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Abstract

A fundamental problem solved by the human mind is the for-
mation of basic units to represent observed objects that support
future decisions. We present an ideal observer model that in-
fers features to represent the raw sensory data of a given set of
objects. Based on our rational analysis of feature representa-
tion, we predict that the distribution of the parts that compose
objects should affect the features people use to infer objects.
We confirm this prediction in a behavioral experiment, sug-
gesting that distributional information is one of the factors that
determines how people identify the features of objects.

Keywords: representational change, features, rational analy-
sis, Bayesian modeling

Introduction
I stand at the window and see a house, trees, sky. The-
oretically I might say there were 327 brightnesses and
nuances of colour... And yet even though such droll cal-
culation were possible and implied, say, for the house
120, the trees 90, the sky 117 – I should at least have
this arrangement and division of the total, and not, say,
127 and 100 and 100; or 150 and 117.

Wertheimer (1938, p. 71)

A fundamental problem faced by any learner is the for-
mation of the basic units that represent observed stimuli and
support generalizations from a set of primitives. Wertheimer
(1938) describes a visual form of the problem: how does the
perceptual system form larger representations of observedob-
jects from the information given by varying primitive units?
Although the investigation of Gestalt principles has led toa
fruitful body of research, there currently does not exist a for-
mal computational account of why people form representa-
tions for novel objects. In this paper, we present a formal
model of how feature representations should be inferred from
a set of observed objects and demonstrate that people use sta-
tistical cues to infer the same features to represent novel ob-
jects that our ideal observer model would infer.

There are many factors that influence the features people
infer to represent objects, like the changes of concavity ofits
contour (Hoffman & Richards, 1985), the usefulness for ex-
plaining categorization of objects (Schyns & Murphy, 1994;
Pevtzow & Goldstone, 1994), background knowledge of the
function of objects (Lin & Murphy, 1997), and prior knowl-
edge of what types of features have been useful in the past
(e.g., Gestalt principles, Palmer, 1977). However, we willfo-
cus on one particular factor: the distribution of features over
objects. Intuitively, a feature representation is useful if know-
ing an unknown object has a feature gives you information as
to which object it is. We propose an ideal observer model of
feature inference that is sensitive to the distribution of parts

over objects and demonstrate in a behavioral experiment that
people infer features according to distributional cues as our
model predicts.

A large body of previous research has demonstrated the
powerful effect of statistical cues on human learning (Saffran,
Aslin, & Newport, 1996; Aslin, Saffran, & Newport, 1998).
Artificial language research has shown that human language
learning faculties use the pattern of statistics of speech primi-
tives to segment a continuous speech stream into words (Saf-
fran et al., 1996; Aslin et al., 1998). We complement these
results by performing a rational analysis of feature represen-
tation inference and demonstrating that people use statistical
cues to infer feature representations for novel objects.

Our model is a nonparametric Bayesian model that allows
for an unbounded amount of features to be expressed in the
observed data. The model creates features to reproduce the
objects it observes, but is penalized for each feature it pro-
duces. Thus, the model can infer the number of features nec-
essary to represent the objects it observes. To the best of our
knowledge, it is the only model of feature inference that infers
the number of features from raw sensory data. Additionally,it
has been shown to use distributional and categorization cues
as people do (Austerweil & Griffiths, 2009).

This model makes a prediction based on how distributional
information should affect the features people infer, whichwe
now test in a behavioral experiment. If the parts that com-
prise objects vary independently over objects, then an ob-
server should infer the parts as features. On the other hand,
if the parts that compose objects covary over objects, an ob-
server should infer the objects themselves as features.

The plan of the paper is as follows. In the first section we
discuss previous empirical and computational work on human
feature inference. Next, we present our ideal observer model
and its predictions based on distributional cues. Third, we
demonstrate people use the distributional cue as our model
predicts in a behavioral experiment. Finally, we discuss the
implications of our work for the nature of human concepts
and future directions for research.

Inferring features
Perceptual and conceptual cognitive psychologists have been
investigating the features people use to represent the world
and both have been interested in how the features are created
and change, for reviews of results from both fields see Gold-
stone (2003) and Schyns, Goldstone, and Thibaut (1998). To
distinguish between the parts that exist in the objects and the
features people use to represent observed objects, we will use
“part” or “primitive” to refer to the aspect of the object and
“feature” to refer to the representation of that object.
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x1 x2 x3 x4

x1 1 1 1 0 0 0

x2 0 1 0 1 0 1

x3 0 0 1 1 1 0

x4 1 0 0 0 1 1

Figure 1: The four objects used in Shiffrin and Lightfoot
(1997) and their feature ownership matrix.

Empirical Studies
Previous research has demonstrated two major influences of
human perceptual feature learning: categorization and dis-
tributional information. In general, people infer features to
represent objects that are useful for categorizing (thefunc-
tionality principleof Schyns & Murphy, 1994). For example,
Pevtzow and Goldstone (1994) demonstrated that participants
inferred the diagnostic features useful to categorize eachob-
ject into its appropriate category. They trained two groups
of participants to repeatedly categorize the same four objects
into different category schemes (objects A and B in one cate-
gory vs. A and C in one category). Participants who learned
to categorize A and B together inferred the shared part of A
and B as a feature and those who learned to categorize A and
C together inferred the shared part of A and C as a feature.

In addition to categorization cues, Shiffrin and Lightfoot
(1997) showed that the distribution of parts over objects can
affect the feature representation participants infer. In their
visual search experiment, participants searched for one ofthe
objects shown in the top of Figure 1 in a scene where the other
three objects were distractors. The objects were designed so
that each object shares one line segment with every other ob-
ject (and thus, two line segments must be known to discrimi-
nate between objects). At first, participants do not experience
“popout,” meaning that response time in a visual search is
nearly independent of the number of distractors. Popout typ-
ically only occurs when the target and distractor differ in a
single feature. Thus, the objects must differ by more than
one feature in the participants’ representations (most likely
a conjunction of line segments). However, after about 20
days of training, participants in the experiment experience
popout. Therefore their feature representation of the objects
must have changed to be the objects themselves.

Computational Models
Schyns et al. (1998) identified the need for computational

accounts that infer feature representations and are psycholog-

ically motivated. Two factors that are important for any psy-
chologically plausible model of feature learning are (a) the
number of features should not be specifieda priori and (b) the
features should be inferred from raw sensory data. Previous
work by Ghahramani (1995) and Goldstone (2003) described
models that infer feature representations from raw pixel val-
ues; however, both models require the number of features to
be specified ahead of time. This is a serious issue because
finding the appropriate number of features to use is a difficult
part of the problem of inferring features. For example, it is
clear what the best feature representations are of sizes four
and six for the objects in Shiffrin and Lightfoot (1997), but
which of these two representations is more appropriate? Peo-
ple are not given this information and thus a model of feature
inference should not receive it either.

More recently, Orban, Fiser, Aslin, and Lengyel (2008) de-
fined a Bayesian learning model of visual chunks that can
be interpreted as a model of feature representation inference.
By training participants on scenes where novel objects occur
in groups, they showed people infer representations that cap-
ture correlations between the groups as their model predicts.
Although their model does infer the dimensionality of its rep-
resentations, it is given each scene pre-processed as a binary
string of whether or not objects occur. It does not infer its
features from raw sensory input.

A Rational Analysis of Feature Representation
We will outline, following Austerweil and Griffiths (2009),a
rational analysis of inferring features from raw sensory data
without pre-specifying a specific number of features. First,
we formalize the problem as finding the best feature repre-
sentationZ for a set of observed objectsX. We defineZ to
be a feature ownership matrix, whereZik = 1 indicates that
objecti possesses featurek (as in the matrix in the bottom of
Figure 1. The problem of inferringZ from X can be solved by
applying Bayes’ rule, with the posterior probabilityP(Z|X)
being given by

Ẑ = argmax
Z

P(Z|X) = argmax
Z

P(X|Z)P(Z)

∑Z′ P(X|Z′)P(Z′)
(1)

whereP(Z) is the prior probability of the feature matrix, and
P(X|Z), the likelihood, indicates the probability of the ob-
served data given these features. This splits the problem into
two subproblems: finding a representation that conforms to
our prior assumptions,P(Z), and finding one that can repro-
duce the observed objects with high probability,P(X|Z).

As a prior on feature ownership matrices, we chose a non-
parametric Bayesian prior, the Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2006). The IBP can be interpreted
to be a probability distribution over feature ownership matri-
ces with varying numbers of features. The probability of a
particular feature ownership matrix under the IBP is:

P(Z) =
αK

∏2N−1
h=1 Kh!

exp{−αHN}
K

∏
k=1

(N−mk)!(mk−1)!
N!

(2)
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whereN is the number of objects,Kh is the number of fea-
tures with historyh (the history is the column of the feature
interpreted as a binary number),K is the number of features,
HN is theN-th harmonic number, andmk is the number of
objects that have featurek. One sensible prior assumption is
that we should favor feature representations with a smaller
number of features. By choosingα such thatαN < 1, the IBP

captures this intuition because the
( α

N

)K
term decreases when

the number of features of the representation,K, grows.

In addition to the prior probability on feature represen-
tations, we present two probability distributions to use for
recreating the observed objectsX given a feature ownership
matrixZ depending on the representation of the raw pixels. If
the raw pixels are real valued, then a linear-Gaussian model
(Griffiths & Ghahramani, 2006) can be used and if the raw
pixels are binary, then a noisy-OR model (Wood & Griffiths,
2006) can be used. Using the noisy-OR model, Austerweil
and Griffiths (2009) demonstrated that the model uses distri-
butional and categorization information to infer representa-
tions as people do in both Pevtzow and Goldstone (1994) and
Shiffrin and Lightfoot (1997).

One prediction the model makes is that when the parts
weakly covary over objects (like those in Shiffrin & Light-
foot, 1997), objects should be inferred as features, but when
the parts occur independently over objects, the parts should be
inferred as features. It has not been shown yet that people use
distributional information as the latter prediction suggests.
Additionally, the rational analysis predicts people should in-
fer objects as features even after observing the set of objects
only a small number of times. To test the predictions of our
model, Experiment 1 investigates how people infer feature
representations after observing sixteen novel objects whose
parts either weakly covary or are independent.

Testing the predictions: Martian Inscriptions

The goal of the experiment was to test the prediction of our ra-
tional analysis: when primitives arecorrelatedover observed
objects, people infer the objects as features, and when primi-
tives areindependentover observed objects, people infer the
primitives as features. To investigate this prediction, weshow
participants a group of objects and look at how willing they
are to call a new object that is a combination of three prim-
itives a member of the previous group. According to our
model, participants in theindependentgroup should gener-
alize to this new object (as they should infer the primitives),
but participants in thecorrelatedgroup should not (as they
should infer the objects they observe as features and these
cannot be combined to form the new object).

There were three between-subjects factors each with two
levels:distribution type(correlatedor independent), training
set (1 or 2, which represents which of the primitives were
correlated), andtest order(1 or 2, which represents which of
the two random orderings of the test stimuli were shown to
participants). There was also one within-subjects factor with

Figure 2: The six primitives used to create objects. The bias,
which was in all objects, is shown in gray for reference, and
the primitives are in black. Any combination of three features
forms a connected object when combined with the bias.

three levels:test type, indicating whether the test objects were
previouslyseen, previouslyunseen, or made ofshuffled parts.

Methods
Participants A total of 56 undergraduates from the Uni-
versity of California, Berkeley participated in exchange for
course credit. There were 28 participants in each of thecor-
relatedandindependentconditions withtraining setandtest
ordercounterbalanced.

Stimuli Figure 2 shows the images of the primitives and
bias used to create the objects shown to participants. The ob-
jects were created by combining three primitives with the bias
and were binary images. The primitives were designed such
that any combination of three with the bias was connected,
and so that people would have minimal prior knowledge (e.g.,
from Gestalt principles).

There were twodistribution types: correlated, where
primitives covary imperfectly over objects, andindependent,
where primitives were combined independently over objects.
There were twenty possible objects, corresponding to all pos-
sible ways of choosing three features from a set of six. The
correlatedsets of objects were created to have the same cor-
relation over primitives as Shiffrin and Lightfoot (1997) (see
Figure 1). Two correlated sets were created using disjoint
combinations of primitives, so that different objects appeared
in each set. Each set consisted of four copies of four objects
each with its own random added noise. Theindependentsets
consisted of sixteen of the twenty possible objects. Again,
two independentsets were created, with the four objects miss-
ing from each set corresponding to the four objects contained
in one of thecorrelatedsets. This method of generating stim-
uli guaranteed that eachcorrelatedset had a corresponding
independentset in which each primitive appeared with the
same frequency, allowing us to control for familiarity. Fi-
nally, noise was added to all of the images by flipping each
pixel in the image with probability1

75.
Each participant was shown a training set –correlatedor

independent– with the specific set of objects depending on
which training setcondition they were in. Figure 3 shows
the images in oneindependentand onecorrelatedcondition.
Participants viewed their training set by exploring the objects
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(a)

(b)

Figure 3: One of thecorrelatedand one of theindependent
training sets given to the participants. (a) One of the twocor-
relatedtraining sets. (b) One of the twoindependenttraining
sets. These two sets share four objects.

printed on cards, as described in more detail below. The same
test set was given to all participants in one of two random or-
ders. There were twelve objects in the test set, as shown in
Figure 4. The twelve objects fell into threetest types: four
objects seen by the participant already (seen), four objects the
participant had not seen already that were composed of the
same primitives (unseen), and four objects created by com-
bining primitives inconsistent with the statistical information
from both training sets (shuffled parts). As a consequence
of the way the stimuli were constructed, theseenandunseen
test objects corresponded to one of the twocorrelatedsets –
which objects participants had seen or not was determined by
the training setcondition. This allowed us to control for the
possibility that one set of objects was naturally more appeal-
ing than the other. Theshuffled partstests were created by
first taking the image formed by joining all six parts and seg-
menting it into six different parts. Theshuffled partsimages
used in the tests were four objects formed by a combination
of three of the six shuffled parts. This was done so that the
four shuffled images would have the same gross properties as
the other test images.

The stimuli and test sets were carefully constructed to en-
sure that: (1) the variance at each pixel was equal for all train-
ing sets, (2) the features that were used in constructing the
correlated set were counterbalanced, and (3) the average sim-
ilarity (in terms of pixel overlap) between any training setand
any test set was equal.

(a) (b)

(c)

Figure 4: The three sets of test images. (a)seenfor training
set 1 (shown in Figure 3) andunseenfor training set 2. (b)
unseenfor training set 1 (shown in Figure 3) andseenfor
training set 2. (c)shuffled partsfor all conditions.

Procedure Participants were given the sixteen images on
business cards randomly shuffled in front of them appropriate
to their conditions and given the following cover story:

Recently a Mars rover found a cave with a collection of different
images on its walls. A team of scientists believe the images could
have been left by an alien civilization. The scientists are hoping to
understand the images so they can find out about the civilization.

They were asked to alert the experimenter after “investigat-
ing the images” by “laying all the cards out on the table and
organizing them in any way you think might help you learn
about the images” and told that “no longer than 5-10 minutes
is necessary.” After they finished investigating the images,
they were given the following test instructions:

It looks like there are many more images on the cave wall that the
rover has not yet had a chance to record. If the rover explored the
cave wall further, which images do you think it would be likely to
see?

Your task is to rate how likely you believe it is that the rover sees
each image as it explores further through the cave.

In the booklet in front of you are twelve images, each on its own
page. After you are finished rating each image, turn the page to the
next image. Once you have turned to the next image, please DO
NOT TURN BACK to any previous images.

To minimize memory effects, the images from the training set
were not taken away from the participants. Each image was
shown on a single page and participants were asked to gener-
alize to the test set (“rate from 0-10 how likely you believe the
rover is to see this image on another part of the cave wall”).

Results

Figure 5 shows mean responses and model predictions. Par-
ticipant responses were grouped into the threetest types
(seen, unseen, andshuffled parts) and then averaged. Model
predictions were calculated from the probability of the new
images given the images from either the independent or cor-
related conditions, and averaged in the same way. The model
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Figure 5: Experiment results. The upper panel shows mean
ratings participants for test items as a function of training con-
dition. Error bars show one standard error. On bottom, model
predictions for the same test images given images from either
the independent or correlated conditions.

predictions were computed by approximating the full poste-
rior predictive distribution with the probability of the new
images using the most likely features as determined by a
Markov chain Monte Carlo simulation (see Austerweil &
Griffiths, 2009 for details). Since there was a large difference
in the probabilities of different types of test images, we use a
monotonic but non-linear transformation to produce the val-
ues shown in the plot, raising the probabilities to the power
of 0.0005 and renormalizing. Qualitatively, the model and
people show the same pattern of responses on all test items.

A four-way ANOVA revealed a main effect oftest type
(F(2,52) = 61.01, p < 0.001), an interaction betweentest
typeanddistribution type(F(2,52) = 10.57, p < 0.001), and
no other significant main effects or two-way interactions (all
F < 1). There was a three-way interaction oftest type, test or-
der, anddistribution type(F(2,52) = 19.11, p< 0.05). How-
ever, the effect is irrelevant to the question of whether people
use distributional information as it is caused by participants
in the first test order, independentcondition rating the seen
images higher than those in the secondtest order, indepen-
dentcondition. Since there were no major effects oftraining
set or test order, we collapsed over these conditions in the
subsequent pre-planned analyses.

Confirming our hypothesis, participants in theindependent
condition are more likely to generalize to the unseen im-
ages than those in thecorrelatedcondition (t(54) = 3.05, p<

0.005). There was no difference between theseenandunseen
image ratings for the participants in theindependentcondi-
tion (t(54) = 0.27, p > 0.05); however, there was for those in
the correlatedcondition (t(54) = 8.74, p < 0.001). Partici-

pants in thecorrelatedcondition were more likely to gener-
alize to theseenimages than those in theindependentcon-
dition (t(54) = 2.97, p < 0.005). Participants in both train-
ing conditions are more likely to generalize to theseenim-
ages than theshuffled partsimages (t(54) = 10.07, p< 0.001
andt(54) = 4.63, p < 0.001 respectively). There was no dif-
ference between participiants in training conditions on the
shuffled partsimages (t(54) = −0.12, p > 0.05). Finally,
participants in both thecorrelatedand independentcondi-
tions are more likely to generalize to theunseenimages
than theshuffled partsimages (t(54) = 2.89, p < 0.01 and
t(54) = 5.31, p < 0.001, respectively).

Discussion
The main results of our experiment confirm the predictions
of our model: participants in theindependentcondition do
not differentiate between theseenandunseenimages; how-
ever, participants in thecorrelatedcondition do. Addition-
ally, participants in theindependentcondition are more likely
to generalize to theunseenobjects than those in thecorre-
latedcondition. Since participants in thecorrelatedcondition
should expect fewer objects under the feature representation
predicted by our model (just the four objects they observed),
it is sensible that they rate theseenobjects higher than thein-
dependentgroup. Finally, both groups rate theshuffled parts
images lower than theseenandunseenimages.

Participants in theindependentgroup generalized to theun-
seenobjects, while those in thecorrelatedgroup did not. Nei-
ther group generalized to theshuffled partsobjects and there
is no significant difference between the groups on theshuf-
fled parts. Our results cannot be explained by participants
in the independentgroup just expecting more variance in test
objects than those in thecorrelatedgroup. First, as noted
above, the variance at each pixel was equal across training
sets. Second, if participants in theindependentgroup simply
expect more variance, this should predict that they would be
more willing to generalize to theshuffled partsas well as the
unseenobjects, which was not the case. The pattern of judg-
ments on the different test items made by participants in the
two groups also cannot be explained by a simple categoriza-
tion model with the pixels as features because it would not
distinguish between the types of test items due to the way the
training and test sets were constructed: the similarity (inpixel
overlap) was equal between all training and test sets. Thus,
our results suggest that participants infer features appropri-
ate to the distributional cues between parts in the objects they
observe.

One might argue that participants in thecorrelatedcondi-
tion still differentiate between theunseenandshuffled parts
images and that this in some way invalidates the predictions
of the model; however, most of the images in theshuffled
parts set are poorly formed according to Gestalt principles
and our model does not take into account these effects. In a
follow-up experiment, we are creating a newshuffled partsset
that does not violate our prior notions of what a good object
looks like. Additionally, one might argue that these results are
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due to some aspect of the particular primitives we correlated
together (e.g., they form some pre-existing salient object), but
since there was no effect oftraining set, we demonstrate this
was not the case. Since participants in both thecorrelated
andindependentconditions observe the parts the same num-
ber of times throughout the object set, they must be sensitive
to the covariation of parts in objects and not just the overall
occurrence of the parts themselves.

General Discussion and Conclusions
We have demonstrated that the statistics of how parts vary
over objects affects the features inferred by participants.
Based on our ideal observer model, we predicted participants
should infer the parts of novel objects as features when they
occur independently over objects and the objects themselves
as features when they covary. Participants who observe a set
of only 16 objects whose parts covary do not believe an un-
seen valid combination of parts is a member of the original
set; however, those observe a set of 16 objects whose parts
occur independently do believe the same unseen valid com-
bination of parts is a member of the original set. Thus, peo-
ple use statistical cues to infer features that represent objects,
which influence later decisions about the objects.

Is this effect something unique to visual perception, or does
it reflect a general cognitive ability to appropriately extract
parts or wholes of objects as features? The previous work
demonstrating the importance of statistical cues for inferring
words and actions suggests it is a general cognitive capacity.
To test this, we hope to run a follow-up experiment using the
same paradigm in a conceptual domain.

Our analysis provides a principled computational frame-
work to investigate this problem, identifies key factors influ-
encing the learning of feature representations, demonstrates
people use these factors in the same way as an ideal observer,
and predicted a new empirical result in how people infer fea-
ture representations. In addition to furthering our knowledge
of human feature learning, our results are important to ma-
chine learning because the problem of representing the world
in a useful way is shared between machine learning and cog-
nitive psychology. Finally, our results are first steps towards
a larger goal. We hope to extend our computational model to
capture the effects of categorization, causality, relations, and
prior knowledge and how people infer features.

Acknowledgments. We thank Rob Goldstone, Stephen Palmer,
Karen Schloss, Tania Lombrozo, Charles Kemp, Noah Goodman,
and Eleanor Rosch for insightful discussions, Amy Perfors and three
anonymous reviewers for comments, and Brian Tang and David
Belford for help with experiment construction, running participants,
and data analysis. This work was supported by grant FA9550-07-1-
0351 from the Air Force Office of Scientific Research.

References
Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Compu-

tation of conditional probability statistics by 8-month-old
infants.Psychological Science, 9, 321-324.

Austerweil, J. L., & Griffiths, T. L. (2009). Analyzing
human feature learning as nonparametric Bayesian infer-
ence. In D. Koller, Y. Bengio, D. Schuurmans, & L. Bottou
(Eds.), Advances in Neural Information Processing Sys-
tems(Vol. 21). Cambridge, MA: MIT Press.

Ghahramani, Z. (1995). Factorial learning and the EM al-
gorithm. In Advances in Neural Information Processing
Systems(Vol. 7, p. 617-624). Cambridge, MA: MIT Press.

Goldstone, R. L. (2003). Learning to perceive while perceiv-
ing to learn. InPerceptual Organization in Vision: Behav-
ioral and Neural Perspectives(p. 233-278). Mahwah, NJ:
Lawerence Erlbaum Associates.

Griffiths, T. L., & Ghahramani, Z. (2006). Infinite latent fea-
ture models and the Indian buffet process. In B. Schölkopf,
J. Platt, & T. Hofmann (Eds.),Advances in Neural Informa-
tion Processing Systems(Vol. 18). Cambridge, MA: MIT
Press.

Hoffman, D. D., & Richards, W. A. (1985). Parts in recogni-
tion. Cognition, 18, 65-96.

Lin, E. L., & Murphy, G. L. (1997). Effects of back-
ground knowledge on object categorization and part detec-
tion. Journal of Experimental Psychology: Human Percep-
tion and Performance, 23(4), 1153-1169.

Orban, G., Fiser, J., Aslin, R. N., & Lengyel, M. (2008).
Bayesian learning of visual chunks by human observers.
Proceedings of the National Academy of Sciences, 105(7),
2745-2750.

Palmer, S. E. (1977). Hierarchical structure in perceptual
representation.Cognitive Psychology, 9, 441-474.

Pevtzow, R., & Goldstone, R. L. (1994). Categorization and
the parsing of objects. InProceedings of the Sixteenth An-
nual Conference of the Cognitive Science Society(p. 712-
722). Hillsdale, NJ: Lawrence Erlbaum Associates.

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statis-
tical learning by 8-month old infants.Science, 274, 1926-
1928.

Schyns, P. G., Goldstone, R. L., & Thibaut, J. (1998). De-
velopment of features in object concepts.Behavioral and
Brain Sciences, 21, 1-54.

Schyns, P. G., & Murphy, G. (1994). The ontogeny of part
representation in object concepts. InThe Psychology of
Learning and Motivation(Vol. 31, p. 305-354). San Diego:
Academic Press.

Shiffrin, R. M., & Lightfoot, N. (1997). Perceptual learn-
ing of alphanumeric-like characters. InThe Psychology of
Learning and Motivation(Vol. 36, p. 45-82). San Diego:
Academic Press.

Wertheimer, M. (1938). Laws of organization in perceptual
forms. In W. Ellis (Ed.),A source book of Gestalt psychol-
ogy(p. 71-88). London: Routledge and Kegan Paul.

Wood, F., & Griffiths, T. L. (2006). Particle filtering for non-
parametric Bayesian matrix factorization. In B. Schölkopf,
J. Platt, & T. Hofmann (Eds.),Advances in Neural Informa-
tion Processing Systems(Vol. 18). Cambridge, MA: MIT
Press.

2770


