
Concurrent Execution in a Cognitive Architecture
Dongkyu Choi (dongkyuc@stanford.edu)

Cognitive Systems Laboratory
Center for the Study of Language and Information

Stanford University, Stanford, CA 94305 USA

Abstract

Many human activities happen in parallel. People read while
eating, talk over a phone while walking, and steer their cars
while pushing the gas pedal. Therefore, cognitive architec-
tures, as computational theories of human cognition, should
also have facilities to support this type of capability. In this pa-
per, we introduce extensions to our architecture, ICARUS, that
support concurrent execution. We also provide some prelimi-
nary observations from our recent experiments.

Keywords: cognitive architectures, concurrent execution,
parallel execution, multitasking

Introduction
People do multiple things at the same time. They read books
while they are eating lunch. They talk over a phone while
walking on a street. And when they are driving, they steer
their cars while they push the gas pedal. Sometimes these
concurrent activities can be serialized, and people can always
read books after finishing their lunch, or stop walking to take
a phone call. But some other times these activities need to
happen simultaneously to accomplish their desired results.
For instance, a car will not be moving properly if the driver
cannot steer and push pedals at the same time. Therefore,
cognitive architectures (Newell, 1990), which are computa-
tional models of human cognition, will also need the ability
to support simultaneous, concurrent execution.

Until recently, one such architecture, ICARUS (Langley &
Choi, 2006b) could execute only one thing at a time. It was
still sufficient for many domains, including the Blocks World
and FreeCell (Langley et al., in press). But when used in
more dynamic domains like an urban driving domain (Choi
et al., 2007), it soon became clear that the system’s ability to
show natural behavior was limited, if it can perform only the
serial execution. For example, an ICARUS agent that delivers
packages in a city should perform various maneuvers, like left
or right turns. To execute a turn properly, it would constantly
adjust its speed to a right level and steer its vehicle at the
right moment. However, a serial system can perform only
one of these activities at any given time, and it often misses
the timing for steering while it is focusing its attention to its
speed, or vice versa.

To remedy this type of problem, we introduce two differ-
ent extensions to the architecture. The first takes a represen-
tational approach, which adds a new field in ICARUS’ proce-
dural knowledge structure. In this field, users can explicitly
specify parallel procedures, for which the system will con-
sider concurrent execution within a single cycle. The other
involves the capability to manage resources during the inter-
pretation of knowledge. The system tracks the required re-

sources for each procedure it evaluates, and uses this infor-
mation to find procedures that can occur at the same time.

In the following sections, we first present a brief review
of the ICARUS architecture, and introduce the urban driving
domain that we use throughout the paper for illustrative pur-
poses. Then we describe the two extensions for concurrent
execution in more detail, with some experimental observa-
tions at a preliminary level. We conclude after a review of
related and future work.

Review of ICARUS Architecture
The ICARUS architecture grew out of the cognitive architec-
ture movement, and it shares basic features with other sys-
tems like Soar (Laird et al., 1986) and ACT-R (Anderson,
1993). It makes commitments to its representation and inter-
pretation of knowledge, and has memories that support these.
In this section, we briefly review the architecture, starting
with the representational components and then continuing to
the processes that work over them.

Representation and Memories
Based on psychological evidences, the ICARUS architecture
distinguishes conceptual and procedural knowledge, and it
has separate long-term and short-term memories for each of
them.1 A conceptual long-term memory stores descriptive
knowledge structures that are similar to horn clauses, and a
skill long-term memory includes procedural knowledge struc-
tures that resemble STRIPS operators. Both of these knowl-
edge structures are organized in a hierarchical manner, allow-
ing multiple levels of abstraction.

Tables 1 and 2 show examples of these structures,
concepts and skills, respectively. The first two con-
cepts, yellow-line and at-turning-speed are primi-
tive, so they match variables against perceived objects
and their attributes, and specify conditions among the
matched variables. On the other hand, the last con-
cept, ready-for-right-turn refers to two other concepts,
in-rightmost-lane and at-turning-speed, and therefore
it is a non-primitive concept. Similarly, the last skill in Ta-
ble 2, in-intersection-for-right-turn is a primitive

1Traditionally, ICARUS’ skill short-term memory also served as
a basic goal memory. Introduction of problem solving and learn-
ing modules (Langley & Choi, 2006a) required a more sophisticated
description of goal-related information, and the memory has been
renamed to be a goal short-term memory in the recent versions of
the architecture. While it still includes the short-term knowledge of
skills – the skill instances the system is currently working on, the
new name acknowledges the goal specification and bookkeeping as
its main functions. This renamed memory is identical to the goal
memory mentioned later in this section.

2753



one, in which only actions the system needs to apply in the
world are mentioned. The first two skills, however, are non-
primitive, since they specify subgoals that, in turn, call for
other skills. In this manner, the ICARUS architecture allows
complex description of the surrounding world and possible
courses of action.

Table 1: Some sample ICARUS concepts for the urban driving
domain.

((yellow-line ?line)
:percepts ((lane-line ?line color YELLOW)))

((at-turning-speed ?self)
:percepts ((self ?self speed ?speed))
:tests ((>= ?speed 15)

(<= ?speed 20)))

((ready-for-right-turn ?self)
:relations ((in-rightmost-lane ?self ?l1 ?l2)

(at-turning-speed ?self)))

Table 2: Some sample ICARUS skills for the urban driving
domain.

((on-street ?self ?tg)
:percepts ((self ?self)

(street ?st)
(street ?tg)
(intersection ?int))

:start ((intersection-ahead ?self ?int ?tg)
(close-to-intersection ?self ?int))

:subgoals ((ready-for-right-turn ?self)
(in-intersection-for-right-turn

?self ?int ?st ?tg)
(on-street ?self ?tg)))

((ready-for-right-turn ?self)
:percepts ((self ?self))
:subgoals ((in-rightmost-lane ?self ?l1 ?l2)

(at-turning-speed ?self)))

((in-intersection-for-right-turn
?self ?int ?c ?tg)

:percepts ((self ?self)
(street ?c)
(street ?tg)
(intersection ?int))

:start ((on-street ?self ?c)
(ready-for-right-turn ?self))

:actions ((*cruise)))

The architecture also has a goal memory, where it stores its
top-level goals and the goal stacks associated with them. In-
formation stored in each goal stack includes a main goal, any
subgoals the system is currently working on, and retrieved
skill instances for the goals. For example, if the system has a
goal, (on-street ME B), the system might retrieve the first
skill shown in Table 2, instantiate it, and store the information
in the goal memory as its current intention. Then depend-
ing on the situation, ICARUS may select the first subgoal,
and include an instance, (ready-for-right-turn ME) in
the memory.

Inference, Evaluation, and Execution

The ICARUS architecture operates in distinct cycles, and on
each cycle, it invokes a series of processes. These include
the inference of the current belief state, the evaluation of its
skills based on the inferred state, and the execution of actions
implied by the selected skill. The processes start with the
sensory input from the environment at a given time. Based
on the perceptual information, the system infers instances of
all its concepts that are true in the current state. It starts with
the lowest level structures – primitive concepts, and moves
up the hierarchy to non-primitive concepts. Hence, any naive
approach to the inference process is prone to the combina-
torial effect caused in domains with many objects, and there
have been several efforts to alleviate this problem including
Asgharbeygi et al. (2005).

Once the system infers the current belief state, it starts eval-
uating its skills to achieve the given goals. It begins with the
first goal in its goal memory and retrieves all the skills that are
known to achieve the goal. Then the system evaluates them
to find the first one that is executable in the current state, with
a preference to more recently acquired skills among the dis-
junctive definitions. A non-primitive skill, which refers to
subgoals in its body, is executable when all of its precondi-
tions are met and the first unsatisfied subgoal has at least one
executable skill that will achieve it. In the case of primitive
skills, however, there are no subgoals for them, and there-
fore, they are executable once their preconditions are met. As
a result, the system effectively finds the first skill path that
consists entirely of executable skills given the current belief
state.

At the leaf node of the selected skill path is a primitive
skill, which implies some actions the system needs to take in
the environment. The ICARUS architecture takes these actions
and applies them to make changes in its surroundings. In turn,
its perceptual input on the next cycle will change, and the
system repeats the processes based on the new sensory data.
This allows reactive execution in ICARUS, while staying to be
goal-directed. The balance between the two properties is an
important feature of the architecture. In the sections below,
we briefly describe the urban driving domain, and continue
our discussion on the architecture and its newest extensions
in more detail.

2754



An Illustrative Domain
Driving is a complex task. It involves the perception of both
static and dynamic objects and the control of the vehicle for
various maneuvers. Driving in an urban setting can be even
more complicated, due to various types of objects to interact
with. For this reason, the development for the urban driv-
ing domain continues, since its first use as a testbed for the
ICARUS architecture (Choi et al., 2004). Figure 1 shows the
driving environment in the current version of the domain. In
this domain, there is a vehicle for an ICARUS agent, and there
are static objects including street segments, lane lines, side-
walks, and buildings. The environment also includes dynamic
objects like pedestrians and other cars. To drive around in this
city, the ICARUS agent should control the steering angle and
the amounts of gas and brake pedal application.

Figure 1: A screenshot of the urban driving domain.

As shown later in this paper, basic driving tasks like left
and right turns are often used, but several higher-level tasks
including package delivery are also composed. For all of
these tasks, the agent should perceive information on various
objects in the world, decide its course of action to achieve
its goal, and apply control actions in the environment. In the
case of package delivery, an agent can see the addresses on
its packages and check the addresses of buildings around it.
With no map of the city provided, it can simply move around
in the city until it finds the right street, and proceed to the
package address. During the execution, the agent faces many
different challenges, from the basic negotiation of the roads,
to collision avoidance with unexpected obstacles like pedes-
trians crossing the street.

The richness of the domain provides an interesting envi-
ronment for testing different aspects of agents, and it is par-
ticularly useful to test their ability to perform multiple tasks
simultaneously. With only a handful of control inputs, the
domain is simple enough for a clear demonstration of con-

current behaviors. But the concurrency is naturally required
in this domain, and the agent’s capability is easily tested us-
ing both qualitative and quantitative measures of the driving
behavior. For example, one can simply see how smooth an
agent’s driving behavior is. Alternatively, one can use the
time taken for a specific task like a right turn, or the amount
of deviation from the ideal driving path for the turn as a quan-
titative measure.

Concurrent Execution in ICARUS

The latest extensions to ICARUS include two different meth-
ods for concurrent execution. One that uses a new field in
skills allows explicit specifications of concurrency. Users can
specify subgoals that require simultaneous consideration for
execution in this field, and the system evaluates each and ev-
ery one of these parallel subgoals in a single cycle. When
this method is used, the user should make sure that there are
no conflicts among the subgoals, since the system does not
employ any facility to check if they are conflict-free.

The second method involves a more implicit way to rep-
resent concurrency, and it is also more complicated. In this
case, the system does not have any special field in its skill
structures but, instead, it assumes that all subgoals are candi-
dates for concurrent execution, subject to the resources they
require. The architecture tracks resources that are used for
each primitive skill, and prevents concurrent execution of
subgoals that lead to primitive skills with resource conflicts.
We describe the two methods in more detail in the following
sections, and explain how they lead to concurrent execution.

Explicit Concurrency
In the developer’s point of view, the most straightforward way
to implement an extension to cognitive architectures might
be creating a new field that will be interpreted in a certain
way. The explicit specification of concurrency in ICARUS is
a good example of that, and here we added a new field to its
skill structure. When users intend to have certain subgoals
executed in parallel, they can simply put the subgoals in this
new field, and the system will consider them for simultaneous
execution in a single cycle. In this section, we discuss the
extended representation and its interpretation.

Representation We have seen skills for serial execution
in Table 2. When the concurrent execution of subgoals is
desired, one can use the new field, :parallel instead of
:subgoals in skills. The syntax for this field is exactly the
same as that of the :subgoals field, but the semantics are
different. While the ordering of the elements in :subgoals
reflects the priority, or simply the order in which they are to
be executed, ordering in the :parallel fields do not have
any meaning. The field simply lists parallel subgoals.

Table 3 shows the parallel version of one of the skills
shown earlier. This modified skill, ready-for-right-turn
means that the system should consider the subgoals,
in-rightmost-lane and at-turning-speed simultane-
ously. This particular program is written so that the two par-

2755



allel subgoals lead to different control actions at the leaf node
of their skill paths, and therefore no conflicts occur during the
execution of this skill.

Table 3: A sample ICARUS skill for parallel execution in the
urban driving domain.

((ready-for-right-turn ?self)
:percepts ((self ?self))
:parallel ((in-rightmost-lane ?self ?l1 ?l2)

(at-turning-speed ?self)))

Interpretation During the evaluation of its skills, the
ICARUS architecture finds a path through its skill hiearchy
that is executable. When it reaches at a skill with parallel
subgoals, it continues evaluating each of them independently,
as if each was a single subgoal at that point. Once all of the
parallel subgoals are evaluated, it checks if each and every
one of them either returns some actions or is satisfied in the
current belief state. If this is true, the system simply collects
the resulting actions.

For example, in Figure 2, the ICARUS agent has
a top-level goal, (on-street ME B). The system
finds that it has a skill for the goal, with all the pre-
conditions, (intersection-ahead ME INT B) and
(close-to-intersection ME INT) met in the current
state. The skill is a standard, serial skill, so the system selects
the first unsatisfied subgoal, (ready-for-right-turn ME).
An available skill for this goal is the parallel skill shown in
Table 3 that does not have any preconditions, and therefore
the system considers its subgoals (in-rightmost-lane ME
L1 L2) and (at-turning-speed ME) at the same time. All
preconditions of the two skills for these goals are satisfied,
so the system finds two executable skill paths, 0–1–2 and
0–1–3, for the top-level goal. It then executes implied actions
from both paths, *steer and *gas.

Concurrency through Resource Management
Another method for concurrency in ICARUS takes a more im-
plicit approach. Execution in physical worlds mostly requires
some type of resource, and the concurrent execution requires
resources to support all the actions involved. Therefore, we
can use resource as a measure to check any interference or
conflicts between the candidates for concurrent execution. By
tracking the resources required for each skill, the ICARUS
architecture can automatically resolve any conflicts, giving
skills with higher priority the opportunity to fire before any
other lower priority skills that share some or all of the re-
sources.

Representation This approach requires no changes to the
syntax of the existing knowledge structures. However, the
system now interprets all elements in :subgoals fields as
candidates for concurrent execution, as well as the top-level

(on‐street ME B) 

(ready‐for‐right‐turn 
ME) 

(in‐intersec7on‐ 
for‐right‐turn 
ME INT ST 3) 

(in‐rightmost‐lane 
ME L1 L2) 

(at‐turning‐speed ME) 

(*steer 15)  (*gas (‐ 15 ?speed)) 

precondi7ons: 
(intersec7on‐ahead ME INT B) 
(close‐to‐intersec7on ME INT) 

precondi7ons: 
null 

precondi7on: 
(in‐leGmost‐lane 

ME L3 L4) 

precondi7on: 
(slow‐for‐turns ME) 

0 

1 

2 

(on‐street ME B) 

3 

Figure 2: Multiple skillpaths that are executable in parallel, in
the middle of a run in the urban driving domain. The agent’s
car is currently in a leftmost lane and moving slower than the
desired turning speed. Ellipses denote goals, and rectangles
represent actions. Numbers shown at the bottom-right corners
of the goals are used to show skill paths in the main text.

goals an ICARUS agent might have. Users deposit subgoals in
the existing field as usual, and the system finds opportunities
for concurrency among them. Whenever the resources allow,
it will take the opportunities found for execution.

Interpretation In this approach, ICARUS uses a new evalu-
ation method during the interpretation of its skill knowledge.
Here, the user pre-specifies the required resources for each
action, and the system tracks the resources used for each
primitive skill it evaluates. Instead of stopping the evalua-
tion once an executable skill path is found, it marks resources
for the primitive skill on the first executable path as assigned,
and continues its search for the next path. It inspects the sub-
sequent executable paths, and decide whether to allow their
execution or not by checking the required resources for them.
The ones that require any resource that is already assigned to
prior paths are rejected. The system continues its search until
either all available resources are assigned, or it reaches the
rightmost branch of its skill hierarchy.

For example, the system finds the same skill paths, 0–1–
2 and 0–1–3 shown in Figure 2, as in the first method. In
this case, however, the system finds them not because the
two subgoals at the third level, in-right-most-lane and
at-turning-speed are marked as parallel, but because the
actions they lead to, *steer and *gas, require two different
resources. They require hands to control the steering wheel
and the right foot for the gas pedal, respectively. The system
first finds the path, 0–1–2 as it would in the standard system.
But before searching through the hierarchy any further, it as-
signs the required resource, hands, to the selected *steer
action. While continuing its search, the system finds another
executable path, 0–1–3. It then checks if any of the resources
this path requires are already assigned. When it finds the re-
source, right foot, is still available, it assigns that for the *gas

2756



action. Once these two skill paths are found, the system stops
its search through the skill hierarchy, since all the available
resources are assigned.

Experimental Observations
We hypothesize that the concurrent execution results in both
qualitatively and quantitatively better behaviors. We also sus-
pect that the system using the second method, namely, the one
that uses the resource management scheme for concurrent ex-
ecution will perform as well as the system that uses manually
specified :parallel fields. However, our research is still in
its early stages, and the urban driving domain is not yet ready
for serious quantitative experiments. Therefore, in this sec-
tion, we compare the serial system and the concurrent system
by observing the quality of their behaviors in the urdan driv-
ing domain.

In this experiment, the agent starts at (38.5, 48.5), which is
located in the rightmost lane on A street. Its goal is to be on
second street, and for that, it needs to make a right turn at the
upcoming intersection. In Figure 3, there is a building cor-
ner at the coordinate (50, 490), and therefore traversing in the
rectangular region, {(x,y) | x > 50,y < 490} is not allowed.
With the serial execution system, the agent shows some insuf-
ficient behaviors as shown in (a), where it could not execute
the turn properly and dangerously moving toward the build-
ing on four out of five times. The concurrent execution sys-
tem using the resource management scheme, however, com-
pletes the right turn properly on four out of five times, as
shown in (b).

Considering the fact that the agents in both cases do not
have any low-level feedback controllers, the driving paths in
(b) show significant improvements. We believe that the serial
execution system fails in many cases because it could not ac-
celerate by pushing the gas pedal during the steering action
that reduces the speed of the car. In the concurrent execution
system, however, both the steering action and the accelera-
tion can happen simultaneously, resulting in turns that follow
smoother arcs.

Related and Future Work
There have been various efforts to support concurrent exe-
cution and resource management in related fields. Freed’s
APEX (1998) manages resources and resolve conflicts us-
ing explicit descriptions in its procedural knowledge. With
temporal constraints and priorities specified in its knowl-
edge structure, the architecture provides a powerful execution
mechanism for multiple tasks.

PRS (Georgeff & Ingrand, 1989; Myers, 1996) also pro-
vide a reactive execution capability that support multitasking.
It uses special constructs in its goal structures, and controls
termination and continuation of processes explicitly. Perhaps
the closest work to PRS will be Firby’s RAP system (1994).
This system manages multiple continous processes that inter-
act with each other, but in an implicit way. It does not use any
explicit constructs that interrupt and resume processes.

480 

490 

500 

510 

520 

30  40  50  60  70  80  90  100  110  120  130 

(a) Right turns by the serial execution system

480 

490 

500 

510 

520 

30  40  50  60  70  80  90  100  110  120  130 

(b) Right turns by the concurrent execution system that uses
resource management

Figure 3: Some traces of the ICARUS agent’s actual driving
paths for a right turn, using the serial execution system in (a)
and using the concurrent execution system in (b). The hori-
zontal and vertical axes denote x- and y-coordinates, respec-
tively. Each plot shows the results from five different trials.

More recently, Salvucci and Taatgen (2008) provided a
broader view of the concurrent multitasking. They introduced
the notion of ’threads’ that resembles those in operating sys-
tems. As in our work on ICARUS, the work has its basis on
a cognitive architecture, ACT-R (Anderson, 1993), providing
better representation of multitasking behavior.

Compared to these systems, ICARUS controls concurrent
subgoals more loosely, and it only restricts the execution of
later tasks that require already assigned resources. However,
the system imposes priorities to its goals, preferring the ones
to the left side of its skill hierarchy. Since ICARUS’ evaluation
process happens from left to right of the hierarchy, it always
executes higher-priority tasks first even under resource con-
straints. Interruption and continuation of tasks happen in an
implicit way, again tied to the goal priorities. The system’s
reactive nature forces it to pause any ongoing tasks when
higher-priority goals become false in its surroundings, and
continue the paused tasks once these goals are achieved.

We are working to make this process more explicit, how-
ever. Through a mechanism for reactive goal nomination
in the architecture, we have internally demonstrated that
ICARUS can select and instantiate relevant top-level goals for
the current situation. We also want this mechanism to handle
priorities among the goals during this process. But instead
of the priority computation in a cost-based approach (e.g.,

2757



Freed, 2000), we plan to associate certain concept instances
to each goal that will trigger nomination or abandonment of
the goal.

The current version of ICARUS stores the concurrency it
finds through resource management in a separate memory.
Although we have implemented an initial version of the sys-
tem that takes advantage of this knowledge, it cannot use the
information unless an exactly identical situation arises in the
future. We believe ICARUS should learn new skills or revise
the existing ones based on the concurrency it finds. This way,
the system will be able to have more general knowledge that
can be useful in a later time.

Older versions of ICARUS could impose simple tempo-
ral constraints through disjunctive skills chained together
through preconditions, but its representational power was
limited. The current work on concurrent execution alleviates
this limitation greatly, but still the system cannot express all
possible temporal relations. An ongoing research involves an
extension to the architecture that allows explicit specification
of temporal constraints in both its concepts and skills.

Conclusions
In this paper, we reported two extensions to the ICARUS ar-
chitecture that support concurrent execution. The first method
uses a new field in the system’s procedural knowledge struc-
tures, which can be used to manually specify parallel sub-
goals. This method lacks of any facility to ensure that the
subgoals are conflict-free, and it puts the burden on users.
The second method solves this problem using resource man-
agement, and automatically finds parallel subgoals that can be
executed concurrently. Combined with ICARUS’ goal priori-
ties, this method provides a promising way to model human
behavior, especially in dynamic domains like the urban driv-
ing. But there are still more work to be done in this direction,
and we hope to report results from our ongoing work in a near
future.

Acknowledgments
This research was funded in part by Grant HR0011-04-1-
0008 from DARPA IPTO. Discussions with Pat Langley,
Chunki Park, David Stracuzzi, and Dan Shapiro contributed
to many ideas presented here.

References
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ:

Lawrence Erlbaum.
Asgharbeygi, N., Nejati, N., Langley, P., & Arai, S. (2005).

Guiding inference through relational reinforcement learn-
ing. In Proceedings of the fifteenth international confer-
ence on inductive logic programming (pp. 20–37). Bonn,
Germany: Springer Verlag.

Choi, D., Kaufman, M., Langley, P., Nejati, N., & Shapiro, D.
(2004). An architecture for persistent reactive behavior. In
Proceedings of the third international joint conference on
autonomous agents and multi agent systems (pp. 988–995).
New York: ACM Press.

Choi, D., Morgan, M., Park, C., & Langley, P. (2007). A
testbed for evaluation of architectures for physical agents.
In Proceedings of the aaai-2007 workshop on evaluating
architectures for intelligence. Vancouver, BC: AAAI Press.

Firby, R. J. (1994). Task networks for controlling continu-
ous processes. In Proceedings of the second international
conference on ai planning systems (pp. 49–54).

Freed, M. (1998). Managing multiple tasks in complex, dy-
namic environments. In Proceedings of the fifteenth na-
tional conference on artificial intelligence (pp. 921–927).
Menlo Park, CA: AAAI Press.

Freed, M. (2000). Reactive prioritization. In Proceedings of
the second nasa workshop on planning and scheduling in
space. San Francisco, CA.

Georgeff, M. P., & Ingrand, F. F. (1989). Decision-making
in an embedded reasoning system. In Proceedings of the
eleventh international joint conference on artificial intelli-
gence (pp. 972–978). Morgan Kaufmann.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunk-
ing in soar: The anatomy of a general learning mechanism.
Machine Learning, 1, 11–46.

Langley, P., & Choi, D. (2006a). Learning recursive con-
trol programs from problem solving. Journal of Machine
Learning Research, 7, 493–518.

Langley, P., & Choi, D. (2006b). A unified cognitive archi-
tecture for physical agents. In Proceedings of the twenty-
first national conference on artificial intelligence. Boston:
AAAI Press.

Langley, P., Choi, D., & Rogers, S. (in press). Acquisition of
hierarchical reactive skills in a unified cognitive architec-
ture. Cognitive Systems Research.

Myers, K. L. (1996). A procedural knowledge approach to
task-level control. In Proceedings of the third international
conference on ai planning systems.

Newell, A. (1990). Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cogni-
tion: An integrated theory of concurrent multitasking. Psy-
chological Review, 115, 101–130.

2758


