉 is the average strength;
L is the average shortest path length; D is the diameter of the
network; C is clustering coefficient and r is the assortativity
coefficient (see last section).

Descriptor FA (whole) FP (whole) FA-s FP-s
N 5018 541 376 376
〈s〉 0.77 20.20 0.26 13.43
L 3.04 1.68 4.41 1.68
D 5 5 9 3
C 0.1862 0.6344 0.1926 0.6253
r 0.097 0.2609 0.3258 0.2951

Finally, it is worthwhile to mention the fact that the
databases, although they both belong to the psycholinguistic
field, they were created in different places and years (affect-
ing the use of language); a different number of subjects were
used to build up the norms (affecting the robustness of data),
etc. Even the intention (i.e. the type of problem they seek
to tackle) of the collections is different. It is important to
realize about all these facts in order to understand the amount
of uncertainty any model faces when trying to reproduce a
particular empirical dataset.

Keeping in mind all these general considerations we can
move on to specify how our model works. In what follows,
we first specify the logic behind our proposal and, after, we
describe the mathematical framework that unifies the differ-
ent steps. The main logic stages in RIM are:

1. Initialization:
First, every word in the FA network is tagged with an initial
vector of characteristics. To avoid initial bias, we choosethe
vectors to be orthogonal in the canonical basis. That means
that every word has associated a vector ofN-dimensions, be-
ing N the number of words in the network, with a component
at 1 and the rest at zero.

2. Navigation and Inheritance:
Then a random walk ofS steps1 starting at a nodei is per-
formed. At every step of the walk, we propose an inheritance
mechanism that changesvi (the initial vector of the wordi)
depending on the visited nodes. Lets= s1,s2, ...,sn the set of
visited nodes. Then the new vector for nodei is computed as:

vi := vi +
n

∑
j=1

vsj (2)

The process is performed in parallel, i.e. the update of the
feature vectors is done after completion of the inheritancefor
every word. At the end, we have a synthetic vector of features
for every word in the network.

3. Averaging:
Once the feature vectors have been computed, we build up a
synthetic feature similarity network. The network is the result
of projecting all pairs of vectors and prescribing a weighted
link between two words according to this projection. The
whole process is iterated (by simulating several runs) up to
convergence of the average of the synthetic feature similarity
networks generated at each run. The average, after conver-
gence, is the synthetic feature similarity network we compare
with FP.

Let us define the transition probability of the FA network.
The elements of FA (ai j ) correspond to frequency of first
association reported by the participants of the experiments.
However, note that the 5018 words that appear on the data
set are not all the words that appeared at the experiment, but
only those that where at the same time cues in the experiment.
That means that the data have to be normalized before hav-
ing a transition probability matrix. We define the transition
probability matrixP as:

Pi j =
ai j

∑ j ai j
(3)

Note that this matrix is asymmetric, as well as the original
matrix FA. We maintain this asymmetry property in our ap-
proach to preserve the meaning of the empirical data. Once
the matrixP is constructed, the random walkers of different
lengths are simply represented by powers ofP. For example,
if we perform random walks of length 2, after averaging over
many realizations we will converge to the transition matrix
P2, every element(P2)i j represents the probability of reach-
ing j, from i, in 2 steps, and the same applies to other length
values. The inheritance process proposed, corresponds, in
this scenario, to a change of basis, from the canonical basis
of the N-dimensional space, to the new basis in the space of
transitionsT:

T = lim
S→∞

S

∑
i=1

Pi (4)

The convergence of Eq.(4) is guaranteed by the Perron-
Frobenius theorem. In practice, the summation in Eq.(4) con-
verges very fast, limiting the dependence on indirect associa-
tive strengths (Nelson & Zhang, 2000). We tested the behav-
ior up to S=10, although with S=4 we already achieve con-
vergence in T up to 10−4 in terms of the Hamming distance.
All the results for RIM will be expressed forS= 4 from now
on. Finally, the matrix that will represent in our model the
feature similarity network (synthetic FP), where similarity is
calculated as the cosine of the vectors in the new space, is

1 A random walk is a time-reversible finite Markov chain, see
(Lovàsz, 1996) for a survey on the topic.
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given by the scalar product of the matrix and its transpose,
FS= TT†.

Results of RIM

In this section we present the performance of the RIM in
disentangling a Feature Production Norm from the empirical
FA. To compare the results with the empirical FP we define
a set of measures that can be classified in macroscopic and
microscopic similarities. To evaluate macroscopic similari-
ties we will use basic descriptors of complex networks (see
Appendix), the strength distributionP(s), along with average
(global) quantities already computed in Table 1. To evaluate
the microscopic similarities we will compute the success rate
on the local structure of the neighborhood of words in both
real and synthetic networks. We will also compare the re-
sults of our model with those obtained using the well known
Latent Semantic Analysis (LSA; Landauer & Dumais, 1997;
Landauer, McNamara, Dennis, & Kintsch, 2007) and Word
Association Space (WAS; Steyvers et al., 2004). Although
LSA’s applicability goes beyond the scope of this work, it
stands as an appropriate benchmark model to compare the
performance of our proposal. In particular, we have used
LSA vector representation based on the corpus TASA for the
subset of common words in FA and FP, with a space dimen-
sionality ofd = 300. This LSA TASA-based representation
is suitable for comparison because it has been assessed as
a simulation of human vocabulary test synonym judgments
(Landauer, Foltz, & Laham, 1998). WAS model is specially
pertinent for the current comparison because: on one hand,
the model is formally similar to LSA; on the other, it makes
use of mediated strength between non-direct associates as in
RIM, and has been reported on the same data set we use in
order to extract semantic information. Accordingly, we have
performed the procedure described in the cited article upon
the whole network, and after extracted the mentioned 376
subset of words. We only compare to the best results of WAS
for this data set (which correspond to Singular Value Decom-
position underS(2), N = 5018, andd = 400, see Steyvers et
al., 2004 for details).
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Figure 1. Log-log plot of the cumulative strength distribution of the
networks: Feature Production norms FP (empirical target) ,and the
synthetic networks obtained using Latent Semantic Analysis LSA,
Word Association Space WAS and Random Inheritance Model RIM.

Table 2
Statistical parameters for Free Association norms FA (sub-
strate of the dynamic process), Feature Production norms FP
(empirical target) , and the synthetic networks obtained using
Latent Semantic Analysis LSA, Word Association Space WAS
and Random Inheritance Model RIM.

Descriptor FA FP LSA WAS RIM
N 376 376 376 376 376
〈s〉 0.26 13.43 39.60 10.29 15.62
L 4.41 1.68 0.02 2.00 1.77
D 9 3 2 4 3
C 0.192 0.625 0.961 0.492 0.584
r 0.325 0.295 0.125 0.303 0.305

Macroscopic similarities

First we plot the cumulative strength distribution of the em-
pirical network FP, and the respective synthetic networks pro-
vided by LSA or by applying WAS and RIM to FA, see Fig-
ure 1. The statistical agreement between FP and RIM and
WAS is remarkable. The general observation is that all distri-
butions present an exponential decay instead of a power-law
decay. This specific form of the distributions is characteristic
of random homogeneous networks. In Table 2 we present the
main descriptors of the four previous networks, plus the sub-
strate of the dynamic process FA, for comparison purposes.
Again, the agreement between the empirical FP and RIM is
marked, RIM reproduces with significant accuracy the aver-
age strength, the average path length, diameter, clustering and
assortativity, of the FP target network. WAS also succeeds
largely on the determination of macroscopic properties of the
network, while LSA can not be so similar.

Microscopic similarities

The necessity for a detailed comparison between synthetic
and empirical sets is double: first, the statistical characteri-
zation presented before is informative and important, but not
definitive to state the validity of the model to disentangle ac-
tual information in the original FA network. At most, it is
capable of a correct description of the empirical target’s struc-
ture. And second, the difference between our particular net-
work, and general examples used in complex networks theory
is that nodes are tagged and then not interchangeable. The
specific neighborhood of every word matters, because it re-
veals semantic relations, and then the degree or the clustering
become less relevant than the specific list of neighbors syn-
thetically obtained. Therefore a model dealing with tagged
elements can only be predictive if it succeeds at this level of
comparison.

To this end, we pursue the evaluation of RIM in predicting
the specific words of each node’s neighborhood.

The first question concerning the models at stake (WAS
and RIM, since they are here built upon FA) is whether they
are useful at all: that is, whether they are capable of uncov-
ering semantic relations which were not in FA already (i.e.
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Figure 2. Inheritance distances forl = 15 for WAS and RIM, evi-
dencing the fact that both models are capable of capturing semantic
relationships beyond a word’s immediate neighborhood.

as first neighbors). Figure 2 points at this question by evi-
dencing that both WAS and RIM are actually collecting se-
mantic relationships further thand = 1. The bulk of words
is inheriting features from approximatelyd = 2 on average,
which means that the models are in fact capturing semantic
similarities from a significant distance (it is important tokeep
in mind that FA has a diameter of 5, see Table 1).

A second problem we face on this microscopic evaluation
of the model is that of proposing pertinent measures. We pro-
ceed as follows, given a specific wordi, we start sorting its
neighbors according to their linking strength. We apply this
for each word in our data sets forming lists. The reference list,
is the list of each word in FP, and the lists we want to compare
with, are those obtained for each word in the synthetic data
sets, RIM, WAS and LSA. We restrict our analysis up to the
first 15 ordered neighbors, assuming that these are the most
significant ones. We have designed an expression that assigns
an error score between a list and its reference, depending on
the number of mismatches between both lists, and also on the
number of misplacements in them. A mismatch (M) corre-
sponds to a word that exist in the reference list and not in the
synthetic list and vice versa, these are considered the main
errors in our approach. Since the model seeks powerful pre-
dictive capacity, misplacements are also taken into account.
A misplacement (O) is an error in the order of appearance of
both words in each list. The error score E is then defined as:

E = EM +
EO

l −EM
(5)

whereEM stands for the number of mismatches,EO the num-
ber of displacements andl the length of the list.

This quantity recalls well-knownedit distancessuch as
Levenshtein Distance (Levenshtein, 1966) or its general-
ization, Damerau-Levenshtein Distance (Damerau, 1964),
where the similarity between two strings depends on the
amount of insertions/deletions (mismatches in our case) and
transpositions (movements or misplacements) that one has to
perform on a string in order to completely match the other
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List Length
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Figure 3. For each synthetic network (LSA, WAS and RIM) we
have measured the mean error (forl = 1 to l = 15) against FP, ac-
cording to Eq. 5.

one. Notice that measureE is strongly increased when a
mismatch appears, whereas misplacements are less punished.
In particular,E = 0 when the vectors under comparison are
identical. In the other extreme, if a vector has only one match
with the other one, and the matching element is not placed
correctly, thenE = l , wherel is the length of the involved
vectors. Beyond this, there exists only a worse situation, i.e.
complete mismatch between vectors. In this caseE = ∞.
Since we intend to compute an average error score, we can not
allow an∞ value, and therefore we prescribeE = l + 1, ex-
pressing the fact that such score is worse than any case where
any match occurs.

The error defined in formula 5 is plotted in Figure 3, on
average the error of RIM is about 10% lower than the error of
LSA, and 4% lower than that of WAS.

Conclusions

In this work, we have proposed an algorithm to extract feature
similarity information from an empirical words’ Free Associ-
ation network. Building upon the idea that free association
entangles, in particular, semantic traits of association based
on similar characteristics between concepts, we have pro-
posed a simple algorithm to disentangle this information. The
results reproduce to a large extent the findings in an empirical
Feature Production norms network. The simple strategy of a
random navigation process of the actual FA topology and a
reinforcement inheritance mechanism suffice to produce re-
lationships comparable to those experimentally obtained.

The comparison with the powerful LSA and WAS models
is indicative of the level of macroscopic and microscopic suc-
cess of our proposal, notwithstanding the fact that both these
models provide useful semantic spaces, from a theoretical and
an empirical point of view. Furthermore, beyond the level
of success of any of these models, we propose that RIM is
an approach that enriches other existing models, in the sense
that it introduces a dynamical perspective to the formationof
semantic spaces. The random navigation mechanism intro-
duced, far from been an optimal strategy in the search space,
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ought to start exploring dynamic approaches to the problem
of semantic cognition. Finally, the network representation
and the dynamics on it provide an intuitive and useful rep-
resentation, which can be broadened with more realistic nav-
igation and inheritance strategies.

Assuming that Free Association semantic networks are
good exposures of human semantic knowledge, we speculate
that some cognitive tasks can rely on a specific navigation
of this network, in particular a simple navigation mechanism
based on randomness, structure of the network and reinforce-
ment could be enough to reproduce non trivial relationships
of feature similarity between concepts represented as words.
Moreover, explicit metadata associated to semantic structural
patterns seem to play an important role on information recov-
ery, that could be extended to other cognitive tasks. Given
the already detected importance of modular structure in the
study of semantic representation (see Topic Model, Griffiths
et al., 2007) we think that disambiguation is perhaps the next
affordable challenge along this line of research.

About Complex Network Theory
Complex networks refers to networks (graphs) whose topo-
logical characteristics arenon-trivial in contrast with simple
networks where regularities and symmetries dominate their
structure. Complex network are found in the representation
of interacting elements, in many fields of science ranging
from biology to social sciences (Newman, 2003). Related
to cognitive science, the application of complex networks has
been specially successful to better understand some aspects
of brain dynamics in neuroscience (Sporns, Chialvo, Kaiser,
& Hilgetag, 2004) and linguistics (Sigman & Cecchi, 2002;
Motter, Moura, Lai, & Dasgupta, 2002; Bales & Johnson,
2005; Mehler, 2007), and there is evidence that a step further
to psycholinguistics is also on its way (Steyvers & Tenen-
baum, 2005; Solé, Corominas, Valverde, & Steels, 2008).

Complex networks main assets comprise a wide range of
measures that help on the quantification of its structural char-
acteristics, either at amicro (node),meso(group) andmacro
(network) level. For extensive network theory reviews and
foundational works, see Newman, 2003; Watts & Strogatz,
1998; Barabási & Albert, 1999; Boccaletti, Latora, Moreno,
Chavez, & Hwang, 2006.
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