Learning from Games: Inductive Bias and Bayesian Inference

Michael H. Coen®? and Yue Gao®
Department of Biostatistics and Medical Informatics®
Department of Computer Sciences’
University of Wisconsin, Madison, W1 53706
{mhcoen, gao}@cs.wisc.edu

Abstract

A classic problem in understanding human intelligence is
determining how people make inductive inferences when
presented with small amounts of data. We examine this
question in the context of the guess-the-next-number game,
where players are presented with short series of numbers and
asked to guess the next one in the sequence. Our approach is
unique in that we use a stochastic context free grammar to
model the mathematical operations that generate a given
sequence. The individual probabilities in this grammar are
learned by observing people play this game, and thereby, they
capture some of the mathematical inductive bias of our
sample population. We then use this framework to solve
novel sequence guessing problems computationally, mirroring
human performance. Our goal is to better understand how
people approach math problems by examining the space of
mathematical functions they find easiest to both generate and
recognize. We are also interested in tracking how this
changes over time as functions of education and age. Finally,
we examine how our results confirm a large body of
psychological observations about how people approach
mathematics problems.

Keywords: Inductive Bias; Mathematical Modeling;
Stochastic Context Free Grammars; Bayesian inference.

Introduction

People regularly make inferences by induction, even when
presented with very small amounts of information. The
purpose of our work is to understand more about how this
occurs in mathematical reasoning, especially when these
inferences are remarkably consistent and have little formal
justification. We explore this problem in the context of the
guess-the-next-number game. For example, suppose we
present someone with the sequence [1, 2, 4] and ask him to
guess the next number in the series. If he were to suggest 8,
stating this set corresponded to “powers of 2,” we would
presumably find this a plausible explanation. On the other
hand, were he to suggest the number is 6, explaining the
sequence seems to be “1 followed by the even numbers,” we
might find that answer less satisfactory."

Of course, this determination is highly arbitrary. Because
inductive inferences are not logically entailed, they must
rest upon some set of assumptions, known as an inductive
bias (Mitchell 1980). In the absence of such a bias, all
inferences consistent with a finite dataset are equally valid,

! We will see, however, that appeals to minimum description
length (e.g., Rissanen 1978) do not capture human preferences in
making these judgments.

as observed by Hume (1739) and formalized by Wolpert
(1996). While this is true in a theoretical sense, people
surely do have preferences; in other words, it is quite
reasonable to suppose that we find some answers more
plausible than we do others, even in the absence of objective
justifications.

Although there is no doubt that humans generalize using
an inductive bias, formally characterizing it can be
challenging. For example, even in domains where one
believes that Occam’s Razor is the principle guiding human
induction (Myung and Pitt 1997), the numerous
formulations of this classic notion of parsimony may lead to
diametrically opposed conclusions. (For an interesting
discussion of this issue in elucidating the innate
mathematical abilities of infants, see Carey 2002).

In this paper, we explore a domain where we can formally
model inductive bias using probabilities in a stochastic
context free grammar, which appear to capture how people
do math “in their heads.” Because our notion of inductive
bias is rigorously defined, we can also trace how it changes
over time. Thus, we expect grammar school, high school,
and college students to have very different inductive biases,
which can of course be further characterized by their fields
of study. We are also interested in tracking how these
mathematical biases change as people age. More generally,
this work provides a window in the types of mathematical
operations with which people are most comfortable as well
as the types of operations that perhaps require more careful
instruction.

(a) 1,8,27,7 Guess is 64.
Why? This is the sequence x°.

(b) 2,3,5,7,7 Guessis11.
Why? These are the prime numbers.

6, n = prime numbers - 1
1,2,4,6,10,12, 16, ...

7,n=ii+1)/2+1
1,2,4,7,11, 16, 22, ...
(€) 1,2, 4,7 .
8,n=2

1,2,4, 8,16, 32,64, ...

9, n = partial sums of Catalan numbers
1,2,4,9, 23, 65, 197, ...

Figure 1. Examining the guess-the-next-number game.
While the examples in (a) and (b) are fairly straightforward,
the sequence in (c) is somewhat more ambiguous.

2729

The Next Number Game

We examine our use of the next number game and some
of the ambiguities it presents to players. This game is
generally familiar to people around the world and is played
by both children and adults. In Figure 1, we examine
several instances of this game and begin to understand why
specific solutions might be subject to debate.

When the sequences correspond to familiar concepts, such
as the prime numbers or perfect cubes, players already
familiar with these concepts are likely to latch onto them.
In that sense, this tells us far more about what
predetermined sets of numbers a player is already familiar
with than it does about his mathematical preferences. This
was the approach pursued in Tenenbaum (1999), where he
presented predetermined, unordered sets to players and
asked them to rank how likely it was some other number
belonged to each set. He was able to predict their rankings
using a clever variant of minimum description length.
However, his framework did not generalize to simple
unknown sets, in other words, data it had not been trained
on, such as prime numbers — 1. We wanted to create a more
generative framework that could predict arbitrary sequences
and simultaneously provide insight into the human
mathematical reasoning process, in a spirit similar to (Leslie
et al. 2008). We also wanted to create a platform that
enables tracking how these identified mathematical biases
change over time.

The problem of examining inductive bias in fitting data to
closed form equations has been studied by Haverity and
Koedinger (2000). While they did not computationally
model the reasoning process behind their subjects’
performance, our results are in strong agreement with their
observations and previous psychological studies, such as
Huesmann and Cheng (1973).

We note that Sloane (2008) maintains a delightful, online
encyclopedic database of integer sequences. While both
highly esoteric and thorough, it is simply a lookup table of
series submitted by users. Many of its sequences are
generated by physical and mathematical processes that have
no obvious closed form generative formulae. Thus, it is not
relevant to our interests here, as it provides little, if any,
information about human mathematical cognition.

A Generative Framework

We constructed a generative framework for mathematical
expressions using a stochastic context free grammar
(SCFG). This allows us to capture the notions of “function
recognition” and ‘“function creation” in a well-defined
framework. This approach for recognition has become
extremely popular for parsing in the Statistical Natural
Language Processing community (e.g., Collins 2003), and
seemed extremely well-suited for expressing mathematical
operations. However, a basic distinction is that our
grammars output mathematical expressions, which are then
evaluated to produce numerical values.

Our grammar is shown in Figure 2. It defines the notion
of an expression, which is a function that generates the

Expression — PrefixOp (Expression) *-*

Expression — Expression InfixOp Expression -2
Expression — Previous., ™ | Previous;., ™| Previous;.; ™-*
Expression — Number "-°

Expression — Index P~/

PrefixOp — exp "-® | log™® | sin*° | cos - | tan
PrefixOp — floor ** | ceiling *-** | mod *-*° | rem *-° | prime P-*
Inﬁxop St p_18 | _p.19 | x p_20 | - p_21 | ADP_22

Number — SmallNum | LargeNum | SpecialNum

SmallNum — [-9 p*26,. ..,9 p*45]
LargeNum — [-50,..., -11, 11, ..., 50] "
SpecialNum — -100 *-*" | =10 P-*® | 1/, P-4%| 15 P
SpecialNum — "->* | 10 "-** | 100 *-**

Index — [1,...,10] ™-**

p_12

_46

Figure 2. Our stochastic context free grammar for
generating mathematical functions. Non-terminals begin
with capital letters. Terminals symbols are indicated by
lower-case strings or numbers. Each production rule is
associated with some probability p_i, indicating its
likelihood according to our training corpus of people
playing this game. Players of the guess the next number
game provide both their answers and the function they think
generated it. Our goal is to use this corpus of games to
derive the probabilities p_i in order to both discover and to
duplicate human inductive bias playing this game.

elements of a sequence. This function generating each
element may be based upon its position in the sequence
(represented by “Index”), the immediately prior numbers in
the sequence (represented by “Previous;”), or perhaps even
a constant (represented by “Number”). The generating
function is constructed out of both prefix and infix
operations (“PrefixOp” and “InfixOp” respectively). A
prefix operator takes a single argument, such as is the case
with log, while an infix operator takes two arguments, such
as when performing addition or subtraction. Constants are
divided into three categories: (1) Small numbers, which we
assume are easier to process cognitively; (2) Large number
that are presumably more difficult to involve in mental
arithmetic; and (3) Special numbers such as 10 or =, that
simplify many types of operations or have some other
special significance. For example, trigonometric operations
on simple functions of m will be very familiar to many
university students. One might in fact formulate the
grammar to ‘“confine” the use of m to trigonometric
functions. However, as reasonable as this appears, it
complicates the grammar and eliminates other functions of ©
that are not unreasonable, e.g., Index + =. Fortunately, this
type of simplification is unnecessary, as we do not expect
that people are able to play this game with arbitrarily
complex generating functions. Thus, the assumption that
people can play this game eliminates concerns about
pathologically complex functions that few (or no) people
could ever recognize. We return to the notion of function

2730

complexity and cognitive plausibility below.

Each production rule in this SCFG is associated with
some probability, represented by the superscripted p_i
following it. This probability represents the observed
likelihood our sample population has employed this
productive rule while playing a series of games. To reduce
the amount of training data required, we “lumped together”
certain groups, such as large numbers, represented by the
LargeNum production rule. While we assume any of these
numbers may appear in the generating formula, gathering
data for each individual number would require that each
subject play a very large of games. Furthermore, given the
natural variability in determining the function generating a
given sequence, there is no way to guarantee subjects would
employ a specific number. In other words, it can be difficult
to “force” subjects to employ particular production rules.
Ad hoc sequences, such as using a constant difference
between successive elements to “lead” players to each
number, e.g., for 11, we might use [1, 12, 33, 44, ...], would
simply generate a uniform distribution among the members
of LargeNum, which is what we were seeking to avoid in
the first place. Thus, we avoid the problem entirely and
make certain classes of number probabilistically equivalent.

Finding the Probabilities

To determine the probabilities p_i for each production rule,
we first collected data from 20 university undergraduates
with nonmathematical backgrounds?, who played up to 22
different rounds of the guess-the-next-number game over
ascending and descending sequences. The students were
asked both to guess the next number in a displayed sequence
and to provide the formula generating it, in light of the
presented sequence. There was no imposed time limit and a
student was free to skip a sequence if he could not solve it.
Our goal for this experiment was to learn the mathematical
inductive biases of college-aged non-mathematicians. We
examine three sample sequences from this experiment.

(1) Consider the sequence [1, 4, 9]. We found that all
subjects predicted the next number would be 16, but
provided two syntactically different but numerically
equivalent generating formulae, at least up to index 4.

o 40% guessed: f(index) = index?
o 60% guessed: f(index) = PreviouSingex.1 + 2xindex + 1

For this example, we see that most subjects preferred
conceptually simple arithmetic operations, even if the
resulting functional description was longer and bordered
on being convoluted. We found this type of result quite
surprising, as it would not have occurred to us this
sequence would be identified as anything other than
perfect squares.

2 Although one can debate our selection criterion, we eliminated
students majoring in mathematics, computer science, or physics.

Table 1. Examining the Bayesian probabilities of some
production rules in our generative mathematical grammar.
The probabilities are determined for each non-terminal rule
in our grammar separately.

Production Rule Probability
Expression — PrefixOp (Expression) 0.00402
Expression — Expression InfixOp Expression | 0.349
Expression — Previous;.; 0.177
Expression — Previousi., 0.0321
Expression — Number 0.317
Expression — Index 0.104
InfixOp — + 0.388
InfixOp — — 0.143
InfixOp — % 0.263
InfixOp — + 0.0388
InfixOp — 7 0.163
SmallNum — -1 0.04
SmallNum — 1 0.24
SmallNum — 2 0.40
SmallNum — 3 0.08
SmallNum — 4 0.04

(2) Consider the sequence [1,2,10]. That this sequence is
in some sense more difficult was apparent because
subjects spent more time studying it, often commenting
it felt “difficult” or under constrained.

o All but one: f(index) = Previousiygex.1 + (index — 1)*
Yielding: [1, 2, 10,37, 101, ...]

o One guess: f(index) = PreviouSingex.1 + (PrevioUsingex.1)®
Yielding: [1, 2, 10, 1010, 1.0303x10°,...]

Note that although these guesses lead to different
predictions of subsequent sequence values, they are
structurally quite similar. From our Bayesian perspective,
they will lead to very similar priors in the grammar.
There are a multitude of other functions that were not
selected by our sample population, e.g., f(index) =
Previousingex.: + 8%, presumably reflecting a distaste
for this level of complexity.’

(3) Finally, we examine the sequence [0,7,26], where all
the subjects agreed on the next element (63) and on the
generating formula:

o f(index) = index® - 1

% This formula and similar variants were provided by several
graduate students in Computer Science, who were also asked to
solve this problem. It comes as little surprise they have very
different inductive biases for playing this game.

2731

Here, alternative explanations avoiding a difficult
operation, such as exponentiation, are so complex that
they are disregarded. We explore the measure of
functional complexity in our system below.

To derive individual production probabilities from all
presented sequences, we used the inside-outside algorithm
(Baker 1979). Specifically, we employed a Gibbs sampler
for SCFGs developed by (Johnson et al. 2007), which
derived Bayesian priors for the production rules based on
the formulas generated by the subjects using Markov chain
Monte Carlo methods. Finally, we had to perform a
renormalization of the infix operators (InfixOp) probabilities
to account for commutative operations such as x and +.
This is due to the fact that the Viterbi algorithm (see the
next section) has no way of realizing, for example, that a+b
is equal to b+a and thereby undercounts its likelihood. (It
computes a single path to the answer, without realizing there
are numerically equivalent ones that are syntactically
different in trivial ways.)

We examine some of the more interesting results of this
derivation in Table 1. Among the most significant but
unsurprising findings is that people do not like performing
division in their heads; it represents 3.88% of infix
operations. In contrast, they are ten times more likely to
prefer addition, which represents 38.8% of infix operations.
Our subjects also preferred transforming non-terminal
expressions into concrete numbers rather quickly, as
opposed to developing complex expressions. As might be
expected, 1 and 2 were clearly the most popular numbers for
mental arithmetic. (Note that O does not appear, as it has a
probability of zero; this is because no one used it to solve
any sequence problems. This makes sense, as it contributes
nothing given the mathematical operations presented here.
In other words, there is no reason to employ it.)

How much does the selection of sequences itself bias
these results? For example, were we to only present
ascending series, there would be an innate bias in favor of
monotone functions such as addition and multiplication, at
least with the ontology presented here. Thus, we made an
effort to balance the sequences to remove obvious sources
of such bias. However, it should be noted that generating
representative sequences of three to five numbers that are
amenable to human solution is non-trivial. One cannot
simply produce them randomly, e.g., by typing
round (rand(1,4)*10)) in Matlab, and expect to
produce a sequence that holds any meaning or lends itself to
an obvious generative formula. Thus, while there are an
infinite number of “solvable” sequences, they are somewhat
sparsely distributed and must be selected with some care.

We therefore generated a large list of sequences and
randomly selected from among them those solvable upon
inspection. However, one of the benefits of our constructed
generative framework is that we can use it to automatically
generate sequences for future experimentation that capture
the types of operations people prefer. In this sense, we can
use our grammar to produce rather than recognize

sequences. This helps insure that new sequences do not
violate our learned inductive biases, at least for retesting this
population on larger sequence corpora or comparing their
biases with that of another target population, e.g., math
majors.

Processing the Sequences

After deriving the probabilities for our generative SCFG via
Gibbs sampling, we encoded the grammar in Prism (Sato
and Kameya 2008), a probabilistic version of Prolog that
requires parameterized probability distributions over its
production rules. Prism’s inference engine incorporates the
Viterbi algorithm (Forney 1973). Therefore, its resolution is
guided by following the most likely series of rule
expansions to satisfy a given query. One can view Prism as
an extension of Prolog that provides the most probable
solution to a given query. Queries here corresponded to the
question: given an input sequence, what is the most likely
next number according to our SCFG? The process of
determining the next number generates the function
responsible for doing so via Prolog’s resolution mechanism.

Because our recursive grammar is computing
mathematical functions, as opposed to parsing a sentence, it
will never “run out” of input data in resolving this query.
Instead, it would continue down the most likely
mathematical path forever, constantly generating ever more
complex expressions. Because the Viterbi algorithm needs
to hit a leaf to trigger backtracking, resolution would never
halt in our framework. We therefore add an explicit
stopping criterion, using the probabilities in the SCFG to
determine the overall probability of any expression
examined in the course of resolution. By the definition of a
context free grammar, the probabilities are independent, so
we can simply multiply all non-terminal probabilities to
determine the value for a given expression.* If this
probability falls below a predefined threshold, our system
automatically triggers backtracking, essentially ruling the
current line of investigation as too complex to be plausible.
This threshold can be computed directly from the gathered
corpus of human responses.

We view this as a probabilistic version of working
memory, as defined in (Miller 1956). We believe that
preferred operations are easier to cognitively track, whereas
less likely (or more difficult) operations have a greater
impact in limiting the size of the overall expression. Thus,
we are not explicitly modeling the expression size. Rather,
the probability threshold implicitly limits the complexity of
the internal mathematical computation. This seems
cognitively reasonable and agrees with our observed results.

Results

We now examine some sample outputs of our system. They
demonstrate how its behavior changed after acquiring the
inductive bias of the observed population and show how it

* For the sake of efficiency, the overall probability is adjusted
dynamically during rule expansions and backtracking.

2732

(A) Expression,

e
—— —

E>-cpre_ssic:ar'|z InfixOp E:s:;:are-ssi-:m3
| 7

—

Expression, Infix

Murmber X

SrnallNum

Previousgnde-1 Expressions

Previous jde-z

-
&

f(index) = PreviouSingex-2/ (2 X PreviouSindex-1)

Expression
(B) ___——_:.T-"_'—-—__]:_
Expre;sionz InfixOp, E)-q::re-ssi::n3
| _---"-_-__-_ '-Jl T T
Previousnde-1) + Expression, InfixOp; Expressiong

index - Number

smallNum

3
f(index) = Previousingex.1 + index — 6

Figure 3. Our system’s output on the sequence [8,4,1],
before training (A) and after training (B). Without any
inductive bias, the system predicts the explanation in (A),
as we assume a uniform distribution over each production
rule in the absence of any bias. After deriving the
production probabilities via Gibbs sampling using the
inside-outside algorithm, our system acquires the priors
representing the inductive biases of our sample population.
It then changes its answer to (B), agreeing with 88% of
human subjects, even though it has never seen this
sequence before. It now assigns the answer in (B) more
than ten times the probability as the answer in (A).

generalizes to handle out-of-set examples, namely,
sequences it has never seen before. We then discuss
implications of this work, particularly what it reveals about
the capabilities for performing mental arithmetic in people.

The Effects of Learning

We presented subjects with the sequence [8, 4, 1]. The test
subjects overwhelming (88%) guessed the generating
function was f(index) = Previousiygex.1 + index — 6. Before
training, our sequence guesser, using uniform distributions
on its production rules, predicted the function was:

f(index) = PreviouSingex.o/ (2 X Previous;ngex-1)

However, after training on examples that did not include
this sequence, our system changed its answer to agree with
the solution provided by the vast majority of human subjects
on this problem. The expansion of these formulae in terms
of our grammar is displayed in Figure 3. We note the
acquisition of human inductive bias now leads it to predict

the human answer is more than an order of magnitude more
likely than the system’s original, untrained solution to this
problem. This change is due to the system having learned
not only that division is less likely but also to its preference
for using small numbers over more distant terms
(Previousi,gex—2) in the sequence’s generating formula.

Modifying Familiar Sets

We now look at an example that demonstrates the benefits
of not restricting our approach to a predetermined set of
sequences. Put somewhat differently, we can see the power
of a generative inductive framework in examining how it
copes with functional transformations to familiar sequences,
such as the prime numbers. We presented our system with
the sequence [1,2,4,6], which was not part of its training
data. It predicted the generating function was
f(index)=Prime(index) — 1 with a confidence level of 91%
based on its acquired inductive probabilities, which agrees
with human subjects. We see the second most likely
candidate for this sequence in Figure 4, which has a
probability of approximately 1%.> Note that the most likely

(A) Expression,
T

Expression;
T
- -
— ~

Pref.ixOp Expression, - 1

Prirme index

InfixOp Exp r;ssion.

f(index) = Prime(index) — 1

(B) Expression,
—
— e
PrefixOp Expression,
T
Floor Expre:ssion, Infix-Op, Expre_ssions
Expression, InfixOp, Expressions Mumber
index + Previous jydee-n SmallNum

f(index)=Floor((index + Previousingex-1) / 2)

Figure 4. Generated solutions to the sequence [1, 2, 4, 6].
The solution in (A) has a probability of 91%. The second
most likely solution, show in (B), is determined to be only
1% likely. The example demonstrates the need for a
generative mathematical framework for playing the guess-
the-next-number game, as opposed to enumerating huge
numbers of predetermined training sets. Many familiar sets
are easily recognizable under various simple functional
transformations, e.g., subtracting one from them.

® Final probabilities for expressions are determined by

generating all possible explanatory functions within our threshold,
calculating their probabilities according to the SCFG, and then
normalizing these into a probability distribution. In the event we
simply want the most likely expression, it is unnecessary to
enumerate every generating function.

2733

solution is simply a straightforward modification to a
familiar set. There is any number of modifications to such
sets that are recognizable, where the likelihood of
recognition depends upon the complexity of the applied
operations. The advantage of working within a generative
framework is clear from this example, as opposed to
exhaustively listing sets that might be encountered and then
defining a metric that attempts to compute human
preferences among them.

Conclusions

This paper has presented a framework for solving the
guess-the-next-number game that is based upon acquiring a
realistic model of human inductive bias. As these brief
sequence problems are highly unconstrained and yet
different people often arrive at identical results, we find the
hypothesis that there are innate cognitive preferences
guiding mathematical reasoning extremely reasonable.
While these may vary by particular age groups and
educational background, our preliminary results agree with
previous psychological studies of induction in mathematical
problem solving, notably including the work of (Huesmann
and Cheng, 1973, Gerwin and Newsted 1977, Qin and
Simon 1990). Specifically, we verified that people have
clear preferences among operators and their formulation of
generative functions is very much driven by the underlying
data. Our results also agreed with people having a clear
preference for linear functions, in cases where the data make
them possible.

As part of this work, we constructed a system that
acquires mathematical inductive biases observed in our
sample population. In doing so, it is able to imitate their
problem solving, even in cases where it must ignore more
compact functions because they are mathematically
complex according to the acquired bias. It thus employs a
different notion of simplicity than would be described by
formalizations of generative brevity.

Our future plans are to test different age groups to track
the temporal development of their mathematical inductive
biases. We are particularly interested in bias invariants that
persist over time and in educational strategies that may be
suggested by elucidating limitations in how people approach
mathematical problem solving.

We also believe the framework in this paper is quite
general and can acquire inductive biases in a wide variety of
areas that have similar probabilistic generative structure.
We intend to employ it for modeling and predicting human
behavior in these realms. Here, the primary challenge will
be modeling actions or decisions via the SCFG formalism,
so we may derive their probabilities through observation
using the Bayesian framework presented here.

Acknowledgments

This work was supported by the School of Medicine and
Public Health, the Wisconsin Alumni Research Foundation,
the Department of Biostatistics and Medical Informatics,
and the Department of Computer Sciences at the University

of Wisconsin-Madison. Thanks to W. Richards, C. Dyer,
and M.H. Ansari for helpful comments.

References

Baxter, J. A. (2000). Model of Inductive Bias Learning. Journal of
Artificial Intelligence Research. 149(12).

Carey, S. (2002). Evidence for numerical abilities in young infants:
a fatal flaw? Developmental Science, 5(2), pp202-205.

Collins, M. (2003). Head-Driven Statistical Models for Natural
Language Parsing. Computational Linguistics 29:4, pp589-637.

Forney, G. D. (1973). The Viterbi algorithm. Proceedings of the
IEEE. 61(3), pp268-278, March.

Gerwin, D and Newsted, E. (1977). A comparison of some
inductive inference models. Behavioral Science. 22:1-11.

Haverity, L.A., and Koedinger, K.R. (2000). Solving inductive
reasoning problems in Mathematics: Not-so-Trivial Pursuits.
Cognitive Science: A multidisciplinary Journal. 24(2), pp249-298.

Huesmann, L.R. and Cheng, C. (1973). A model for the induction
of mathematical functions. Psychological Review. 80, pp126-138.

Hume, D. (1739). A Treatise of Human Nature. (eds.) Norton,
D.F., and Norton, M.J. Oxford University Press. New York.
2000.

Johnson, M., Griffiths, T.L., and Goldwater, S. (2007) Bayesian
Inference for PCFGs via Markov Chain Monte Carlo. Proceedings
of the 2007 Conference of the North American Chapter of the
Association for Computational Linguistics. pp139-146.

Leslie, A.M., Gelman, R., and Gallistel, C.R. (2008). The
generative basis of natural number concepts. Trends in cognitive
sciences. 12(6), pp213-218.

Miller, G.A. (1956). The Magical number seven, plus or minus
two: some limits on our capacity of processing information. The
Psychological Review. 63(2).

Mitchell, T. (1980). The need for biases in learning
generalizations. Technical Report CBM-TR-117, Department of
Computer Science, Rutgers University.

Myung, I. and Pitt, M. (1997). Applying Occam’s Razor in
Modeling Cognition: A Bayesian approach. Psychonomic Bulletin
& review. 4(1), pp79-95.

Qin, Y., and Simon, H.A. (1990). Imagery and problem solving.
Proceedings of the 12th Annual Conference of the Cognitive
Science Society. pp646-65.

Rissanen, J. (1978) Modeling by the shortest data description.
Automatica 14, pp465-471.

Sato, T. and Kameya, Y. (2008). New advances in logic-based
probabilistic modeling by PRISM. In Probabilistic Inductive Logic
Programming, LNCS 4911, Springer, pp118-155.

Sloane, N. J. A. (2008). The On-Line Encyclopedia of Integer
Sequences. Electronically published at:
www.research.att.com/~njas/sequences/.

Tenenbaum, J.B. (1999) A Bayesian Framework for Concept
Learning. Ph.D. Thesis, Massachusetts Institute of Technology.

Wolpert, D. H. (1996). The lack of a priori distinctions between
learning algorithms. Neural Computation, 8(7), pp1341-1390.

2734

