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Abstract nomena under which alternation is a sign of responses to
active, programmed events initiated by brain areas that

We develop a cyclic sequential sampling model of  integrate sensory and non-sensory information to guide

bistable perception, based on the pioneering work of behavior (Leopoid & Logothetis, 1999)
Vickers (1972). The model has two key parameters: €op gotnets, L. : .
a drift rate that measures the information in favor of Under this more recent view, bistable perception can

one percept over the other; and a boundary separation be considered a result of the exploration of the sen-
that measures the evidence required by an observer to sory environments, and so reflects a fundamental aspect
establish a percept. We implement the model within a  of cognition supporting flexible decision making (Kim,
graphical Bayesian framework, and apply it to data from Grabowecky, & Suzuki, 2006). In addition, there is con-
several participants measuring their bistable perception ' - ). 1 S

for ambiguous auditory stimuli. We show that the model ~ siderable research interestin bistable perception from the
fits the distribution of latencies between perceptual perspective of investigating correlates of conscious per-
reversals We”, that the inferred drift rate parameter Cep“on' since Changes in perceptual awareness can be

changes systematically as the auditory stimulus is . : : :
manipulated to favor one percept over the other, and experienced in the absence of changes in stimulus.

that the boundary separation parameter changes over According to Leopold and Logothetis (1999), the key
participants to measure individual differences in their  characteristics of bistability are exclusivity, randomness

bistable perception. and inevitability. Exclusivity refers to the existence of
Keywords  Bistable perception, bistable audition, two possible yet mutua_lly exclusive alternative interpr_e-
sequential sampling models, response time modeling, tations pf _the sensory input. Randomness _characterlzes
diffusion model the statistical distribution of the time spent in each per-
cept. Inevitability refers to the finite duration of percep-
. tual dominance. That is, even when the intention is to
Introduction hold onto one interpretation, observers only have limited
Bistable perception is an intriguing and important psy- volitional control on perceptual alternation.
chological phenomenon, in which a single stimulus sup- As a concrete example of these properties, the alter-
ports two different interpretations. The key characteristicnation of bistable perception for the Necker cube is typi-
of perceptual bistability is stimulus ambiguity. In order cally estimated to be equally distributed between the two
for bistability to occur there must be more than one plau-percepts, and the rate of reversals is estimated to level off
sible alternative inherent in the stimulus presented to theio an average of 16-20 times per minute after a period of
perceptual system. initial learning.
In vision, bistable perception can be achieved through : ) .
ambiguous depth cues, as in the Necker cube (Neckefuditory Bistability
1832) which is a two-dimensional representation of alnthis paper, our focus in on modeling data from an audi-
three-dimensional cube, or through binocular rivalry tory perception task that induces a bistability. Although
(Helmholtz, 1925), where each eye is presented withaudition is less studied than vision, it is a basic and im-
a different and incompatible image. In both cases ob-portant question for cognitive science to understanding
servers experience clear switches in perception, in thow people perceive ambiguous auditory stimuli. In lan-
absence of any change in stimuli. guage, for example, listeners must segment words and
Traditional accounts of bistable phenomena proposehrases from the ongoing speech stream in order to make
that the basis of alternation in perception is a periph-sense of the incoming signal. In music, comprehending
eral or sensory process, where the perceptual dominangaelodic structure involves segmenting tone sequences
of one stimulus is the result of activation of subset of into smaller coherent chunks in order to discern larger
neurons encoding that stimulus while simultaneously in- patterns.
hibitingthose that perceive the alternative stimulus. Over The bistable phenomenon we use involves a series of
time, fatigue or satiation in the system pushes the subjeclow tones (L), high tones (H) and silences (-) being pre-
tive state to reverse (Koehler & Wallach, 1944). More re-sented one after the other with a fixed interstimulus inter-
cent models suggest an alternative view of bistable pheval (i.e., L-H-L-H-L-H). When the frequency difference
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Figure 1: Schematic representation of the cyclic sequential sampling model.

between L and H, denotéxf, is small and repetitionrate and infer meaningful parameter values. We conclude
is slow, listeners typically report a single LHL “gallop- with a discussion of the usefulness of the modeling ap-
ing” pattern. Whern\f is large enough and the repetition proach in measuring and understanding bistable percep-
rate is sufficiently fast, listeners report hearing two sep-tion.

arate streams of tones, each in a metronome-like rhythm ) ) ]

(i.e., L-L-L-L- and H-H-H-H-). Atintermediatéf, the A Cyclic Sequential Sampling M odel

stimulus is ambiguous and perception can alternate beSequential sampling models are successful and widely-
tween interpretations of one and two streams followingused accounts of human decision-making. In these mod-
the initial buildup (Pressnitzer & Hup 2006). The per- els, the decision-maker is assumed to sample information
ception can alternate between interpretations LH and HLfrom a stimulus, until some critical level of total evidence
(Bregman & Campbell, 1971). A number of recent stud-has been obtained internally, and an overt behavioral re-
ies (e.g., Cusack, 2005; Gutschalk et al., 2005; Snydesponse is triggered. In this way, sequential sampling
Alain, & Picton, 2006; Winkler, Takegata, & Sussman, models provide a detailed account of the time course of
2005) have similarly exploited the bistability of auditory decision-making, and make predictions about a range of
perception in investigating the neural correlates of audi-experimentally observable measures, including decision

tory perceptual organization. accuracy, response time, and response confidence (e.g.,
. Busemeyer & Rapoport, 1988; Ratcliff, 1978; Vickers,
Overview 1979)

Our model of perceptual bistability uses the sequen- Our cyclic sequential sampling model is a modifica-
tial sampling framework developed in mathematical psy-tion of the standard approach, suited to a bistable percep-
chology. The basic idea is to assume people accruéion task rather than a general two-choice decision task,
information from a stimulus by ongoing observation, and is directly inspired by the model proposed by Vickers
and, even when a percept is established, continually ref1972). A schematic representation is shown in Figure 1,
evaluate the incoming information in terms of competing which shows four different possible sample paths mov-
possible perceptual interpretations. For ambiguous stiming from left to right. Each of paths moves according to
uli, this process of re-evaluation will eventually favor the evidence sampled from a stimulus that can be perceived
rival interpretation, at which point a perceptual reversalin two states. The two boundaries, shown by the solid
occurs. We develop a formal quantitative model imple-lines, correspond to these states. We label these ‘high-
menting these ideas, and evaluate it against data from w’ and ‘low-high’, corresponding to the auditory bista-
number of auditory L-H-L-H- sequences, in which the bility stimuli that are the focus of this study.
lengths of the inter-stimulus silence intervals are system- Unlike a standard sequential sampling model, each
atically manipulated to bias in favor of one percept over sampled paths only terminates when it reaches the up-
the other. per boundary. This is because the participant currently
The structure of the paper is as follows: In the next maintains one of the two bistable perceptions, and an
section we describe cyclic sequential sampling modelspvert response is only triggered when sufficient evidence
as they can be applied to modeling bistable perceptuais gathered for the alternative perception. In Figure 1,
decision-making, and provide the formal details of our the participant begins with the ‘low-high’ percept corre-
model. We then describe the experimental proceduresponding to the lower boundary, and registers a change-
used to gather test data, and apply our the model to than-percept response to ‘high-low’ only when the upper
data. We discuss the ability of the model to fit the data,boundary is reached. The arrivals of the sample paths
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Figure 2: Graphical model implementation.

give rise to the distribution of perceptual reversal timesdepending only on their parents. Following Lee (2008),
shown by the histogram above the upper boundary. circular and square nodes denote continuous and discrete
Notice that if a sample path reaches the lower boundvariables; unfilled and filled nodes denote unobserved
ary corresponding to the current percept, it is reset to thdi.e., latent parameters) and observed (i.e., data) vari-
starting evidence value between the two boundaries, andbles; encompassing plates represent independent repli-

the evidence accumulation process continues. This waseations of a part of the graph within the model, corre-
basic insight provided by Vickers (1972), and is why the sponding to numbers of participants doing numbers of
model is called a cyclic variant of the sequential sam-experimental conditions; and double-bordered nodes are
pling approach. deterministic functions of other nodes.

As shown in Figure 1, there are three parameters inthe Our graphical model implementation only approxi-
model. The drift ratev is the mean of the Gaussian dis- mates the response time distributions described by the
tribution from which evidence values are sampled, andcyclic decision model. The basis of the approximation
corresponds to the relative level of evidence the stimulusomes from observing that the response time distribution
provides for one perceptual interpretation over the otherat each boundary is a mixture of response time distribu-
The boundary separatianis the difference between the tions over paths that reached the boundary aftdr 0.
two decision boundaries, and corresponds to the level ofesets. We assume each of these mixture components
evidence a participant needs to reach a perceptual intehas a Gaussian distribution, which makes the model very
pretation. Finally, the offsed captures the component tractable.

of perceptual reversal time observed experimentally that Formally, in the graphical model there is boundary

is not due to the workings of the internal decision pro- separations; and offsetd; for the ith participant, and

cess, but rather to other factors such as movement timgyo gyt ratev; for the jth condition. A standard re-

to record a response. sult (e.g., Wagenmakers, van der Maas, & Grasman,
. . 2007) is that the probability of reaching the upper bound-
Implementation as a Graphical Model ary for theith participant in thejth condition is6;; =
We implement our cyclic sequential sampling model us-1/ (1+exp(avj)). The number of resets needed before
ing the formalism provided by graphical modeling (see the boundary is reached on tkh trial is therefore sam-
Lee, 2008; Shiffrin, Lee, Kim, & Wagenmakers, 2008, pled asyjkx ~ Geometrig®j) for the upper boundary and
for recent tutorials aimed at cognitive scientists), imple-Xijk ~ Geometri¢1 — 8;j) for the lower boundary. In the
mented in WinBUGS (Lunn, Thomas, Best, & Spiegel- graphical model, the appropriate boundary is given by an
halter, 2000). This allows us to perform fully Bayesian indicator variableb;j for the ithe participant in thejth
inference on our model using experimental data. condit_ion at thekth trial, which is a known part of the
The graphical model is shown in Figure 2. Each node€xperimental data.
in the graph corresponds to a variable, and their depen- For the Gaussian approximation, we rely on recent an-
dencies are captured by the graph structure, with childreralytic results (Wagenmakers et al., 2007) giving the mean
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Figure 3: Approximation to the response time distribution by a mixture of progressively less weighted, increasing
mean and increasing variance Gaussians.

and variance for the distribution of time taken to reach a Experiment
boundary from the starting point half way between. The C
mean is given by Participants
The pilot data collected to develop and evaluate our
ai (1—exp(—avj)) model were collected from four naive participants.
2vj (1+exp(—avj))’ .
: Stimuli
and the variance by o ) )
Stimuli were 60 s sequences, of three types, in which
ZV?(eXp(aiVj) +1)2 tones alternated in amplitude. The first type was unbi-
(D3 —av; “oavi) 1) ased, with 250ms gaps between both tones. The sec-
é.(Za.vJ exp(=aiv) + exp( 2?'\/]) 1>_ ond and third types were biased—towards HL and LH
Accordingly, we assume a reversal time coming food  respectively—by alternating between 150ms and 350ms
resets, and after a fixed offst has mean gaps, with the shorter gap corresponding to a bias to-
ai (1—exp(—aivj)) wards that percept.
Hijk = Oi + Xijk The low tone was a 440 Hz pure tone and the high tone

2vj (1+exp(—av))) was a 660 Hz pure tone (10 ms rise/fall) with a duration

and variance of 250 ms. A total of 60 trials were presented to each
2v3(exp(aiv-)+1)2 participant,_ in a counter-balanced _order. Stimuli were
Nik =X ik J ! ) generated in MATLAB, at CD quality (44.1 kHz sam-
) a (2avj exp(—aivj) +exp(—2avj) — 1) ple rate) and were presented via earphones to both ears.

0Sound levels were not measured, but were verified to be

So, finally, our graphical model assumes the observe ; . -
easily audible to all participants.

reversal timet;jx on the kth reversal of theith par-
ticipant in the jth condition, is distributed ag;jx ~ Procedure

Gaussiarfpjk, Aiik) - - o . :
Wt Aiji) The participants were familiarized with the experiment

We emphasize this does not correspond to assur% : .
ing the total reversal time distribution has a GaussianPy hearing one example sequence. The experimental se-

form, because we are mixing a series of Gaussians, arftf/€MNces Were then pre_sented n randor_n order. T_he 0b-
this mixture has an appropriate negatively skewed shape>¢' Ve was asked to |nd|_cate their perceived grouping by
This approach to approximation is shown in Figure 3, Pressing the corresponding button (HL versus LH) on the
using the drift ratev — 0.06 and boundary separation SC'E€N USiNg a mouse. All the instructions were given
a—=1 as a concrete example. This gives a probabilityverbally in English.

of 8 = .515. The broken lines correspond to the Gaus- . .

sian distributions folk = 1, 2, 3 and 4 resets (using the Modeling Analysis

same color coding as Figure 1), which covers more tharOur modeling results are based on 10,000 posterior sam-
97% of the total probability according to the Geomet- ples, collected after a burn-in of 10,000 samples, and us-
ric distribution. The means and variances of these Gausing multiple MCMC chains to assess convergence. Fig-
sians are given by the approximations in the graphicalure 4 show the ability of the model to fit the data. Each
model, and the relative probability of each Gaussian inpanel corresponds to an individual participant, experi-
determining the overall mixture is given by the Geomet- encing a specific type of reversal (i.e., either HL chang-
ric distribution. The solid black line is the weighted sum ing to LH, or vice versa), in a specific experimental con-
of the Gaussian components, and has the characteristdition (i.e., the three types of stimuli). The panels are
negative skew of a response time distribution. arranged in groups of four, corresponding to the four
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Figure 4: Posterior predictive fit of model to all data.

participants, and in major rows corresponding to rever-EH being inferred as requiring greater levels of evidence
sal type, and columns corresponding to stimulus type. before a perceptual reversal decision is made. Taken to-
Within each panel, the histograms represent the obgether, these parameter inferences demonstrative a selec-
served response times, and the solid line shows th&ve influence property (e.g., Voss, Rothermund, & Voss,
posterior predictive distribution of the model. The re- 2004) for our model, meaning that drift rate changes
sponse times are longer when the stimulus is biasedvhen the stimulus changes, and boundary rates change
against a percept, shorter when it is biased towards th@&cross participants.
percept, and intermediate when there is no bias. The . .
model clearly captures these patterns. Different partici- Discussion
pants also have consistently different distributions acrossyr initial modeling results suggest that the cyclic se-
t_he conditions—such as EH having longer |nter-reversalquentia| sampling approach can provide a good descrip-
times—and the model also captures these patterns.  tjye account of the distribution of inter-reversal times in
It is important to note that the posterior prediction bistable perception, and can infer meaningful parame-
used in Figure 4 is not a maximized fit, as typically seenter values. This means the model promises to provide a
in tests of sequential sampling models (e.g., Ratcliff & mechanism for furthering our understanding and ability
Smith, 2004), but rather an averaged fit, taken over theo measure bistable perceptual phenomena.
entire posterior parameter space, and so automatically The two key parameters in the model are the drift rate
takes into account model complexity. This means theand boundary separation. The drift rate is a property
ability of the model to fit all of the raw data well, as seen of the stimulus, and measures the evidence the stimu-
in Figure 4, provides strong evidence that it has a basidus provides for each possible ambiguous interpretation.
level of descriptive adequacy. Our model allows this measure to be taken from behav-
Figure 5 show the marginal posterior distributions for ioral data, and introduces the possibility of developing
the drift rate and boundary separation and parametergheoretical accounts of how physical properties of the
There is systematic variation in the drift rates over con-stimulus (e.g., the inter-stimulus intervals) relate to its
ditions, with the unbiased condition drift rate posterior psychological properties (i.e., its evidence for a percept).
being centered on zero, while the biased conditions showrhe boundary separation is a property of the observer,
drift rates above and below zero, as expected. There iand measures the level of evidence required to alternate
essentially no overlap between the distributions, and itbetween percepts. The ability of our model to infer these
is clear that the experimental bias manipulation had thevalues introduces the possibility of exploring individual
theoretically expected effect on drift rates. There is alsodifferences in bistable perception.
evidence of individual differences in the inferred bound- More generally, the initial success of our model sup-
ary separation parameters, with, for example, participanports using sequential sampling models as theoretical ac-
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Figure 5: Posterior distributions for the drift rate and boundary separation parameters.

counts of the time course of perceptual organization. ALunn, D. J., Thomas, A., Best, N., & Spiegelhalter,
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cyclic sequential sampling mechanism seems to work framework: Concepts, structure, and extensibility.
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