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Abstract

Subjective measures of awareness rest on the assumption that
conscious knowledge is knowledge that participants know
they possess. Post-decision wagering, recently proposed as an
objective measure of awareness, raised a new controversy on
determining the properties that should characterize the
objectivity of an awareness measure. Indeed, if the method
appears objective in many aspects — it does not require
introspection but rather lies on instinct, it does not affect
conscious states, it can be learned unconsciously —, it also
shares some characteristics with subjective measures — it
involves metacognitive content and particularly, it represents
a decision about a decision. The lack of consensus on this
topic leaded us to develop a new approach based on a novel
theoretical aspect, causality, and to consider a causally
independent mechanism that would give an agent the
capability to know what knowledge it possesses. In this
framework, any measure that would not necessarily rely on
such mechanism in a given experimental situation should be
considered as objective. We support our claim with a
computational model based on metacognitive networks, and
present three simulation studies in which neural networks
learn to wager on their own performance. Results demonstrate
a good fit to human data, although depending on the situation,
post-decision wagering is implemented either as an objective
or as a subjective measure of network’s knowledge. We
discuss implications of our results for defining the nature of
subjective and objective measures, as well as for our
understanding of consciousness.

Keywords: awareness measures; metacognitive networks;
wagering.

Objective and Subjective Measures

Awareness can be assessed by using objective (e.g., cued-
report tests, forced-choice decisions) or subjective (e.g.,
verbal reports and confidence judgments) measures
(Merikle, 1992). Though this remains controversial
(Holender & Duscherer, 2004; Tunney & Shanks, 2003), by
using subjective measures one can conclude that
performance on some task of interest is guided by
unconscious knowledge whenever participants claim to be
guessing while nevertheless performing better than chance —
the “guessing criterion” (Dienes & Berry, 1997) —, or,
alternatively, when their confidence appears unrelated to
their accuracy — the “zero correlation criterion”. Therefore,

considering an objective threshold determined by an
accuracy at chance, any gap between an objective and a
subjective threshold would be considered as a region of
unconscious processing (Koch & Preuschoff, 2007). This
reasoning presupposes that when one is conscious of some
piece of information, one is also conscious that one holds
this information. This requires metaknowledge — content
and attitude explicit — about the information (Dienes &
Berry, 1997). Then a lack of metaknowledge would refer to
unconscious knowledge, and a dissociation is observable
between the objective and subjective measures that could
track that knowledge.

Post-decision wagering (PDW) was recently introduced as
a new objective measure of awareness and tested on three
different situations by Persaud and his colleagues (Persaud,
McLeod & Cowey, 2007; Persaud & McLeod, 2007). In
PDW, participants continuously evaluate their performance
by wagering on each decision in tasks such as visual
stimulus localization under condition of blindsight (Stoerig,
Zontanou & Cowey, 2002), string classification in artificial
grammar learning (AGLT) (Reber, 1967), and deck
selection in the lowa Gambling Task (IGT) (Bechara et al.,
1994; Maia & McClelland, 2004). Wagering is intuitive for
participants and offers a quantitative way of assessing the
relationship between performance and awareness: Given
that participants attempt to maximize their earnings, when
wagering is independent from above-chance performance
(i.e. below the “zero correlation criterion”), one may
conclude that the knowledge that drives their performance is
unconscious (blindsight, implicit learning). On the other
hand, any positive relationship between wagering and
accuracy should be taken as reflecting to some extent
participants’ knowledge about the basis for their decisions
(suprathreshold stimulus, explicit learning).

Therefore PDW stands as a measure of awareness. If it
effectively appears more objective than subjective measures,
their functioning is equivalent in many aspects: Both PDW
and subjective measures are supported by metacognitive
content and may be vulnerable to biases in that they require
a decision about a decision, leading to the controversy about
if PDW objectively reflects awareness or not, as it does not
directly measures sensory consciousness (Seth, 2008a). But
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still, as for objective measures, it is capable of being learned
unconsciously. Moreover, it depends on a process that does
not involve introspection and that does not affect conscious
states, as verbal reports and confidence judgments usually
do (Koch & Preuschoff, 2007).

With this hybrid character of PDW, the line of distinction
between objective and subjective measures has become
blurred. However, even by putting aside this new measure
and by considering only preexisting ones, the line is already
unclear. Indeed, one can arguably consider that confidence
judgments are a particular kind of cued-report tests, as they
considerably relate to accuracy on a binary scale (Tunney &
Shanks, 2003) and as their discrepancy with performance
nearly vanishes under the right experimental conditions
(Holender & Duscherer, 2004). Therefore one can
reasonably assume that unconscious perception simply
reflects conscious perception under high uncertainty,
whereas another would fill the gap between objective and
subjective thresholds with some sort of partial awareness
(Kouider & Dupoux, 2004). Subjective measures would
thus be depicted as mere objective measures at a more
advanced level of treatment, or alternatively said, of a
weaker type regarding perceptual awareness and of a
stronger type regarding conceptual awareness. If this very
simple idea appears very appealing, we however consider
that a theory of consciousness that offers a set of measures
that only vary in terms of their efficiency in tracking
awareness will never help us to assess whether or not
unconscious and conscious processes can be dissociated.
Indeed, we will hardly distinguish cases when one measure
tracks the same awareness as another but from a more
indirect, biased or slower process, from when the two
measures track two different levels of awareness, and may
be, two different fypes of awareness.

It has been proposed that it would be much more
significant if measures of awareness could show that
unconscious and conscious processes lead to qualitatively
different consequences (Merikle, 1992). But focusing only
on consequences is misleading, since both objective and
subjective measures are and will ever be only behavioral
measures, not phenomenal measures. One can say that
knowledge has indirect effects that can be measured directly
by objective measures (Dienes & Berry, 1997). But in fact,
as long as they rely on behavioral expression, both types of
measures are indirect (Seth, 2008b). For the same reason
that no task is process-pure (Destrebecqz & Cleeremans,
2001), no measure should be considered purely objective or
purely subjective. This mistake might explain why we still
cannot decide whether unconscious processing exists or not.

Considering this new theoretical disillusion, we propose
to detach our attention from objective and subjective
consequences of knowledge in our measures and, instead, to
consider a definition of objectivity and subjectivity from a
causal perspective. Our claim rest on the core assumption
(Cleeremans, 2008; Cleeremans, Timmermans & Pasquali,
2007) that evaluating one’s own performance, as involved in
subjective measures of awareness, requires re-describing

first-order representations responsible for performance into
metarepresentations that continuously inform the agent
about its own success: Knowledge that is in the system must
become knowledge for the system (Karmiloff-Smith, 1992).
As previously pointed out (Dienes & Perner, 1996; Dienes
& Berry, 1997), representing knowledge into
metarepresentations (content explicit) is not sufficient. One
must also represent himself as being in the possession of
that content (attitude explicit). This requires access to the
relevant first-order knowledge in a manner that is
independent from the causal chain in which it is embedded.
A failure in this access would automatically reflect a
dissociation between performance and awareness measures.

To achieve the mechanism, we assume that a higher-order
network continuously monitors the performance of a first-
order network responsible for performing a task, in such a
way that it is (a) able to discriminate and -classify
information contained in the first-order network in a
independent manner, and (b) able to use this information to
perform a secondary task that requires knowledge about
first-order internal state or performance, such as subjective
measures do. Without claiming that this mechanism presents
sufficient or even necessary conditions for awareness in
general, we intend to show that it can account for
participants’ wagering behavior as reported in the
experiments of Persaud et al. (2007). We suggest that more
complex but similar processes are involved when subjective
measures are employed.

Metacognitive networks

We thereafter present a computational model that will
illustrate the functioning of such mechanism. For this, we
conceive neural networks, so called metacognitive
networks, which can learn to know about their own internal
representations of some stimulus domain. In these
experiments, we propose a putative mechanism through
which some sort of self-knowledge can accrue by exploring
the performance of metacognitive networks trained to wager
on their own decisions. We constructed three networks that
simulate in a minimal way the blindsight, the AGLT, and
the IGT tasks proposed by Persaud et al. (2007), and that
reproduce their findings. We created comparable experi-
mental situations; still including several simplifications for
the only aim is to illustrate our claim. In our simulations, a
metacognitive network consists of (a) a three-layers
backpropagation feedforward first-order network (FoN) that
performs the main task (depending on the task: stimulus
localization, letter string classification, or deck selection),
and (b) a second-order network (SoN) that evaluates the
performance of the FoN on a binary scale, and that consists
of a hidden unit layer and of two output nodes (high/low
wager). Because of different task requirements, all three
networks associated with the three experiments differ
substantially in terms of (a) the nature of their higher-order
representations, and (b) the implementation of the “low” and
“high” awareness conditions.

The fairly similar blindsight and AGLT architectures have
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Figure 1: Network architecture for
Blindsight and AGLT simulations.

in common that the FoN is an autoassociator (Figure 1),
while the SoN hidden units consist of a comparator matrix,
representing the match between the input and the output of
the FoN. The use of comparators in these simulations
illustrates perfectly what we mean by independent causality
in that their functioning and performance are independent
(a) from the first-order task and (b) from the quality of the
first-order representations. Independency could obviously
be achieved with many other functions. However, the
crucial role of such comparators for the emergence of
conscious percepts has been suggested previously (Frith,
Blakemore & Wolpert, 2000; Synofzik, Vosgerau & Newen,
2008; Gallagher, 2004; Mandler, 2004), in that they merge
internal and external states into unique representations
(Sperry, 1950; Wolpert & Kawato, 1998; Pacherie, 2008;
Rizzolatti et al., 1996). In our networks, each of these
comparators computes the difference between each
corresponding pair of FoN input and output units, and thus
represents the FoN’s internal error not as a training signal
but as an activation pattern that is accessible for the system.
Here building of metarepresentations is innate and
unsupervised, but this is only after a period of supervised
training in the SoN that they can thereafter drive wagering
advantageously. This means that (a) metarepresentations
emerge automatically, without requiring any learning,
whereas (b) access to these patterns for wagering is learned
over time, independent of specific first-order patterns at the
current task. Thus in these two first simulations, wagering
measures reflect the subjective knowledge that the network
automatically forms about its own internal states.

On the other hand, the architecture of the IGT does not
involve neither an autoassociator nor a comparator (Figure
2). The FoN operates this time a supervised predictive task,
and the SoN is directly plugged onto the hidden units of the
FoN. No automatic and independent metarepresentations are

assumed, but the hidden representations of the SoN that
have been learned over practice, this time specifically
depending on the first-order patterns and task. This
different architecture illustrates another kind of meta-
representations, created by simple reinforcement between
two tasks of interest, which reflect a dependent access to the
internal knowledge. With this implementation, meta-
representations lack the attitude explicitness that would be
necessary for the network in order to know that it possesses
internal knowledge. Network’s wagering ability is enhanced
along the learning phase by trial and error, demonstrating a
mechanism that could have been developed unconsciously
under experimental conditions. PDW is therefore
implemented in this third simulation as an objective
measure of network’s internal knowledge.
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Figure 2: Network architecture for the IGT simulation.

Simulations and Results

In their Blindsight experiment, Persaud et al. (2007) showed
that blindsight subject GY (a patient who, under specific
circumstances, makes visual discriminations in the absence
of visual awareness), when presented with subthreshold
stimuli in his blind field, displayed above chance
localization performance but failed to maximize his earnings
through wagering. However, for suprathreshold stimuli
(both in normal and blind fields)) GY maximized
performance as well as earnings. We simulated these results
by pre-training 15 networks to discriminate patterns and to
simultaneously place wagers on their own performance. The
distinction between subthreshold and suprathreshold visions
in blindsight situations was only introduced during a
following testing phase, in which the networks classified the
patterns they had previously been presented with
(suprathreshold stimuli), as well as degraded versions of
these patterns in which stimulus-to-noise ratio was
manipulated (subthreshold stimuli). If Blindsight is
commonly associated with lesions in the brain and more
particularly in V1, we thought that modulating the stimulus-
to-noise in the input of the metacognitive network would
have more computational interest than cutting connections
between the FoN and the SoN, since a dissociation would
obviously have occurred in the latter case. As shown in
Table 1, the simulations closely capture Persaud et al.’s
results. Discrimination performance, as simulated by the
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Table 1: Results of the Blindsight simulation.

Localization with Experiment Simulation

Subthreshold stimuli Correct Incorrect Total Correct Incorrect Total
High Wager 12 6 18 29 2 31
Low Wager 62 20 82 49,5 19.5 69
Total 74 26 100 78,5 21,5 100
Suprathreshold Stimuli Correct Incorrect Total Correct Incorrect Total
High Wager 72 2 74 50.5 4,5 55
Low Wager 18 8 26 29,5 15.5 45
Total 90 10 100 80 20 100

Percentages of localizations and corresponding wagers in low (subthreshold) and high (suprathreshold) consciousness conditions in Persaud et al.’s

experiment (reproduced with permission) and in our simulation. Optimal wagers are underlined.

Table 2: Results for the AGLT simulation.

Experiment Simulation
Implicit Condition Correct Incorrect Total Correct Incorrect Total
High Wager 36 6,5 42,5 36.5 8,5 45
Low Wager 445 13 57,5 35,5 19.5 55
Total 80,5 19,5 100 72 28 100
Explicit Condition Correct Incorrect Total Correct Incorrect Total
High Wager a N A 63.5 0,5 64
Low Wager N N N 34,5 1.5 36
Total A N 100 98 2 100

Percentages of discriminations and corresponding wagers in low (Implicit condition) and high (Explicit condition) consciousness conditions in Persaud et
al.’s experiment (reproduced with permission; exact explicit condition was not performed but effects were discussed) and in our simulation. Optimal wagers

are underlined.

FoN, is well above chance both under subthreshold and
suprathreshold conditions (78.7% and 80.1% correct,
respectively). However, networks tested in subthreshold
condition fail to support their correct and incorrect
discriminations with advantageous wagers (high and low,
respectively), and instead perform at chance level (48.6% of
all trials are followed by an advantageous wager). This is
not the case under suprathreshold condition (65.9% of all
trials are followed by an advantageous wager).

In the Artificial Grammar Learning experiment, Persaud
et al. show that, following exposure to artificial grammar
strings under incidental learning conditions (i.e., memorize
"TSXVPP", "PVPXVT", etc.), participants perform above
chance on subsequent discrimination of novel strings, while
failing to maximize their earnings though advantageous
wagering (Implicit condition). When participants were
thereafter made aware of the grammar rules (Explicit
condition), they started to wager more advantageously.
Discrimination performance should also have improved in
this condition but experimenters maintained it as the same
level as in the Implicit condition by reducing the time of
exposure to the strings during the test phase. We simulated
these results by training two sets of 15 networks to classify
artificial grammar strings. The metacognitive networks were
similar to those used in the Blindsight simulation, except
that we implemented the distinction between high and low
awareness conditions only by manipulating the FoN training

phase length (short and long training phases corresponding
to Implicit and Explicit conditions, respectively). Obviously
we could not tell the networks what were the grammar rules
as experimenters did with participants. However, in order to
illustrate our claim, we only needed to induce the same
improvements as in the experimental situation. As both
performance and wagering had to be enhanced in our
Explicit condition, we just let the FoN learn for a longer
period in order to obtain the same effects. Nonetheless we
did not integrate in our simulation their manipulation of the
duration of subjects’ exposure to the strings that maintained
performance at the same level in both Implicit and Explicit
conditions. Therefore we shall not compare our results to
their Explicit condition, but to the effects that occur when
exposure’s duration is unchanged. Here again results fit
Persaud et al.’s data (Table 2). Networks in the Implicit
condition performed above chance (71.8% correct), but
failed to optimize their wagering (55.8% of all trials).
Whereas in the Explicit condition, networks were not only
better at the discrimination task (98.2% correct) — as a
longer exposure duration would have predicted experi-
mentally —, but also in placing advantageous wagers above
chance (64.9% of all trials).

We performed a simpler implementation of the lowa
Gambling Tasks experimented by Maia & McClelland
(2004) or by Persaud et al. (2007). In Persaud’s version,
participants’ task is to select one of four decks of cards, each
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Figure 3: Results for the IGT simulation.
Performance is plotted across time (epochs) for (a; ¢) low consciousness,
and (b; d) high consciousness conditions in Persaud et al.’s experiment

(reproduced with permission) and in our simulation respectively.

with different pay-offs. After deck selection, but before
turning over the card (revealing how much was won or lost),
participants wager on whether the card will be winning or
losing. Participants typically manage to optimize deck
selection well before they start wagering advantageously.
However when participants are made more aware of their
strategy to determine deck relative pay-offs by asking them
the specific questions proposed by Maia & McClelland
(2004) (i.e., “What would you expect your average winning
amount to be by picking 10 cards from deck 1?”), wagering
follows performance more closely (Persaud et al., 2007).
This experiment differs from the two others in three aspects,
necessitating a different simulation approach. First, the IGT
required participants to initially explore the material before
being able to create any representation about the decks’
yields. The resulting metarepresentations are thus
necessarily dependent on this exploration phase. Second,
participants received feedback on each trial about the
quality of their wagering, as the turning of the card
immediately revealed whether and how much they had won.
As a consequence, participants could have used this
feedback to unconsciously optimize not only their deck
selection, but also their wagering. Certainly participants
effectively became aware of relative pay-offs along the
experiment, but this makes wagering in the IGT less suitable
as a subjective measure of awareness since advantageous
wagering could in principle emerge without subjectivity.
Third, high awareness condition affected participants’
wagering measures but not their performance, as if the
specific questions revealed clues that were useful for the
development of a wagering strategy but not for the game’s
first task. To simulate these results, two sets of 15 networks
learned to perform the deck selection task while wagering
on the gain upon each decision. Implementation was
modified in three main aspects in order to reflect the task’s
differences. First, the FoN could not be an autoassociator
since the desired states were not available as inputs as in the

previous simulations. Indeed the networks had to select one
out of four card packs at first and received feedback about
the quality of that selection (win or loss) only after. Second
and as a consequence, the SoN metarepresentations could
not rely on a comparator, but instead consisted of a hidden
layer directly connected to FoN hidden units and feeding
forward into the (wagering) outputs (Figure 2). Finally, in
order to modulate only the wagering measures, we
implemented the distinction between Low Consciousness
and High Consciousness conditions by setting the SoN
learning rate low or high, respectively. Figure 3 displays the
performance at both tasks (desk selection and wagering)
over time. Like in Persaud et al.’s data, in the Low
Consciousness condition, wagering performance lags
advantageous card deck selection. However, under a High
Consciousness condition, in which in simulation we
increased the speed with which the SoN could make use of
the FoN hidden units’ representations, wagering closely
follows card deck selection.

Discussion

The simulations demonstrate three ways of modeling
wagering behavior such as reported experimentally by
Persaud et al. (2007). In all three situations metacognitive
networks can be trained to take advantage of their internal
states in order to drive an advantageous wagering. Through
the development of metarepresentations that re-describe
relevant first-order knowledge, each network is able to
capture the dissociation between performance and wagering
under conditions of low and high awareness as it has been
measured experimentally. However, if wagering measures
lead to comparable consequences in the three experiments, a
distinction can now be drawn considering the implemen-
tations of the Blindsight and the AGLT simulations on one
hand, and that of the IGT simulation on the other. The
difference of implementation points towards two different
types of metarepresentations. Though both involve re-
descriptions of first-order representations, for the second
type (the architecture used for the IGT), emergence of
metarepresentations occurs through supervised reinfor-
cement by the secondary task, which directly taps into the
knowledge used in the primary task. Whereas for the first
type (blindsight and AGLT simulations), metarepresenta-
tions are accessed without learning through an automatic,
non-supervised re-descriptive process, unrelated a priori to
any specific secondary task. Therefore the distinction is
based on the causal nature of the metarepresentations, and
this nature defines if wagering is an objective or a subjective
measure of awareness. Thus, the wagering measure can be
of either type depending on the experiment. This explains
why PDW elicited so much controversy.

Though we do not claim that metacognitive networks are
aware in any sense, we would like to discuss three
fundamental issues on which we believe these simulations
shed some light. First, the basic assumption underlying the
mechanism is that metacognition requires higher-order
representations, content and attitude explicit, as minimally
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simulated by the SoNs in the first two experiments. This
means that task-related knowledge must become available
for the metacognitive agent, outside of the causal chain in
which it is embedded when performing that task. In other
words, the knowledge has to become accessible content
about which one can form metacognitive content, use it and
possibly become subjectively conscious of it. Second, in
order to illustrate the mechanism, we used second-order
comparators that form a representation of the difference
between the current internal state or prediction of the first-
order network, and the effective external state correspon-
ding to the input it received. As suggested before (Frith,
Blakemore & Wolpert, 2000; Synofzik, Vosgerau & Newen,
2008; Gallagher, 2004; Mandler, 2004; Sperry, 1950;
Wolpert & Kawato, 1998; Pacherie, 2008; Rizzolatti et al.,
1996), such comparators may play a crucial role in the
emergence of consciousness — and particularly the sense of
agency — as they inform an agent about the adequacy of its
own internal states. Large discrepancies between a
prediction and the corresponding outcome form conscious
events, and precisely, comparators can detect them. Third, it
appears that different types of metarepresentations coexist in
our brain. Even if the descriptions we have made do not
inform much about the phenomenology of consciousness,
one might find this causally independent mechanism
appropriate for operating access consciousness. Moreover, it
could produce the higher-order representations that render
their observed content conscious, when they themselves
become subject of further higher-order representations, as it
is described by the HOT theory (Rosenthal, 1997).

In conclusion, the main point raised by our model is that
metacognitive content can emerge naturally through a
process of continuous representational redescription
(Karmiloff-Smith, 1992; Clark & Karmiloff-Smith, 1993)
that is itself learned over time. This in turn suggests that the
mind learns to be conscious, as it learns to use knowledge
from unconscious lower-order processes to develop higher-
order representations that inform it about the geography of
its own internal states.
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