
Learning from Games: Inductive Bias and Bayesian Inference

Michael H. Coen
1,2

 and Yue Gao
2

Department of Biostatistics and Medical Informatics
1

Department of Computer Sciences
2

University of Wisconsin, Madison, WI 53706

{mhcoen, gao}@cs.wisc.edu

Abstract

A classic problem in understanding human intelligence is
determining how people make inductive inferences when
presented with small amounts of data. We examine this
question in the context of the guess-the-next-number game,
where players are presented with short series of numbers and
asked to guess the next one in the sequence. Our approach is
unique in that we use a stochastic context free grammar to
model the mathematical operations that generate a given
sequence. The individual probabilities in this grammar are
learned by observing people play this game, and thereby, they
capture some of the mathematical inductive bias of our
sample population. We then use this framework to solve
novel sequence guessing problems computationally, mirroring
human performance. Our goal is to better understand how
people approach math problems by examining the space of
mathematical functions they find easiest to both generate and
recognize. We are also interested in tracking how this
changes over time as functions of education and age. Finally,
we examine how our results confirm a large body of
psychological observations about how people approach
mathematics problems.

Keywords: Inductive Bias; Mathematical Modeling;
Stochastic Context Free Grammars; Bayesian inference.

Introduction

People regularly make inferences by induction, even when

presented with very small amounts of information. The

purpose of our work is to understand more about how this

occurs in mathematical reasoning, especially when these

inferences are remarkably consistent and have little formal

justification. We explore this problem in the context of the

guess-the-next-number game. For example, suppose we

present someone with the sequence [1, 2, 4] and ask him to

guess the next number in the series. If he were to suggest 8,

stating this set corresponded to “powers of 2,” we would

presumably find this a plausible explanation. On the other

hand, were he to suggest the number is 6, explaining the

sequence seems to be “1 followed by the even numbers,” we

might find that answer less satisfactory.
1

Of course, this determination is highly arbitrary. Because

inductive inferences are not logically entailed, they must

rest upon some set of assumptions, known as an inductive

bias (Mitchell 1980). In the absence of such a bias, all

inferences consistent with a finite dataset are equally valid,

1 We will see, however, that appeals to minimum description

length (e.g., Rissanen 1978) do not capture human preferences in

making these judgments.

as observed by Hume (1739) and formalized by Wolpert

(1996). While this is true in a theoretical sense, people

surely do have preferences; in other words, it is quite

reasonable to suppose that we find some answers more

plausible than we do others, even in the absence of objective

justifications.

Although there is no doubt that humans generalize using

an inductive bias, formally characterizing it can be

challenging. For example, even in domains where one

believes that Occam’s Razor is the principle guiding human

induction (Myung and Pitt 1997), the numerous

formulations of this classic notion of parsimony may lead to

diametrically opposed conclusions. (For an interesting

discussion of this issue in elucidating the innate

mathematical abilities of infants, see Carey 2002).

In this paper, we explore a domain where we can formally

model inductive bias using probabilities in a stochastic

context free grammar, which appear to capture how people

do math “in their heads.” Because our notion of inductive

bias is rigorously defined, we can also trace how it changes

over time. Thus, we expect grammar school, high school,

and college students to have very different inductive biases,

which can of course be further characterized by their fields

of study. We are also interested in tracking how these

mathematical biases change as people age. More generally,

this work provides a window in the types of mathematical

operations with which people are most comfortable as well

as the types of operations that perhaps require more careful

instruction.

Figure 1. Examining the guess-the-next-number game.

While the examples in (a) and (b) are fairly straightforward,

the sequence in (c) is somewhat more ambiguous.

2729

The Next Number Game

We examine our use of the next number game and some

of the ambiguities it presents to players. This game is

generally familiar to people around the world and is played

by both children and adults. In Figure 1, we examine

several instances of this game and begin to understand why

specific solutions might be subject to debate.

When the sequences correspond to familiar concepts, such

as the prime numbers or perfect cubes, players already

familiar with these concepts are likely to latch onto them.

In that sense, this tells us far more about what

predetermined sets of numbers a player is already familiar

with than it does about his mathematical preferences. This

was the approach pursued in Tenenbaum (1999), where he

presented predetermined, unordered sets to players and

asked them to rank how likely it was some other number

belonged to each set. He was able to predict their rankings

using a clever variant of minimum description length.

However, his framework did not generalize to simple

unknown sets, in other words, data it had not been trained

on, such as prime numbers – 1. We wanted to create a more

generative framework that could predict arbitrary sequences

and simultaneously provide insight into the human

mathematical reasoning process, in a spirit similar to (Leslie

et al. 2008). We also wanted to create a platform that

enables tracking how these identified mathematical biases

change over time.

The problem of examining inductive bias in fitting data to

closed form equations has been studied by Haverity and

Koedinger (2000). While they did not computationally

model the reasoning process behind their subjects’

performance, our results are in strong agreement with their

observations and previous psychological studies, such as

Huesmann and Cheng (1973).

We note that Sloane (2008) maintains a delightful, online

encyclopedic database of integer sequences. While both

highly esoteric and thorough, it is simply a lookup table of

series submitted by users. Many of its sequences are

generated by physical and mathematical processes that have

no obvious closed form generative formulae. Thus, it is not

relevant to our interests here, as it provides little, if any,

information about human mathematical cognition.

A Generative Framework

We constructed a generative framework for mathematical

expressions using a stochastic context free grammar

(SCFG). This allows us to capture the notions of “function

recognition” and “function creation” in a well-defined

framework. This approach for recognition has become

extremely popular for parsing in the Statistical Natural

Language Processing community (e.g., Collins 2003), and

seemed extremely well-suited for expressing mathematical

operations. However, a basic distinction is that our

grammars output mathematical expressions, which are then

evaluated to produce numerical values.

Our grammar is shown in Figure 2. It defines the notion

of an expression, which is a function that generates the

elements of a sequence. This function generating each

element may be based upon its position in the sequence

(represented by “Index”), the immediately prior numbers in

the sequence (represented by “Previousi-k”), or perhaps even

a constant (represented by “Number”). The generating

function is constructed out of both prefix and infix

operations (“PrefixOp” and “InfixOp” respectively). A

prefix operator takes a single argument, such as is the case

with log, while an infix operator takes two arguments, such

as when performing addition or subtraction. Constants are

divided into three categories: (1) Small numbers, which we

assume are easier to process cognitively; (2) Large number

that are presumably more difficult to involve in mental

arithmetic; and (3) Special numbers such as 10 or π, that

simplify many types of operations or have some other

special significance. For example, trigonometric operations

on simple functions of π will be very familiar to many

university students. One might in fact formulate the

grammar to “confine” the use of π to trigonometric

functions. However, as reasonable as this appears, it

complicates the grammar and eliminates other functions of π

that are not unreasonable, e.g., Index + π. Fortunately, this

type of simplification is unnecessary, as we do not expect

that people are able to play this game with arbitrarily

complex generating functions. Thus, the assumption that

people can play this game eliminates concerns about

pathologically complex functions that few (or no) people

could ever recognize. We return to the notion of function

Expression → PrefixOp (Expression) p_1

Expression → Expression InfixOp Expression p_2

Expression → Previousi-1
 p_3 | Previousi-2

 p_4 | Previousi-3
 p_5

Expression → Number p_6

Expression → Index p_7

PrefixOp → exp p_8 | log p_9 | sin p_10 | cos p_11 | tan p_12

PrefixOp → floor p_13 | ceiling p_14 | mod p_15 | rem p_16 | prime
 p_17

InfixOp → +
 p_18

 | −
 p_19

 | ×
 p_20

 | ÷
 p_21

 | ^
 p_22

Number → SmallNum | LargeNum

| SpecialNum

SmallNum → [-9
 p_26

,…,9
 p_45

]

LargeNum → [-50,…, -11, 11, …, 50]
 p_46

SpecialNum → -100
 p_47

 | -10
 p_48

 | ¼
p_49

| ½
 p_50

SpecialNum → π
 p_51

 | 10
 p_52

 | 100
 p_53

Index → [1,…,10]
 p_54

Figure 2. Our stochastic context free grammar for

generating mathematical functions. Non-terminals begin

with capital letters. Terminals symbols are indicated by

lower-case strings or numbers. Each production rule is

associated with some probability p_i, indicating its

likelihood according to our training corpus of people

playing this game. Players of the guess the next number

game provide both their answers and the function they think

generated it. Our goal is to use this corpus of games to

derive the probabilities p_i in order to both discover and to

duplicate human inductive bias playing this game.

2730

complexity and cognitive plausibility below.

Each production rule in this SCFG is associated with

some probability, represented by the superscripted p_i

following it. This probability represents the observed

likelihood our sample population has employed this

productive rule while playing a series of games. To reduce

the amount of training data required, we “lumped together”

certain groups, such as large numbers, represented by the

LargeNum production rule. While we assume any of these

numbers may appear in the generating formula, gathering

data for each individual number would require that each

subject play a very large of games. Furthermore, given the

natural variability in determining the function generating a

given sequence, there is no way to guarantee subjects would

employ a specific number. In other words, it can be difficult

to “force” subjects to employ particular production rules.

Ad hoc sequences, such as using a constant difference

between successive elements to “lead” players to each

number, e.g., for 11, we might use [1, 12, 33, 44, …], would

simply generate a uniform distribution among the members

of LargeNum, which is what we were seeking to avoid in

the first place. Thus, we avoid the problem entirely and

make certain classes of number probabilistically equivalent.

Finding the Probabilities

To determine the probabilities p_i for each production rule,

we first collected data from 20 university undergraduates

with nonmathematical backgrounds
2
, who played up to 22

different rounds of the guess-the-next-number game over

ascending and descending sequences. The students were

asked both to guess the next number in a displayed sequence

and to provide the formula generating it, in light of the

presented sequence. There was no imposed time limit and a

student was free to skip a sequence if he could not solve it.

Our goal for this experiment was to learn the mathematical

inductive biases of college-aged non-mathematicians. We

examine three sample sequences from this experiment.

(1) Consider the sequence [1, 4, 9]. We found that all

subjects predicted the next number would be 16, but

provided two syntactically different but numerically

equivalent generating formulae, at least up to index 4.

 40% guessed: f(index) = index2

 60% guessed: f(index) = Previousindex-1 + 2×index + 1

For this example, we see that most subjects preferred

conceptually simple arithmetic operations, even if the

resulting functional description was longer and bordered

on being convoluted. We found this type of result quite

surprising, as it would not have occurred to us this

sequence would be identified as anything other than

perfect squares.

2 Although one can debate our selection criterion, we eliminated

students majoring in mathematics, computer science, or physics.

(2) Consider the sequence [1,2,10]. That this sequence is

in some sense more difficult was apparent because

subjects spent more time studying it, often commenting

it felt “difficult” or under constrained.

 All but one: f(index) = Previousindex-1 + (index – 1)3

Yielding: [1, 2, 10, 37, 101, …]

 One guess: f(index) = Previousindex-1 + (Previousindex-1)
3

Yielding: [1, 2, 10, 1010, 1.0303×109,…]

Note that although these guesses lead to different

predictions of subsequent sequence values, they are

structurally quite similar. From our Bayesian perspective,

they will lead to very similar priors in the grammar.

There are a multitude of other functions that were not

selected by our sample population, e.g., f(index) =

Previousindex-1 + 8
(index-1)

, presumably reflecting a distaste

for this level of complexity.
3

(3) Finally, we examine the sequence [0,7,26], where all

the subjects agreed on the next element (63) and on the

generating formula:

 f(index) = index3 – 1

3 This formula and similar variants were provided by several

graduate students in Computer Science, who were also asked to

solve this problem. It comes as little surprise they have very

different inductive biases for playing this game.

Table 1. Examining the Bayesian probabilities of some

production rules in our generative mathematical grammar.

The probabilities are determined for each non-terminal rule

in our grammar separately.

Production Rule Probability
Expression → PrefixOp (Expression) 0.00402
Expression → Expression InfixOp Expression 0.349
Expression → Previousi-1 0.177
Expression → Previousi-2 0.0321
Expression → Number 0.317
Expression → Index 0.104

InfixOp → + 0.388
InfixOp → − 0.143
InfixOp → × 0.263
InfixOp → ÷ 0.0388
InfixOp → ^ 0.163

SmallNum → -1 0.04
SmallNum → 1 0.24
SmallNum → 2 0.40
SmallNum → 3 0.08

SmallNum → 4 0.04

… …

2731

Here, alternative explanations avoiding a difficult

operation, such as exponentiation, are so complex that

they are disregarded. We explore the measure of

functional complexity in our system below.

To derive individual production probabilities from all

presented sequences, we used the inside-outside algorithm

(Baker 1979). Specifically, we employed a Gibbs sampler

for SCFGs developed by (Johnson et al. 2007), which

derived Bayesian priors for the production rules based on

the formulas generated by the subjects using Markov chain

Monte Carlo methods. Finally, we had to perform a

renormalization of the infix operators (InfixOp) probabilities

to account for commutative operations such as × and +.

This is due to the fact that the Viterbi algorithm (see the

next section) has no way of realizing, for example, that a+b

is equal to b+a and thereby undercounts its likelihood. (It

computes a single path to the answer, without realizing there

are numerically equivalent ones that are syntactically

different in trivial ways.)

We examine some of the more interesting results of this

derivation in Table 1. Among the most significant but

unsurprising findings is that people do not like performing

division in their heads; it represents 3.88% of infix

operations. In contrast, they are ten times more likely to

prefer addition, which represents 38.8% of infix operations.

Our subjects also preferred transforming non-terminal

expressions into concrete numbers rather quickly, as

opposed to developing complex expressions. As might be

expected, 1 and 2 were clearly the most popular numbers for

mental arithmetic. (Note that 0 does not appear, as it has a

probability of zero; this is because no one used it to solve

any sequence problems. This makes sense, as it contributes

nothing given the mathematical operations presented here.

In other words, there is no reason to employ it.)

How much does the selection of sequences itself bias

these results? For example, were we to only present

ascending series, there would be an innate bias in favor of

monotone functions such as addition and multiplication, at

least with the ontology presented here. Thus, we made an

effort to balance the sequences to remove obvious sources

of such bias. However, it should be noted that generating

representative sequences of three to five numbers that are

amenable to human solution is non-trivial. One cannot

simply produce them randomly, e.g., by typing

round(rand(1,4)*10)) in Matlab, and expect to

produce a sequence that holds any meaning or lends itself to

an obvious generative formula. Thus, while there are an

infinite number of “solvable” sequences, they are somewhat

sparsely distributed and must be selected with some care.

We therefore generated a large list of sequences and

randomly selected from among them those solvable upon

inspection. However, one of the benefits of our constructed

generative framework is that we can use it to automatically

generate sequences for future experimentation that capture

the types of operations people prefer. In this sense, we can

use our grammar to produce rather than recognize

sequences. This helps insure that new sequences do not

violate our learned inductive biases, at least for retesting this

population on larger sequence corpora or comparing their

biases with that of another target population, e.g., math

majors.

Processing the Sequences

After deriving the probabilities for our generative SCFG via

Gibbs sampling, we encoded the grammar in Prism (Sato

and Kameya 2008), a probabilistic version of Prolog that

requires parameterized probability distributions over its

production rules. Prism’s inference engine incorporates the

Viterbi algorithm (Forney 1973). Therefore, its resolution is

guided by following the most likely series of rule

expansions to satisfy a given query. One can view Prism as

an extension of Prolog that provides the most probable

solution to a given query. Queries here corresponded to the

question: given an input sequence, what is the most likely

next number according to our SCFG? The process of

determining the next number generates the function

responsible for doing so via Prolog’s resolution mechanism.

Because our recursive grammar is computing

mathematical functions, as opposed to parsing a sentence, it

will never “run out” of input data in resolving this query.

Instead, it would continue down the most likely

mathematical path forever, constantly generating ever more

complex expressions. Because the Viterbi algorithm needs

to hit a leaf to trigger backtracking, resolution would never

halt in our framework. We therefore add an explicit

stopping criterion, using the probabilities in the SCFG to

determine the overall probability of any expression

examined in the course of resolution. By the definition of a

context free grammar, the probabilities are independent, so

we can simply multiply all non-terminal probabilities to

determine the value for a given expression.
4
 If this

probability falls below a predefined threshold, our system

automatically triggers backtracking, essentially ruling the

current line of investigation as too complex to be plausible.

This threshold can be computed directly from the gathered

corpus of human responses.

We view this as a probabilistic version of working

memory, as defined in (Miller 1956). We believe that

preferred operations are easier to cognitively track, whereas

less likely (or more difficult) operations have a greater

impact in limiting the size of the overall expression. Thus,

we are not explicitly modeling the expression size. Rather,

the probability threshold implicitly limits the complexity of

the internal mathematical computation. This seems

cognitively reasonable and agrees with our observed results.

Results

We now examine some sample outputs of our system. They

demonstrate how its behavior changed after acquiring the

inductive bias of the observed population and show how it

4 For the sake of efficiency, the overall probability is adjusted

dynamically during rule expansions and backtracking.

2732

generalizes to handle out-of-set examples, namely,

sequences it has never seen before. We then discuss

implications of this work, particularly what it reveals about

the capabilities for performing mental arithmetic in people.

The Effects of Learning

We presented subjects with the sequence [8, 4, 1]. The test

subjects overwhelming (88%) guessed the generating

function was f(index) = Previousindex-1 + index – 6. Before

training, our sequence guesser, using uniform distributions

on its production rules, predicted the function was:

f(index) = Previousindex-2 / (2 × Previousindex-1)

However, after training on examples that did not include

this sequence, our system changed its answer to agree with

the solution provided by the vast majority of human subjects

on this problem. The expansion of these formulae in terms

of our grammar is displayed in Figure 3. We note the

acquisition of human inductive bias now leads it to predict

the human answer is more than an order of magnitude more

likely than the system’s original, untrained solution to this

problem. This change is due to the system having learned

not only that division is less likely but also to its preference

for using small numbers over more distant terms

(Previousindex−2) in the sequence’s generating formula.

Modifying Familiar Sets

We now look at an example that demonstrates the benefits

of not restricting our approach to a predetermined set of

sequences. Put somewhat differently, we can see the power

of a generative inductive framework in examining how it

copes with functional transformations to familiar sequences,

such as the prime numbers. We presented our system with

the sequence [1,2,4,6], which was not part of its training

data. It predicted the generating function was

f(index)=Prime(index) – 1 with a confidence level of 91%

based on its acquired inductive probabilities, which agrees

with human subjects. We see the second most likely

candidate for this sequence in Figure 4, which has a

probability of approximately 1%.
5
 Note that the most likely

5 Final probabilities for expressions are determined by

generating all possible explanatory functions within our threshold,

calculating their probabilities according to the SCFG, and then

normalizing these into a probability distribution. In the event we

simply want the most likely expression, it is unnecessary to

enumerate every generating function.

f(index) = Previousindex-2 / (2 × Previousindex-1)

f(index) = Previousindex-1 + index – 6

(A)

(B)

Figure 3. Our system’s output on the sequence [8,4,1],

before training (A) and after training (B). Without any

inductive bias, the system predicts the explanation in (A),

as we assume a uniform distribution over each production

rule in the absence of any bias. After deriving the

production probabilities via Gibbs sampling using the

inside-outside algorithm, our system acquires the priors

representing the inductive biases of our sample population.

It then changes its answer to (B), agreeing with 88% of

human subjects, even though it has never seen this

sequence before. It now assigns the answer in (B) more

than ten times the probability as the answer in (A).

(A)

(B)

f(index) = Prime(index) – 1

f(index)=Floor((index + Previousindex-1) / 2)

Figure 4. Generated solutions to the sequence [1, 2, 4, 6].

The solution in (A) has a probability of 91%. The second

most likely solution, show in (B), is determined to be only

1% likely. The example demonstrates the need for a

generative mathematical framework for playing the guess-

the-next-number game, as opposed to enumerating huge

numbers of predetermined training sets. Many familiar sets

are easily recognizable under various simple functional

transformations, e.g., subtracting one from them.

2733

solution is simply a straightforward modification to a

familiar set. There is any number of modifications to such

sets that are recognizable, where the likelihood of

recognition depends upon the complexity of the applied

operations. The advantage of working within a generative

framework is clear from this example, as opposed to

exhaustively listing sets that might be encountered and then

defining a metric that attempts to compute human

preferences among them.

Conclusions

This paper has presented a framework for solving the

guess-the-next-number game that is based upon acquiring a

realistic model of human inductive bias. As these brief

sequence problems are highly unconstrained and yet

different people often arrive at identical results, we find the

hypothesis that there are innate cognitive preferences

guiding mathematical reasoning extremely reasonable.

While these may vary by particular age groups and

educational background, our preliminary results agree with

previous psychological studies of induction in mathematical

problem solving, notably including the work of (Huesmann

and Cheng, 1973, Gerwin and Newsted 1977, Qin and

Simon 1990). Specifically, we verified that people have

clear preferences among operators and their formulation of

generative functions is very much driven by the underlying

data. Our results also agreed with people having a clear

preference for linear functions, in cases where the data make

them possible.

As part of this work, we constructed a system that

acquires mathematical inductive biases observed in our

sample population. In doing so, it is able to imitate their

problem solving, even in cases where it must ignore more

compact functions because they are mathematically

complex according to the acquired bias. It thus employs a

different notion of simplicity than would be described by

formalizations of generative brevity.

Our future plans are to test different age groups to track

the temporal development of their mathematical inductive

biases. We are particularly interested in bias invariants that

persist over time and in educational strategies that may be

suggested by elucidating limitations in how people approach

mathematical problem solving.

We also believe the framework in this paper is quite

general and can acquire inductive biases in a wide variety of

areas that have similar probabilistic generative structure.

We intend to employ it for modeling and predicting human

behavior in these realms. Here, the primary challenge will

be modeling actions or decisions via the SCFG formalism,

so we may derive their probabilities through observation

using the Bayesian framework presented here.

Acknowledgments

This work was supported by the School of Medicine and

Public Health, the Wisconsin Alumni Research Foundation,

the Department of Biostatistics and Medical Informatics,

and the Department of Computer Sciences at the University

of Wisconsin-Madison. Thanks to W. Richards, C. Dyer,

and M.H. Ansari for helpful comments.

References

Baxter, J. A. (2000). Model of Inductive Bias Learning. Journal of

Artificial Intelligence Research. 149(12).

Carey, S. (2002). Evidence for numerical abilities in young infants:

a fatal flaw? Developmental Science, 5(2), pp202-205.

Collins, M. (2003). Head-Driven Statistical Models for Natural
Language Parsing. Computational Linguistics 29:4, pp589-637.

Forney, G. D. (1973). The Viterbi algorithm. Proceedings of the
IEEE. 61(3), pp268-278, March.

Gerwin, D and Newsted, E. (1977). A comparison of some

inductive inference models. Behavioral Science．22:1-11.

Haverity, L.A., and Koedinger, K.R. (2000). Solving inductive

reasoning problems in Mathematics: Not-so-Trivial Pursuits.

Cognitive Science: A multidisciplinary Journal. 24(2), pp249-298.

Huesmann, L.R. and Cheng, C. (1973). A model for the induction

of mathematical functions. Psychological Review. 80, pp126-138.

Hume, D. (1739). A Treatise of Human Nature. (eds.) Norton,

D.F., and Norton, M.J. Oxford University Press. New York.
2000.

Johnson, M., Griffiths, T.L., and Goldwater, S. (2007) Bayesian

Inference for PCFGs via Markov Chain Monte Carlo. Proceedings

of the 2007 Conference of the North American Chapter of the
Association for Computational Linguistics. pp139-146.

Leslie, A.M., Gelman, R., and Gallistel, C.R. (2008). The

generative basis of natural number concepts. Trends in cognitive
sciences. 12(6), pp213-218.

Miller, G.A. (1956). The Magical number seven, plus or minus

two: some limits on our capacity of processing information. The

Psychological Review. 63(2).

Mitchell, T. (1980). The need for biases in learning

generalizations. Technical Report CBM-TR-117, Department of
Computer Science, Rutgers University.

Myung, I. and Pitt, M. (1997). Applying Occam’s Razor in

Modeling Cognition: A Bayesian approach. Psychonomic Bulletin
& review. 4(1), pp79-95.

Qin, Y., and Simon, H.A. (1990). Imagery and problem solving.

Proceedings of the 12th Annual Conference of the Cognitive

Science Society. pp646-65.

Rissanen, J. (1978) Modeling by the shortest data description.
Automatica 14, pp465-471.

Sato, T. and Kameya, Y. (2008). New advances in logic-based

probabilistic modeling by PRISM. In Probabilistic Inductive Logic
Programming, LNCS 4911, Springer, pp118-155.

Sloane, N. J. A. (2008). The On-Line Encyclopedia of Integer

Sequences. Electronically published at:

www.research.att.com/~njas/sequences/.

Tenenbaum, J.B. (1999) A Bayesian Framework for Concept
Learning. Ph.D. Thesis, Massachusetts Institute of Technology.

Wolpert, D. H. (1996). The lack of a priori distinctions between
learning algorithms. Neural Computation, 8(7), pp1341-1390.

2734

