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Abstract

We develop a cyclic sequential sampling model of
bistable perception, based on the pioneering work of
Vickers (1972). The model has two key parameters:
a drift rate that measures the information in favor of
one percept over the other; and a boundary separation
that measures the evidence required by an observer to
establish a percept. We implement the model within a
graphical Bayesian framework, and apply it to data from
several participants measuring their bistable perception
for ambiguous auditory stimuli. We show that the model
fits the distribution of latencies between perceptual
reversals well, that the inferred drift rate parameter
changes systematically as the auditory stimulus is
manipulated to favor one percept over the other, and
that the boundary separation parameter changes over
participants to measure individual differences in their
bistable perception.
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Introduction
Bistable perception is an intriguing and important psy-
chological phenomenon, in which a single stimulus sup-
ports two different interpretations. The key characteristic
of perceptual bistability is stimulus ambiguity. In order
for bistability to occur there must be more than one plau-
sible alternative inherent in the stimulus presented to the
perceptual system.

In vision, bistable perception can be achieved through
ambiguous depth cues, as in the Necker cube (Necker,
1832) which is a two-dimensional representation of a
three-dimensional cube, or through binocular rivalry
(Helmholtz, 1925), where each eye is presented with
a different and incompatible image. In both cases ob-
servers experience clear switches in perception, in the
absence of any change in stimuli.

Traditional accounts of bistable phenomena propose
that the basis of alternation in perception is a periph-
eral or sensory process, where the perceptual dominance
of one stimulus is the result of activation of subset of
neurons encoding that stimulus while simultaneously in-
hibitingthose that perceive the alternative stimulus. Over
time, fatigue or satiation in the system pushes the subjec-
tive state to reverse (Koehler & Wallach, 1944). More re-
cent models suggest an alternative view of bistable phe-

nomena under which alternation is a sign of responses to
active, programmed events initiated by brain areas that
integrate sensory and non-sensory information to guide
behavior (Leopold & Logothetis, 1999).

Under this more recent view, bistable perception can
be considered a result of the exploration of the sen-
sory environments, and so reflects a fundamental aspect
of cognition supporting flexible decision making (Kim,
Grabowecky, & Suzuki, 2006). In addition, there is con-
siderable research interest in bistable perception from the
perspective of investigating correlates of conscious per-
ception, since changes in perceptual awareness can be
experienced in the absence of changes in stimulus.

According to Leopold and Logothetis (1999), the key
characteristics of bistability are exclusivity, randomness
and inevitability. Exclusivity refers to the existence of
two possible yet mutually exclusive alternative interpre-
tations of the sensory input. Randomness characterizes
the statistical distribution of the time spent in each per-
cept. Inevitability refers to the finite duration of percep-
tual dominance. That is, even when the intention is to
hold onto one interpretation, observers only have limited
volitional control on perceptual alternation.

As a concrete example of these properties, the alter-
nation of bistable perception for the Necker cube is typi-
cally estimated to be equally distributed between the two
percepts, and the rate of reversals is estimated to level off
to an average of 16–20 times per minute after a period of
initial learning.

Auditory Bistability
In this paper, our focus in on modeling data from an audi-
tory perception task that induces a bistability. Although
audition is less studied than vision, it is a basic and im-
portant question for cognitive science to understanding
how people perceive ambiguous auditory stimuli. In lan-
guage, for example, listeners must segment words and
phrases from the ongoing speech stream in order to make
sense of the incoming signal. In music, comprehending
melodic structure involves segmenting tone sequences
into smaller coherent chunks in order to discern larger
patterns.

The bistable phenomenon we use involves a series of
low tones (L), high tones (H) and silences (-) being pre-
sented one after the other with a fixed interstimulus inter-
val (i.e., L-H-L-H-L-H). When the frequency difference
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Figure 1: Schematic representation of the cyclic sequential sampling model.

between L and H, denoted∆ f , is small and repetition rate
is slow, listeners typically report a single LHL “gallop-
ing” pattern. When∆ f is large enough and the repetition
rate is sufficiently fast, listeners report hearing two sep-
arate streams of tones, each in a metronome-like rhythm
(i.e., L-L-L-L- and H-H-H-H-). At intermediate∆ f , the
stimulus is ambiguous and perception can alternate be-
tween interpretations of one and two streams following
the initial buildup (Pressnitzer & Hup´e, 2006). The per-
ception can alternate between interpretations LH and HL
(Bregman & Campbell, 1971). A number of recent stud-
ies (e.g., Cusack, 2005; Gutschalk et al., 2005; Snyder,
Alain, & Picton, 2006; Winkler, Takegata, & Sussman,
2005) have similarly exploited the bistability of auditory
perception in investigating the neural correlates of audi-
tory perceptual organization.

Overview
Our model of perceptual bistability uses the sequen-
tial sampling framework developed in mathematical psy-
chology. The basic idea is to assume people accrue
information from a stimulus by ongoing observation,
and, even when a percept is established, continually re-
evaluate the incoming information in terms of competing
possible perceptual interpretations. For ambiguous stim-
uli, this process of re-evaluation will eventually favor the
rival interpretation, at which point a perceptual reversal
occurs. We develop a formal quantitative model imple-
menting these ideas, and evaluate it against data from a
number of auditory L-H-L-H- sequences, in which the
lengths of the inter-stimulus silence intervals are system-
atically manipulated to bias in favor of one percept over
the other.

The structure of the paper is as follows: In the next
section we describe cyclic sequential sampling models,
as they can be applied to modeling bistable perceptual
decision-making, and provide the formal details of our
model. We then describe the experimental procedures
used to gather test data, and apply our the model to the
data. We discuss the ability of the model to fit the data,

and infer meaningful parameter values. We conclude
with a discussion of the usefulness of the modeling ap-
proach in measuring and understanding bistable percep-
tion.

A Cyclic Sequential Sampling Model
Sequential sampling models are successful and widely-
used accounts of human decision-making. In these mod-
els, the decision-maker is assumed to sample information
from a stimulus, until some critical level of total evidence
has been obtained internally, and an overt behavioral re-
sponse is triggered. In this way, sequential sampling
models provide a detailed account of the time course of
decision-making, and make predictions about a range of
experimentally observable measures, including decision
accuracy, response time, and response confidence (e.g.,
Busemeyer & Rapoport, 1988; Ratcliff, 1978; Vickers,
1979)

Our cyclic sequential sampling model is a modifica-
tion of the standard approach, suited to a bistable percep-
tion task rather than a general two-choice decision task,
and is directly inspired by the model proposed by Vickers
(1972). A schematic representation is shown in Figure 1,
which shows four different possible sample paths mov-
ing from left to right. Each of paths moves according to
evidence sampled from a stimulus that can be perceived
in two states. The two boundaries, shown by the solid
lines, correspond to these states. We label these ‘high-
low’ and ‘low-high’, corresponding to the auditory bista-
bility stimuli that are the focus of this study.

Unlike a standard sequential sampling model, each
sampled paths only terminates when it reaches the up-
per boundary. This is because the participant currently
maintains one of the two bistable perceptions, and an
overt response is only triggered when sufficient evidence
is gathered for the alternative perception. In Figure 1,
the participant begins with the ‘low-high’ percept corre-
sponding to the lower boundary, and registers a change-
in-percept response to ‘high-low’ only when the upper
boundary is reached. The arrivals of the sample paths
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Figure 2: Graphical model implementation.

give rise to the distribution of perceptual reversal times
shown by the histogram above the upper boundary.

Notice that if a sample path reaches the lower bound-
ary corresponding to the current percept, it is reset to the
starting evidence value between the two boundaries, and
the evidence accumulation process continues. This was a
basic insight provided by Vickers (1972), and is why the
model is called a cyclic variant of the sequential sam-
pling approach.

As shown in Figure 1, there are three parameters in the
model. The drift ratev is the mean of the Gaussian dis-
tribution from which evidence values are sampled, and
corresponds to the relative level of evidence the stimulus
provides for one perceptual interpretation over the other.
The boundary separationa is the difference between the
two decision boundaries, and corresponds to the level of
evidence a participant needs to reach a perceptual inter-
pretation. Finally, the offsetδ captures the component
of perceptual reversal time observed experimentally that
is not due to the workings of the internal decision pro-
cess, but rather to other factors such as movement time
to record a response.

Implementation as a Graphical Model

We implement our cyclic sequential sampling model us-
ing the formalism provided by graphical modeling (see
Lee, 2008; Shiffrin, Lee, Kim, & Wagenmakers, 2008,
for recent tutorials aimed at cognitive scientists), imple-
mented in WinBUGS (Lunn, Thomas, Best, & Spiegel-
halter, 2000). This allows us to perform fully Bayesian
inference on our model using experimental data.

The graphical model is shown in Figure 2. Each node
in the graph corresponds to a variable, and their depen-
dencies are captured by the graph structure, with children

depending only on their parents. Following Lee (2008),
circular and square nodes denote continuous and discrete
variables; unfilled and filled nodes denote unobserved
(i.e., latent parameters) and observed (i.e., data) vari-
ables; encompassing plates represent independent repli-
cations of a part of the graph within the model, corre-
sponding to numbers of participants doing numbers of
experimental conditions; and double-bordered nodes are
deterministic functions of other nodes.

Our graphical model implementation only approxi-
mates the response time distributions described by the
cyclic decision model. The basis of the approximation
comes from observing that the response time distribution
at each boundary is a mixture of response time distribu-
tions over paths that reached the boundary after 0,1, . . .
resets. We assume each of these mixture components
has a Gaussian distribution, which makes the model very
tractable.

Formally, in the graphical model there is boundary
separationai and offsetδi for the ith participant, and
the drift ratev j for the jth condition. A standard re-
sult (e.g., Wagenmakers, van der Maas, & Grasman,
2007) is that the probability of reaching the upper bound-
ary for the ith participant in thejth condition isθi j =
1/ (1+exp(aiv j)). The number of resets needed before
the boundary is reached on thekth trial is therefore sam-
pled asxi jk ∼Geometric(θi j) for the upper boundary and
xi jk ∼ Geometric(1−θi j) for the lower boundary. In the
graphical model, the appropriate boundary is given by an
indicator variablebi jk for the ithe participant in thejth
condition at thekth trial, which is a known part of the
experimental data.

For the Gaussian approximation, we rely on recent an-
alytic results (Wagenmakers et al., 2007) giving the mean
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Figure 3: Approximation to the response time distribution by a mixture of progressively less weighted, increasing
mean and increasing variance Gaussians.

and variance for the distribution of time taken to reach a
boundary from the starting point half way between. The
mean is given by

ai (1−exp(−aiv j))
2v j (1+exp(−aiv j))

,

and the variance by

2v3
j (exp(aiv j)+1)2

ai (2aiv j exp(−aiv j)+exp(−2aiv j)−1)
.

Accordingly, we assume a reversal time coming fromxi jk
resets, and after a fixed offsetδi, has mean

µi jk = δi + xi jk
ai (1−exp(−aiv j))

2v j (1+exp(−aiv j))
,

and variance

λi jk = xi jk
2v3

j (exp(aiv j)+1)2

ai (2aiv j exp(−aiv j)+exp(−2aiv j)−1)
.

So, finally, our graphical model assumes the observed
reversal timeti jk on the kth reversal of theith par-
ticipant in the jth condition, is distributed asti jk ∼
Gaussian

(
µi jk,λi jk

)
.

We emphasize this does not correspond to assum-
ing the total reversal time distribution has a Gaussian
form, because we are mixing a series of Gaussians, and
this mixture has an appropriate negatively skewed shape.
This approach to approximation is shown in Figure 3,
using the drift ratev = 0.06 and boundary separation
a = 1 as a concrete example. This gives a probability
of θ = .515. The broken lines correspond to the Gaus-
sian distributions fork = 1, 2, 3 and 4 resets (using the
same color coding as Figure 1), which covers more than
97% of the total probability according to the Geomet-
ric distribution. The means and variances of these Gaus-
sians are given by the approximations in the graphical
model, and the relative probability of each Gaussian in
determining the overall mixture is given by the Geomet-
ric distribution. The solid black line is the weighted sum
of the Gaussian components, and has the characteristic
negative skew of a response time distribution.

Experiment
Participants
The pilot data collected to develop and evaluate our
model were collected from four naive participants.

Stimuli
Stimuli were 60 s sequences, of three types, in which
tones alternated in amplitude. The first type was unbi-
ased, with 250ms gaps between both tones. The sec-
ond and third types were biased—towards HL and LH
respectively—by alternating between 150ms and 350ms
gaps, with the shorter gap corresponding to a bias to-
wards that percept.

The low tone was a 440 Hz pure tone and the high tone
was a 660 Hz pure tone (10 ms rise/fall) with a duration
of 250 ms. A total of 60 trials were presented to each
participant, in a counter-balanced order. Stimuli were
generated in MATLAB, at CD quality (44.1 kHz sam-
ple rate) and were presented via earphones to both ears.
Sound levels were not measured, but were verified to be
easily audible to all participants.

Procedure
The participants were familiarized with the experiment
by hearing one example sequence. The experimental se-
quences were then presented in random order. The ob-
server was asked to indicate their perceived grouping by
pressing the corresponding button (HL versus LH) on the
screen using a mouse. All the instructions were given
verbally in English.

Modeling Analysis
Our modeling results are based on 10,000 posterior sam-
ples, collected after a burn-in of 10,000 samples, and us-
ing multiple MCMC chains to assess convergence. Fig-
ure 4 show the ability of the model to fit the data. Each
panel corresponds to an individual participant, experi-
encing a specific type of reversal (i.e., either HL chang-
ing to LH, or vice versa), in a specific experimental con-
dition (i.e., the three types of stimuli). The panels are
arranged in groups of four, corresponding to the four
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Figure 4: Posterior predictive fit of model to all data.

participants, and in major rows corresponding to rever-
sal type, and columns corresponding to stimulus type.

Within each panel, the histograms represent the ob-
served response times, and the solid line shows the
posterior predictive distribution of the model. The re-
sponse times are longer when the stimulus is biased
against a percept, shorter when it is biased towards the
percept, and intermediate when there is no bias. The
model clearly captures these patterns. Different partici-
pants also have consistently different distributions across
the conditions—such as EH having longer inter-reversal
times—and the model also captures these patterns.

It is important to note that the posterior prediction
used in Figure 4 is not a maximized fit, as typically seen
in tests of sequential sampling models (e.g., Ratcliff &
Smith, 2004), but rather an averaged fit, taken over the
entire posterior parameter space, and so automatically
takes into account model complexity. This means the
ability of the model to fit all of the raw data well, as seen
in Figure 4, provides strong evidence that it has a basic
level of descriptive adequacy.

Figure 5 show the marginal posterior distributions for
the drift rate and boundary separation and parameters.
There is systematic variation in the drift rates over con-
ditions, with the unbiased condition drift rate posterior
being centered on zero, while the biased conditions show
drift rates above and below zero, as expected. There is
essentially no overlap between the distributions, and it
is clear that the experimental bias manipulation had the
theoretically expected effect on drift rates. There is also
evidence of individual differences in the inferred bound-
ary separation parameters, with, for example, participant

EH being inferred as requiring greater levels of evidence
before a perceptual reversal decision is made. Taken to-
gether, these parameter inferences demonstrative a selec-
tive influence property (e.g., Voss, Rothermund, & Voss,
2004) for our model, meaning that drift rate changes
when the stimulus changes, and boundary rates change
across participants.

Discussion
Our initial modeling results suggest that the cyclic se-
quential sampling approach can provide a good descrip-
tive account of the distribution of inter-reversal times in
bistable perception, and can infer meaningful parame-
ter values. This means the model promises to provide a
mechanism for furthering our understanding and ability
to measure bistable perceptual phenomena.

The two key parameters in the model are the drift rate
and boundary separation. The drift rate is a property
of the stimulus, and measures the evidence the stimu-
lus provides for each possible ambiguous interpretation.
Our model allows this measure to be taken from behav-
ioral data, and introduces the possibility of developing
theoretical accounts of how physical properties of the
stimulus (e.g., the inter-stimulus intervals) relate to its
psychological properties (i.e., its evidence for a percept).
The boundary separation is a property of the observer,
and measures the level of evidence required to alternate
between percepts. The ability of our model to infer these
values introduces the possibility of exploring individual
differences in bistable perception.

More generally, the initial success of our model sup-
ports using sequential sampling models as theoretical ac-
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Figure 5: Posterior distributions for the drift rate and boundary separation parameters.

counts of the time course of perceptual organization. A
particularly interesting finding is that the little-explored
cyclic sequential sampling mechanism seems to work
well. This mechanism assumes that decision-making
continually resets itself, to continue searching for an al-
ternative understanding of available information, and so
formalizes a simple model of world change. It would
be interesting to explore whether cyclic sequential sam-
pling models can be applied beyond the niche of bistable
perception, to more general and ubiquitous decision-
making tasks in which the external environment contin-
ually changes and needs reinterpretation.
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