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Abstract 

A classic problem in understanding human intelligence is 
determining how people make inductive inferences when 
presented with small amounts of data.  We examine this 
question in the context of the guess-the-next-number game, 
where players are presented with short series of numbers and 
asked to guess the next one in the sequence.  Our approach is 
unique in that we use a stochastic context free grammar to 
model the mathematical operations that generate a given 
sequence.  The individual probabilities in this grammar are 
learned by observing people play this game, and thereby, they 
capture some of the mathematical inductive bias of our 
sample population.  We then use this framework to solve 
novel sequence guessing problems computationally, mirroring 
human performance.  Our goal is to better understand how 
people approach math problems by examining the space of 
mathematical functions they find easiest to both generate and 
recognize.  We are also interested in tracking how this 
changes over time as functions of education and age.  Finally, 
we examine how our results confirm a large body of 
psychological observations about how people approach 
mathematics problems. 
 

Keywords: Inductive Bias; Mathematical Modeling; 
Stochastic Context Free Grammars; Bayesian inference. 

Introduction  

People regularly make inferences by induction, even when 

presented with very small amounts of information.  The 

purpose of our work is to understand more about how this 

occurs in mathematical reasoning, especially when these 

inferences are remarkably consistent and have little formal 

justification.  We explore this problem in the context of the 

guess-the-next-number game.  For example, suppose we 

present someone with the sequence [1, 2, 4] and ask him to 

guess the next number in the series.  If he were to suggest 8, 

stating this set corresponded to “powers of 2,” we would 

presumably find this a plausible explanation.  On the other 

hand, were he to suggest the number is 6, explaining the 

sequence seems to be “1 followed by the even numbers,” we 

might find that answer less satisfactory.
1
 

Of course, this determination is highly arbitrary.  Because 

inductive inferences are not logically entailed, they must 

rest upon some set of assumptions, known as an inductive 

bias (Mitchell 1980).  In the absence of such a bias, all 

inferences consistent with a finite dataset are equally valid, 

                                                           
1 We will see, however, that appeals to minimum description 

length (e.g., Rissanen 1978) do not capture human preferences in 

making these judgments. 

as observed by Hume (1739) and formalized by Wolpert 

(1996).  While this is true in a theoretical sense, people 

surely do have preferences; in other words, it is quite 

reasonable to suppose that we find some answers more 

plausible than we do others, even in the absence of objective 

justifications. 

Although there is no doubt that humans generalize using 

an inductive bias, formally characterizing it can be 

challenging.  For example, even in domains where one 

believes that Occam’s Razor is the principle guiding human 

induction (Myung and Pitt 1997), the numerous 

formulations of this classic notion of parsimony may lead to 

diametrically opposed conclusions.  (For an interesting 

discussion of this issue in elucidating the innate 

mathematical abilities of infants, see Carey 2002). 

In this paper, we explore a domain where we can formally 

model inductive bias using probabilities in a stochastic 

context free grammar, which appear to capture how people 

do math “in their heads.”  Because our notion of inductive 

bias is rigorously defined, we can also trace how it changes 

over time. Thus, we expect grammar school, high school, 

and college students to have very different inductive biases, 

which can of course be further characterized by their fields 

of study.  We are also interested in tracking how these 

mathematical biases change as people age.  More generally, 

this work provides a window in the types of mathematical 

operations with which people are most comfortable as well 

as the types of operations that perhaps require more careful 

instruction. 

 
Figure 1.  Examining the guess-the-next-number game.  

While the examples in (a) and (b) are fairly straightforward, 

the sequence in (c) is somewhat more ambiguous. 
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The Next Number Game 

We examine our use of the next number game and some 

of the ambiguities it presents to players.  This game is 

generally familiar to people around the world and is played 

by both children and adults.  In Figure 1, we examine 

several instances of this game and begin to understand why 

specific solutions might be subject to debate. 

When the sequences correspond to familiar concepts, such 

as the prime numbers or perfect cubes, players already 

familiar with these concepts are likely to latch onto them.  

In that sense, this tells us far more about what 

predetermined sets of numbers a player is already familiar 

with than it does about his mathematical preferences.  This 

was the approach pursued in Tenenbaum (1999), where he 

presented predetermined, unordered sets to players and 

asked them to rank how likely it was some other number 

belonged to each set.  He was able to predict their rankings 

using a clever variant of minimum description length.  

However, his framework did not generalize to simple 

unknown sets, in other words, data it had not been trained 

on, such as prime numbers – 1.  We wanted to create a more 

generative framework that could predict arbitrary sequences 

and simultaneously provide insight into the human 

mathematical reasoning process, in a spirit similar to (Leslie 

et al. 2008).  We also wanted to create a platform that 

enables tracking how these identified mathematical biases 

change over time. 

The problem of examining inductive bias in fitting data to 

closed form equations has been studied by Haverity and 

Koedinger (2000).  While they did not computationally 

model the reasoning process behind their subjects’ 

performance, our results are in strong agreement with their 

observations and previous psychological studies, such as 

Huesmann and Cheng (1973). 

We note that Sloane (2008) maintains a delightful, online 

encyclopedic database of integer sequences.  While both 

highly esoteric and thorough, it is simply a lookup table of 

series submitted by users.  Many of its sequences are 

generated by physical and mathematical processes that have 

no obvious closed form generative formulae.  Thus, it is not 

relevant to our interests here, as it provides little, if any, 

information about human mathematical cognition. 

A Generative Framework 

We constructed a generative framework for mathematical 

expressions using a stochastic context free grammar 

(SCFG).  This allows us to capture the notions of “function 

recognition” and “function creation” in a well-defined 

framework.  This approach for recognition has become 

extremely popular for parsing in the Statistical Natural 

Language Processing community (e.g., Collins 2003), and 

seemed extremely well-suited for expressing mathematical 

operations.  However, a basic distinction is that our 

grammars output mathematical expressions, which are then 

evaluated to produce numerical values. 

Our grammar is shown in Figure 2.  It defines the notion 

of an expression, which is a function that generates the 

elements of a sequence.  This function generating each 

element may be based upon its position in the sequence 

(represented by “Index”), the immediately prior numbers in 

the sequence (represented by “Previousi-k”), or perhaps even 

a constant (represented by “Number”).   The generating 

function is constructed out of both prefix and infix 

operations (“PrefixOp” and “InfixOp” respectively).  A 

prefix operator takes a single argument, such as is the case 

with log, while an infix operator takes two arguments, such 

as when performing addition or subtraction.  Constants are 

divided into three categories: (1) Small numbers, which we 

assume are easier to process cognitively; (2) Large number 

that are presumably more difficult to involve in mental 

arithmetic; and (3) Special numbers such as 10 or π, that 

simplify many types of operations or have some other 

special significance.  For example, trigonometric operations 

on simple functions of π will be very familiar to many 

university students.  One might in fact formulate the 

grammar to “confine” the use of π to trigonometric 

functions.  However, as reasonable as this appears, it 

complicates the grammar and eliminates other functions of π 

that are not unreasonable, e.g., Index + π.  Fortunately, this 

type of simplification is unnecessary, as we do not expect 

that people are able to play this game with arbitrarily 

complex generating functions.  Thus, the assumption that 

people can play this game eliminates concerns about 

pathologically complex functions that few (or no) people 

could ever recognize.  We return to the notion of function 

Expression → PrefixOp ( Expression ) p_1 

Expression → Expression InfixOp Expression p_2 

Expression → Previousi-1
 p_3 | Previousi-2

 p_4 | Previousi-3
 p_5 

Expression → Number p_6 

Expression → Index p_7 

PrefixOp → exp p_8 | log p_9 | sin p_10 | cos p_11 | tan p_12 

PrefixOp → floor p_13 | ceiling p_14 | mod p_15 | rem p_16 | prime
 p_17

  

InfixOp → +
 p_18

 | −
 p_19

 | ×
 p_20

 | ÷
 p_21

 | ^
 p_22

 

Number → SmallNum | LargeNum
 
| SpecialNum 

SmallNum → [-9
 p_26

,…,9
 p_45

]   

LargeNum → [-50,…, -11, 11, …, 50]
 p_46

 

SpecialNum → -100
 p_47

 | -10
 p_48

 | ¼ 
p_49

| ½
 p_50

  

SpecialNum → π
 p_51

 | 10
 p_52

 | 100
 p_53

 

Index → [1,…,10]
 p_54

 

 

Figure 2.  Our stochastic context free grammar for 

generating mathematical functions.  Non-terminals begin 

with capital letters.  Terminals symbols are indicated by 

lower-case strings or numbers.  Each production rule is 

associated with some probability p_i, indicating its 

likelihood according to our training corpus of people 

playing this game.  Players of the guess the next number 

game provide both their answers and the function they think 

generated it.  Our goal is to use this corpus of games to 

derive the probabilities p_i in order to both discover and to 

duplicate human inductive bias playing this game. 
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complexity and cognitive plausibility below.  

Each production rule in this SCFG is associated with 

some probability, represented by the superscripted p_i 

following it.  This probability represents the observed 

likelihood our sample population has employed this 

productive rule while playing a series of games.  To reduce 

the amount of training data required, we “lumped together” 

certain groups, such as large numbers, represented by the 

LargeNum production rule.  While we assume any of these 

numbers may appear in the generating formula, gathering 

data for each individual number would require that each 

subject play a very large of games.  Furthermore, given the 

natural variability in determining the function generating a 

given sequence, there is no way to guarantee subjects would 

employ a specific number.  In other words, it can be difficult 

to “force” subjects to employ particular production rules.  

Ad hoc sequences, such as using a constant difference 

between successive elements to “lead” players to each 

number, e.g., for 11, we might use [1, 12, 33, 44, …], would 

simply generate a uniform distribution among the members 

of LargeNum, which is what we were seeking to avoid in 

the first place.  Thus, we avoid the problem entirely and 

make certain classes of number probabilistically equivalent.      

Finding the Probabilities 

To determine the probabilities p_i for each production rule, 

we first collected data from 20 university undergraduates 

with nonmathematical backgrounds
2
, who played up to 22 

different rounds of the guess-the-next-number game over 

ascending and descending sequences.  The students were 

asked both to guess the next number in a displayed sequence 

and to provide the formula generating it, in light of the 

presented sequence.  There was no imposed time limit and a 

student was free to skip a sequence if he could not solve it.  

Our goal for this experiment was to learn the mathematical 

inductive biases of college-aged non-mathematicians.  We 

examine three sample sequences from this experiment. 

 

(1) Consider the sequence [1, 4, 9].    We found that all 

subjects predicted the next number would be 16, but 

provided two syntactically different but numerically 

equivalent generating formulae, at least up to index 4. 

 
 40% guessed: f(index) = index2 

 

 60% guessed: f(index) = Previousindex-1 + 2×index + 1  

 

For this example, we see that most subjects preferred 

conceptually simple arithmetic operations, even if the 

resulting functional description was longer and bordered 

on being convoluted.  We found this type of result quite 

surprising, as it would not have occurred to us this 

sequence would be identified as anything other than 

perfect squares. 

 

                                                           
2 Although one can debate our selection criterion, we eliminated 

students majoring in mathematics, computer science, or physics. 

(2) Consider the sequence [1,2,10].  That this sequence is 

in some sense more difficult was apparent because 

subjects spent more time studying it, often commenting 

it felt “difficult” or under constrained. 

 
 All but one: f(index) = Previousindex-1 + (index – 1)3 

Yielding: [1, 2, 10, 37, 101, …] 

 

 One guess: f(index) = Previousindex-1 + (Previousindex-1)
3 

Yielding: [1, 2, 10, 1010, 1.0303×109,…] 

 

Note that although these guesses lead to different 

predictions of subsequent sequence values, they are 

structurally quite similar.  From our Bayesian perspective, 

they will lead to very similar priors in the grammar.  

There are a multitude of other functions that were not 

selected by our sample population, e.g., f(index) = 

Previousindex-1 + 8
(index-1)

, presumably reflecting a distaste 

for this level of complexity.
3
 

 

(3)  Finally, we examine the sequence [0,7,26], where all 

the subjects agreed on the next element (63) and on the 

generating formula: 

 
 f(index) = index3 – 1  

 

                                                           
3 This formula and similar variants were provided by several 

graduate students in Computer Science, who were also asked to 

solve this problem.  It comes as little surprise they have very 

different inductive biases for playing this game. 

Table 1. Examining the Bayesian probabilities of some 

production rules in our generative mathematical grammar.  

The probabilities are determined for each non-terminal rule 

in our grammar separately. 
 

Production Rule Probability 
Expression → PrefixOp ( Expression ) 0.00402 
Expression → Expression InfixOp Expression 0.349 
Expression → Previousi-1 0.177 
Expression → Previousi-2 0.0321 
Expression → Number 0.317 
Expression → Index 0.104 

  
InfixOp → + 0.388 
InfixOp → − 0.143 
InfixOp → × 0.263 
InfixOp → ÷ 0.0388 
InfixOp → ^ 0.163 
  
SmallNum → -1 0.04 
SmallNum → 1 0.24 
SmallNum → 2 0.40 
SmallNum → 3 0.08 

SmallNum → 4 0.04 

… … 
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Here, alternative explanations avoiding a difficult 

operation, such as exponentiation, are so complex that 

they are disregarded.  We explore the measure of 

functional complexity in our system below. 

 

To derive individual production probabilities from all 

presented sequences, we used the inside-outside algorithm 

(Baker 1979).  Specifically, we employed a Gibbs sampler 

for SCFGs developed by (Johnson et al. 2007), which 

derived Bayesian priors for the production rules based on 

the formulas generated by the subjects using Markov chain 

Monte Carlo methods.  Finally, we had to perform a 

renormalization of the infix operators (InfixOp) probabilities 

to account for commutative operations such as × and +.  

This is due to the fact that the Viterbi algorithm (see the 

next section) has no way of realizing, for example, that a+b 

is equal to b+a and thereby undercounts its likelihood.  (It 

computes a single path to the answer, without realizing there 

are numerically equivalent ones that are syntactically 

different in trivial ways.) 

We examine some of the more interesting results of this 

derivation in Table 1.  Among the most significant but 

unsurprising findings is that people do not like performing 

division in their heads; it represents 3.88% of infix 

operations.  In contrast, they are ten times more likely to 

prefer addition, which represents 38.8% of infix operations.  

Our subjects also preferred transforming non-terminal 

expressions into concrete numbers rather quickly, as 

opposed to developing complex expressions.  As might be 

expected, 1 and 2 were clearly the most popular numbers for 

mental arithmetic.  (Note that 0 does not appear, as it has a 

probability of zero; this is because no one used it to solve 

any sequence problems.  This makes sense, as it contributes 

nothing given the mathematical operations presented here.  

In other words, there is no reason to employ it.) 

How much does the selection of sequences itself bias 

these results?  For example, were we to only present 

ascending series, there would be an innate bias in favor of 

monotone functions such as addition and multiplication, at 

least with the ontology presented here.  Thus, we made an 

effort to balance the sequences to remove obvious sources 

of such bias.  However, it should be noted that generating 

representative sequences of three to five numbers that are 

amenable to human solution is non-trivial.  One cannot 

simply produce them randomly, e.g., by typing 

round(rand(1,4)*10)) in Matlab, and expect to 

produce a sequence that holds any meaning or lends itself to 

an obvious generative formula.  Thus, while there are an 

infinite number of “solvable” sequences, they are somewhat 

sparsely distributed and must be selected with some care. 

We therefore generated a large list of sequences and 

randomly selected from among them those solvable upon 

inspection.  However, one of the benefits of our constructed 

generative framework is that we can use it to automatically 

generate sequences for future experimentation that capture 

the types of operations people prefer.  In this sense, we can 

use our grammar to produce rather than recognize 

sequences.  This helps insure that new sequences do not 

violate our learned inductive biases, at least for retesting this 

population on larger sequence corpora or comparing their 

biases with that of another target population, e.g., math 

majors. 

Processing the Sequences 

After deriving the probabilities for our generative SCFG via 

Gibbs sampling, we encoded the grammar in Prism (Sato 

and Kameya 2008), a probabilistic version of Prolog that 

requires parameterized probability distributions over its 

production rules.  Prism’s inference engine incorporates the 

Viterbi algorithm (Forney 1973).  Therefore, its resolution is 

guided by following the most likely series of rule 

expansions to satisfy a given query.  One can view Prism as 

an extension of Prolog that provides the most probable 

solution to a given query.  Queries here corresponded to the 

question: given an input sequence, what is the most likely 

next number according to our SCFG?  The process of 

determining the next number generates the function 

responsible for doing so via Prolog’s resolution mechanism. 

Because our recursive grammar is computing 

mathematical functions, as opposed to parsing a sentence, it 

will never “run out” of input data in resolving this query.  

Instead, it would continue down the most likely 

mathematical path forever, constantly generating ever more 

complex expressions.  Because the Viterbi algorithm needs 

to hit a leaf to trigger backtracking, resolution would never 

halt in our framework.  We therefore add an explicit 

stopping criterion, using the probabilities in the SCFG to 

determine the overall probability of any expression 

examined in the course of resolution.  By the definition of a 

context free grammar, the probabilities are independent, so 

we can simply multiply all non-terminal probabilities to 

determine the value for a given expression.
4
  If this 

probability falls below a predefined threshold, our system 

automatically triggers backtracking, essentially ruling the 

current line of investigation as too complex to be plausible.  

This threshold can be computed directly from the gathered 

corpus of human responses.   

We view this as a probabilistic version of working 

memory, as defined in (Miller 1956).  We believe that 

preferred operations are easier to cognitively track, whereas 

less likely (or more difficult) operations have a greater 

impact in limiting the size of the overall expression.  Thus, 

we are not explicitly modeling the expression size.  Rather, 

the probability threshold implicitly limits the complexity of 

the internal mathematical computation.  This seems 

cognitively reasonable and agrees with our observed results. 

Results 

We now examine some sample outputs of our system.  They 

demonstrate how its behavior changed after acquiring the 

inductive bias of the observed population and show how it 

                                                           
4 For the sake of efficiency, the overall probability is adjusted 

dynamically during rule expansions and backtracking. 
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generalizes to handle out-of-set examples, namely, 

sequences it has never seen before.  We then discuss 

implications of this work, particularly what it reveals about 

the capabilities for performing mental arithmetic in people.   

The Effects of Learning 

We presented subjects with the sequence [8, 4, 1].  The test 

subjects overwhelming (88%) guessed the generating 

function was f(index) = Previousindex-1 + index – 6.  Before 

training, our sequence guesser, using uniform distributions 

on its production rules, predicted the function was: 

f(index) = Previousindex-2 / (2 × Previousindex-1) 

However, after training on examples that did not include 

this sequence, our system changed its answer to agree with 

the solution provided by the vast majority of human subjects 

on this problem.  The expansion of these formulae in terms 

of our grammar is displayed in Figure 3.  We note the 

acquisition of human inductive bias now leads it to predict 

the human answer is more than an order of magnitude more 

likely than the system’s original, untrained solution to this 

problem.  This change is due to the system having learned 

not only that division is less likely but also to its preference 

for using small numbers over more distant terms 

(Previousindex−2) in the sequence’s generating formula. 

Modifying Familiar Sets 

We now look at an example that demonstrates the benefits 

of not restricting our approach to a predetermined set of 

sequences.   Put somewhat differently, we can see the power 

of a generative inductive framework in examining how it 

copes with functional transformations to familiar sequences, 

such as the prime numbers. We presented our system with 

the sequence [1,2,4,6], which was not part of its training 

data.  It predicted the generating function was 

f(index)=Prime(index) – 1 with a confidence level of 91% 

based on its acquired inductive probabilities, which agrees 

with human subjects.  We see the second most likely 

candidate for this sequence in Figure 4, which has a 

probability of approximately 1%.
5
  Note that the most likely 

                                                           
5 Final probabilities for expressions are determined by 

generating all possible explanatory functions within our threshold, 

calculating their probabilities according to the SCFG, and then 

normalizing these into a probability distribution.   In the event we 

simply want the most likely expression, it is unnecessary to 

enumerate every generating function. 

f(index) = Previousindex-2 / (2 × Previousindex-1)

f(index) = Previousindex-1 + index – 6

(A)

(B)

 

Figure 3.  Our system’s output on the sequence [8,4,1], 

before training (A) and after training (B).  Without any 

inductive bias, the system predicts the explanation in (A), 

as we assume a uniform distribution over each production 

rule in the absence of any bias.  After deriving the 

production probabilities via Gibbs sampling using the 

inside-outside algorithm, our system acquires the priors 

representing the inductive biases of our sample population.  

It then changes its answer to (B), agreeing with 88% of 

human subjects, even though it has never seen this 

sequence before.  It now assigns the answer in (B) more 

than ten times the probability as the answer in (A). 

(A)

(B)

f(index) = Prime(index) – 1 

f(index)=Floor((index + Previousindex-1 ) / 2 )

 

Figure 4.  Generated solutions to the sequence [1, 2, 4, 6].  

The solution in (A) has a probability of 91%.  The second 

most likely solution, show in (B), is determined to be only 

1% likely.  The example demonstrates the need for a 

generative mathematical framework for playing the guess-

the-next-number game, as opposed to enumerating huge 

numbers of predetermined training sets.  Many familiar sets 

are easily recognizable under various simple functional 

transformations, e.g., subtracting one from them. 
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solution is simply a straightforward modification to a 

familiar set.  There is any number of modifications to such 

sets that are recognizable, where the likelihood of 

recognition depends upon the complexity of the applied 

operations.  The advantage of working within a generative 

framework is clear from this example, as opposed to 

exhaustively listing sets that might be encountered and then 

defining a metric that attempts to compute human 

preferences among them. 

Conclusions 

This paper has presented a framework for solving the 

guess-the-next-number game that is based upon acquiring a 

realistic model of human inductive bias.  As these brief 

sequence problems are highly unconstrained and yet 

different people often arrive at identical results, we find the 

hypothesis that there are innate cognitive preferences 

guiding mathematical reasoning extremely reasonable.  

While these may vary by particular age groups and 

educational background, our preliminary results agree with 

previous psychological studies of induction in mathematical 

problem solving, notably including the work of (Huesmann 

and Cheng, 1973, Gerwin and Newsted 1977, Qin and 

Simon 1990).  Specifically, we verified that people have 

clear preferences among operators and their formulation of 

generative functions is very much driven by the underlying 

data.  Our results also agreed with people having a clear 

preference for linear functions, in cases where the data make 

them possible. 

As part of this work, we constructed a system that 

acquires mathematical inductive biases observed in our 

sample population.  In doing so, it is able to imitate their 

problem solving, even in cases where it must ignore more 

compact functions because they are mathematically 

complex according to the acquired bias.  It thus employs a 

different notion of simplicity than would be described by 

formalizations of generative brevity.  

Our future plans are to test different age groups to track 

the temporal development of their mathematical inductive 

biases.  We are particularly interested in bias invariants that 

persist over time and in educational strategies that may be 

suggested by elucidating limitations in how people approach 

mathematical problem solving. 

We also believe the framework in this paper is quite 

general and can acquire inductive biases in a wide variety of 

areas that have similar probabilistic generative structure.  

We intend to employ it for modeling and predicting human 

behavior in these realms.  Here, the primary challenge will 

be modeling actions or decisions via the SCFG formalism, 

so we may derive their probabilities through observation 

using the Bayesian framework presented here. 
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