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Abstract
A number of different measures have been proposed for eval-
uating computational models of human syntactic category ac-
quisition. They all rely on a gold standard set of manually de-
termined categories. However, children’s syntactic categories
change during language development, so evaluating against a
fixed and final set of adult categories is not appropriate. In this
paper, we propose a new measure,substitutable precision and
recall, based on the idea that words which occur in similar
syntactic environments share the same category. We use this
measure to evaluate three standard category acquisition mod-
els (hierarchical clustering, frequent frames, Bayesian HMM)
and show that the results correlate well with those obtained
using two gold-standard-based measures.

Introduction
By the time children reach school age, they have achieved the
remarkable feat of acquiring most of their native language,
typically without explicit instruction. This includes theac-
quisition ofsyntactic categories (noun, verb, adjective, etc.).
A number of computational models of category learning have
been developed, most of which conceptualize the problem as
one of grouping together words whose syntactic behavior is
similar. Typically, the input for the model is taken from a cor-
pus of child-directed speech, and clusters are created based
on distributional information (Redington et al., 1998; Mintz,
2003; Parisien et al., 2008).

A problem common to all existing models is the evaluation
of the model clusters. Often researchers have tested the output
of their models against gold-standard category assignments,
such as that available in the CHILDES database (MacWhin-
ney, 2000). These gold-standard categories are based on the
intuition of human annotators and are representative of adult
morphosyntactic knowledge. Therefore, this type of evalua-
tion is not ideal for assessing the syntactic categories of chil-
dren, as these may include linguistically valid distinctions not
recognized by the gold standard. Conversely, the gold stan-
dard may make distinctions that children do not have, or only
acquire during language development. For example, at the
age of two, English-learning children have not fully acquired
the verb category (Olguin & Tomasello, 1993), and functional
categories such as determiners are acquired even later (Kemp
et al., 2005).

It is therefore highly desirable to develop an evaluation
measure that does not make reference to an (adult) gold stan-
dard. On the other hand, the measure should give results that
correlate with gold-standard-based measures, indicatingthat
it is capable of capturing the linguistic distinctions inherent
in the gold-standard. Finally, the ideal measure needs to be

applicable to a wide range of different acquisition models
(e.g., it should not be limited to probabilistic models).

This paper proposes a new evaluation measure which meets
these criteria:substitutable precision and recall. It relies on a
classical idea from linguistics, viz., that words which share
the same syntactic category occur in similar syntactic envi-
ronments. It does not require a gold standard, and thereforeis
suitable for evaluating pre-adult categories. At the same time,
it yields results that correlate with gold-standard-basedmea-
sures. We will show this by applying our new measure, as
well as existing measures, to three standard models that dis-
cover syntactic categories in child-directed speech. Thisis the
first time these models have been systematically compared;
previous authors have used their own evaluation measures and
only applied them to their own data sets, thus making a com-
parison across models difficult.

Gold-standard-based Evaluation Measures
In the following section we describe two evaluation measures
that have been used to evaluate category acquisition models.
Both require gold-standard labeled data, which is problem-
atic from an acquisition standpoint for the reasons previously
discussed. Hand-labeled data is also scarce, particularlyfor
languages other than English.

Some of the models we investigate categorize word types
(a type being a word such asduck), whereas others categorize
tokens (particular instances ofduck). In order to compare both
kinds of models, the measures we describe are used to score
tokens, not types.

Matched Accuracy This measure is widely used in the
field of Natural Language Processing for unsupervised part-
of-speech tagging, in which the tokens of a text are automat-
ically annotated (“tagged”) with cluster numbers. To obtain
the matched accuracyMA, the clusters induced by the model
are mapped onto the gold-standard categories in order to pro-
vide a gold-standard part-of-speech label for each cluster. MA
is then defined as the percentage of word tokens with correct
category labels. The crucial aspect is the mapping between
the clusters and the gold standard categories. In this paper,
we use many-to-one accuracy, where each model cluster is
matched onto the gold-standard category with which it shares
the most tokens. This can result in a situation where multiple
clusters are mapped onto the same gold standard category.
This means the model is not penalized for creating more fine-
grained clusters than the gold standard.
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Pairwise Precision and Recall These measures are widely
used in the cognitive literature on category acquisition
(e.g., Redington et al. 1998; Mintz 2003), and are sometimes
referred to as accuracy and completeness. To compute them,
we consider all possible word pairs. If the words in a pair are
grouped together by the model correctly (i.e., they are in the
same gold-standard category and in the same model cluster),
a true positive (t p) is recorded; if they are not in the same
gold-standard category, a false positive (f p) is recorded. If
the two words are not grouped together by the model, but are
in the same gold-standard category, then a false negative (f n)
is recorded. Pairwise precision and recall is then defined as:

PP =
t p

t p+ f p
PR =

t p
t p+ f n

(1)

Note thatt p + f p is the total number of pairs within model
clusters, whereast p + f n is the total number of pairs within
the same category in the gold-standard.PP thus measures
the proportion of correct pairs within the model clustering
(i.e., whether the model clusters together the correct words),
while PR measures the number of correct pairs as a fraction
of all pairs in the gold standard (i.e., whether all correct pairs
have been found).

Substitutable Precision and Recall

Our goal is to capture the essential nature of syntactic cate-
gories without using the actual categories themselves. Distri-
butional analysis gives us the notion ofsubstitutability (Har-
ris, 1946; Brown & Fraser, 1964) as the key aspect of syntac-
tic categories. Substitutable categories are made up of words
with identical “privileges of occurrence”, i.e., a syntactic cat-
egory consists of words which may be substituted for each
other within a sentence without making the sentence ungram-
matical. For example,he and she both belong to the same
category becausehe is happy andshe is happy are both gram-
matical.

The measure we propose,substitutable precision and re-
call, evaluates category acquisition models by testing whether
substitutable words — words which appear in the same
contexts — have been clustered together. Because nearly-
identical sentences (which would be necessary to strictly
evaluate substitutability) are rare in corpora, we restrict our
notion of context toframes: two words appearing in the cor-
pus with exactly one word in between. From these frames, we
create substitutable clusters (S-clusters) that consist of the set
of word types that appear within the same frame. There is a
one-to-one correspondence between S-clusters and frames.

Substitutable precision and recall are calculated similarly
to standard pairwise precision and recall. However, this does
not require a gold standard; instead, the set of clustersC in-
duced by the model is compared with the set of S-clustersS.
Substitutable precisionSP (Eq. 2) thus measures whether the
clusters consist of substitutable words, while substitutable re-
call SR measures to what extent substitutable words have been

clustered together (Eq. 3).1

SP =
∑s∈S ∑c∈C |s∩ c|(|s∩ c|−1)

∑c∈C |c|(|c|−1)
(2)

SR =
∑s∈S ∑c∈C |s∩ c|(|s∩ c|−1)

∑s∈S |s|(|s|−1)
(3)

Because the models we are investigating use context infor-
mation that is similar to frames, there may be danger of over-
fitting the evaluation measure to the models and their training
data. To avoid this, we computeSP andSR using a separate
test corpus. The S-clusters used for evaluation are based on
frames found in both the training and the test corpus, but the
words within each S-cluster are from the test corpus only (the
test words must be in the training corpus vocabulary). Un-
der the distributional definition, syntactic categories can be
interpreted as expectations of substitutability, regardless of
whether the members of the category have appeared in the
same syntactic context. By using separate, additional datato
measure substitutable precision and recall, we evaluate the
extent to which these learned expectations of substitutability
generalize to increasing amounts of data.

If a frame is made up of words with multiple (model) clus-
ter memberships, the model may have discovered a valid am-
biguity. For example, the frameto — cake is (using gold stan-
dard tags) ambiguous betweentoINF — cakeN (“We are go-
ing to eat cake today”), which has an S-cluster consisting of
words such asbake andeat, andtoPREP — cakeN (“Put the
juice next to his cake”), with a corresponding S-cluster con-
sisting of words such ashis or that. For this reason, we add
cluster membership information (as found by the model be-
ing evaluated) to each frame word, as well as to the words in
the S-clusters.

By using a separate test corpus, we introduce a dependency
on the size of the test set. In our experiments, we use a test set
that is six times the size of the training set (we use the Manch-
ester corpus (1.5M words) to train, and the rest of CHILDES
(9M words) to test). Additionally, we only evaluate on frames
that occur more than once within the test data, since a single
occurrence gives no information about which words should
be clustered together, and a single occurrence of a rare event
also gives little information about which wordsnot to cluster
together.

Models of Syntactic Category Acquisition
In this section we briefly describe three models2 of syntac-
tic category acquisition that we will use to test our evaluation
method. These models were chosen primarily for being rep-
resentative of the space of possible models: they differ, for
example, in their treatment of syntactically ambiguous words
and whether or not they categorize every word in the corpus.

1Note that we retain the pairwise nature of pairwise precision
and recall, which leads to the second term in the products (i.e., the
number of non-identical pairs in a cluster is|c|(|c|−1))

2We use the wordmodels loosely; the authors of these systems do
not always assume that they are modeling human learning, but may
only be examining the possible usefulness of distributional cues.

2577



Frequent Frames

Our first model is based on the frequent frames (FF) proce-
dure for discovering syntactic categories described by Mintz
(2003), which has been influential in the language acquisi-
tion community (see, e.g., Ǵomez & Maye 2005). Mintz’s ap-
proach is inspired by behavioral experiments suggesting that
human learning of syntactic categories is strongly aided by
the presence of frequently occurring frames (Mintz, 2002).
In this case, a frame is defined as any ordered pair of words
(a,b) that occurs in the corpus with a single intervening word.
(Note that this differs from our use in the context of evalua-
tion, where the categories assigned to the words are also in-
cluded in the frame.) The most frequent frames in the corpus
are recorded, and for each one, all words that occur within
that frame are assigned to the same cluster.

Our implementation follows Mintz in initially defining a
cluster for each frame whose frequency is at least 0.09%3 of
the total number of frames in the corpus. Pairs of clusters with
the highest overlap in word types, proportionally to the largest
of the two clusters, are then iteratively merged until the target
number of clusters is reached.

One drawback of FF is that only a very small percentage
of tokens are clustered (4%–8% in Mintz’s experiments with
corpora of child-directed speech), and these are almost exclu-
sively nouns and verbs. The clusters do, however, have very
high accuracy (i.e., words that are grouped together almostal-
ways belong to the same gold standard category), and Mintz
points out that a much larger percentage of tokens (48%–
61%) belong to the same types as those clustered, suggesting
that these tokens could be added to the same clusters. How-
ever, this does nothing to cluster the large number of word
types that never appear in a frequent frame. Moreover, it ig-
nores the problem of syntactic ambiguity: first, because it is
not clear what to do if a word type is initially assigned to
multiple clusters, and second, because it assumes that all re-
maining tokens should belong to the same cluster, which may
not reflect any true ambiguity.

Hierarchical Clustering

Researchers in both cognitive science and computational lin-
guistics have proposed algorithms for syntactic category in-
duction based on clustering context vectors (Redington et al.,
1998; Clark, 2000; Scḧutze, 1995). We implemented the algo-
rithm described by Redington et al. (1998), which has prob-
ably had the most impact in language acquisition. It treats
the n most frequent word types in the corpus as the target
words, and them most frequent types are used as context
words (wherem < n). For each target word, a context vector
~v = v1 . . .vm is created, withvi equal to the number of times
the ith context word co-occurs with the target word. Specific
context positions (e.g., one word to the left of the target, two
words to the right) are accounted for by collecting separate
vectors for each position and concatenating them. The simi-

3We use a slightly lower cutoff than Mintz (who used 0.13%) in
order to have enough frames to make 80 clusters in the experiments.

larity between vectors is computed using the Spearman rank
correlation, and a tree structure is created by iterativelyclus-
tering together the most similar words (or previously created
clusters). By “cutting” the tree at different heights, different
numbers of clusters can be produced. The best results of Red-
ington et al. (1998) are withn = 1000, m = 150, and two
positions on either side of each target word as context. We
use the same parameters here.

An important property of this hierarchical clustering (HC)
model is the fact that the context vector for each word type
combines the context counts for all tokens of that word.
Therefore, every token of a particular word is assigned to the
same syntactic category, regardless of the specific contextin
which it appears.

Although HC does not cluster every word in the corpus,
its coverage is far more complete than that of FF. Even in
a very large corpus, Zipf’s law ensures that the 1000 most
frequent words account for most of the corpus. Despite its
broad coverage, however, HC only performs well on words
with high frequency, unlike children, who can learn words
(and their usage, i.e. their syntactic categories) on the basis of
very few observations (Woodward et al., 1994). In contrast,
FF may categorize some words that occur only once, provided
they occur inside frequent frames.

Bayesian Hidden Markov Model
Unlike the previous algorithmic approaches, the third ap-
proach is based on a probabilistic model. We consider the
Bayesian HMM (BHMM) proposed by Goldwater & Grif-
fiths (2007) as our third model because it contrasts with the
previous two on several levels: in addition to being based on
a probabilistic model, it categorizes every word in the corpus,
and it can deal with ambiguity, i.e., it may assign different
tokens of the same word type to different clusters.

As a variant of the standard HMM, this model assumes that
the corpus is probabilistically generated as a sequence of clus-
ter labels (tags), each of which in turn generates the observed
word. The model considers different possible sequences of
tags, searching for a sequence that can explain the observed
words well, while also being linguistically plausible. In this
case, plausibility is enforced using Bayesian priors to cap-
ture the intuition that the HMM transition and output distri-
butions aresparse, i.e., that each tag is followed by relatively
few other tags with high probability, and outputs relatively
few words with high probability. In contrast to the other mod-
els, neighboring words affect the BHMM’s decision about a
word’s category only indirectly, through their category labels.

Our implementation of the BHMM uses Gibbs sampling to
identify a sequence of tags that has high probability under the
model. In this implementation, the only free parameter of the
model is the number of clusters used. In our experiments, we
ran the Gibbs sampler for 2000 iterations.

Model Implementation and Experiments
For all our experiments, we used the Manchester corpus
(Theakston et al., 2001), which is annotated with syntactic
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ADJ Adjectives, e.g.,funny, pink
ADV Adverbs, e.g.,today, just, normally
OTH Miscellaneous, e.g.,yes, well, hurray

CONJ Conjunctions, e.g.,and, or
DET Determiners, e.g.,a, those, six
INF Infinitival to

N Nouns and Pronouns, e.g.,you, duckie
NEG Negations, e.g.,not

PART Participles, e.g.,raining, hidden
PREP Prepositions, e.g.,on, to, after

QN Quantifiers, e.g.,many, all, some
V Verbs, e.g.,swim, do, is

Table 1: Collapsed gold-standard categories

categories and is part of the CHILDES database (MacWhin-
ney, 2000). The Manchester corpus consists of transcribed
recordings of 12 children interacting with adults, and cov-
ers an age range of 1 year 8 months to 3 years. Our models
are trained only on child-directed speech (CDS), so we re-
moved all child utterances, as well as any utterances contain-
ing unintelligible words; additionally, we split contractions
(e.g., aren’t) into separate words and added beginning-of-
sentence and end-of-sentence markers (which were included
in the frames used to create S-clusters, but not in the frames
used to train the FF model). This left approximately 1.5M
words and 360,000 child-directed utterances.

The original set of syntactic categories used for the Manch-
ester corpus contains detailed morphosyntactic information,
e.g.,playing is annotatedpart|play-PROG. After stripping out
the morphological information, the category inventory con-
tained 53 categories. We also created a collapsed inventory
consisting of 12 categories (see Table 1).

For each of the models described in the previous section,
we varied the number of clustersK over three conditions: 12
(as in the collapsed category inventory), 53 (as in the original
inventory) and 80 (to create more fine-grained clusters). One
of the advantages of the substitutable precision-recall mea-
sures is that they do not depend on the gold standard for the
“true” number of clusters; thus there is no penalty for a clus-
tering that does not have the same number of clusters as the
gold standard.

We also compared eachK condition against a random base-
line. For each cluster in the gold standard, we created a clus-
ter with the same number of word types, selected at random
from the full vocabulary (theK = 80 andK = 53 conditions
shared the same random baseline). This results in a random
clustering with the same cluster size distribution as the gold
standard, and all tokens of each type in the same cluster.

Our goal is to show that substitutable precision and recall
yield informative evaluation results without requiring a gold
standard. We therefore evaluated each category acquisition
model not only with substitutable precision and recall,SP and
SR, but also with the measures introduced earlier: matched
accuracyMA and pairwise precisionPP and recallPR.

A problem arises, however, when we try to compare the
three clustering models: they each categorize a different sub-
set of the data. The BHMM model assigns categories to ev-

Measures Spearman’s rho
SP, PP 0.638∗

SR, PR 0.755∗∗

SP, MA 0.677∗

Table 2: Spearman’s rho correlations between the rankings
given by a pair of evaluation metrics (N = 12), computed us-
ing the merge condition results; **:p < 0.01; *: p < 0.05; all
correlations not included in the table are non-significant.

Model K PP PR MA SP SR
Random 12 0.205 0.324 0.796 0.000065 0.254458
Random 53 0.096 0.254 0.720 0.000092 0.173907
BHMM 12 0.570 0.263 0.721 0.000221 0.308508
BHMM 53 0.624 0.175 0.747 0.000347 0.109927
BHMM 80 0.657 0.128 0.775 0.000330 0.084811
HC 12 0.201 0.864 0.361 0.000046 0.375467
HC 53 0.330 0.654 0.523 0.000117 0.202372
HC 80 0.484 0.512 0.639 0.000159 0.183736
FF 12 0.220 0.244 0.448 0.000027 0.217124
FF 53 0.219 0.079 0.392 0.000039 0.120499
FF 80 0.224 0.053 0.423 0.000043 0.096760

Table 3: Results for the merge condition. The best score
for each evaluation type and number-of-clusters conditionis
highlighted.

ery token, the FF model assigns categories to only those word
types which appear within frequent frames, and the HC model
only categorizes the 1000 most frequent word types. We re-
solve this problem in two ways. In themerge condition, we
combine all words that are not clustered by the model into
one large cluster. In thesplit condition, we assign each un-
clustered word to its own cluster. The difference in perfor-
mance between these two conditions thus indicates the effect
of the unclustered words.

Additionally, it is necessary to assign each token in the
text to a category, if the model does not categorize tokens (as
BHMM does). For HC, each token of a given type is assigned
to the type’s category. In the FF model, a word type can be-
long to multiple categories, making it unclear which cate-
gory a particular token should be assigned to. We assigned
tokens found in frequent frames to the category defined by
that frame; other instances of ambiguous types were assigned
to a given cluster with probabilityp(ci|wi) = |ci|

∑c:w∈c |c|
, that is,

according to the size of the clusters that include the ambigu-
ous word type.

Results
The results are given in Table 3. We first discuss them in light
of our proposed evaluation measures,SP andSR, and then go
on to compare the performance of the different models.

Comparison of Evaluation Measures
Figure 1 shows the similar performance of the two precision-
recall measures. Results forSP andSR are significantly cor-

2579



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

R
ec

al
l

Precision

Pairwise Precision and Recall

Random
BHMM

HC
FF

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.0001  0.0002  0.0003  0.0004

R
ec

al
l

Precision

Substitutable Precision and Recall

Random
BHMM

HC
FF

Figure 1: Pairwise precision and recall on the left, substitutable precision and recall on the right. The size of the points indicates
the number of clusters: small points are for 12 clusters, medium points for 53, large points for 80. HC and FF results are for the
merge condition.

 1

 10

 100

 1000

 10000

S
iz

e 
of

 c
lu

st
er

12 clusters

 1

 10

 100

 1000

 10000

53 clusters

 1

 10

 100

 1000

 10000

80 clusters

GS
BHMM

HC
FF

Figure 2: Ranked cluster sizes, measured in types: thex-axis
represents the clusters, which are ordered according to size;
the y-axis gives the size of the clusters on a log scale (GS:
gold standard; BHMM: Bayesian HMM; HC: hierarchical
clustering, FF: frequent frames). Note the random baseline
clusters have the same type-size-distribution as GS.

related withPP andPR, respectively (Table 2).SP also cor-
relates withMA significantly. This demonstrates that without
using the gold standard,SP andSR can capture similar dis-
tinctions asPP, PR, andMA.

The values ofSP that we obtain are extremely small. This is
due to the fact that, overall, the S-clusters from the framesare
much smaller than the model clusters. Because the S-clusters
are gathered from a finite set of data, they do not describe
complete substitutability. In other words, while membership
in a cluster implies substitutability, non-membership does not
rule out substitutability. However, all models are penalized
equally by this lack of complete data.

It is also interesting to note that the FF models did not do
better when evaluated onSP andSR, compared toPP andPR,
despite superficial similarities between the model’s clustering

method and the S-clusters. This demonstrates the importance
of using separate testing data: the FF models were unable to
generalize to new data.

Model Performance

The different model types find very different word cluster-
ings, as Fig. 2 helps to illustrate. HC creates clusters with
highly skewed sizes (most extremely so in the 12 cluster con-
dition, in which 969 of the 1000 clustered word types are put
into one cluster). The cluster size distribution of FF models
is much flatter, indicative of FF’s propensity to create highly
ambiguous clusterings, in which each word type belongs to
many clusters. The BHMM clusterings also have higher lev-
els of lexical ambiguity than the gold standard, resulting in
more larger clusters overall, both in terms of types and tokens.
Both BHMM and FF tend towards more ambiguity with more
clusters. It should be noted as well that the token distributions
are highly similar to the type distributions.

Keeping these distributions in mind, we can ask how they
affect the evaluation metrics. We expect clusterings with
peaked distributions (most words in few clusters) to per-
form better on recall-based measures (PR, SR), whereas flat-
ter distributions with high ambiguity may perform better on
precision-based measures (MA, PP, SP). Indeed, we find this
to be the case. BHMM models perform best onPP, MA, and
SP, while HC models perform best onPR andSR (Table 3).
The Random baseline clusterings do surprisingly well, out-
performing FF on several measures — even slightly onSP
andSR, for which there should be less advantage for baseline
models linked to the gold-standard. This underlines the im-
portance of finding clusters with gold-standard-like size dis-
tributions.

Effect of Unclustered Words

Both the HC and FF do not cluster all word types found in
the training data. The HC model clusters only the most fre-
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Model K PP PR MA SP SR
HC 12 0.016 0.750 0.380 0.000030 0.193955
HC 53 0.059 0.405 0.550 0.000061 0.061327
HC 80 0.086 0.338 0.666 0.000091 0.046781
FF 12 0.219 0.238 0.486 0.000018 0.095166
FF 53 0.240 0.072 0.440 0.000028 0.023271
FF 80 0.260 0.046 0.471 0.000035 0.014687

Table 4: Results for the split condition. Scores that have im-
proved with respect to the merge condition are in bold.

quent 1000 types, which in our data set make up only 9% of
types, but account for 95% of the tokens. FF clusters more
types (70%), but these also make up 95% of tokens, indicat-
ing that some frequent words (i.e., the words in the frames
themselves) remain unclustered.

In the split condition, the remaining types are split up
into separate clusters, while in the merge condition they are
merged into one large cluster. Splitting up unclustered words
improvedMA performance for both HC and FF. This increase
in MA is expected, given that smaller clusters result in higher
accuracy, but the increase was only slight, since relatively few
word tokens were affected. FF models with more clusters also
also saw higherPP performance. This again is to be expected;
more surprising is the fact that HC models did not improve.
This indicates that much of HC’s performance in the merge
condition was due to the unclustered-words cluster, which in-
cluded 90% of the word types (and thus many with the same
gold standard category).

SP and SR also decrease in the split condition, in most
cases by nearly 50%. This also indicates that original per-
formance was greatly boosted by the unclustered-words clus-
ter, since as a pairwise measure,SP and SR do not capture
clusters with only one word type, effectively removing the
unclustered words from this measure.

Conclusions and Future Work
This paper dealt with the problem of evaluating computa-
tional models of human syntactic category acquisition. We
started from the observation that children’s syntactic cate-
gories change during language development, which means
that an evaluation against a fixed gold-standard (typically
based on adult linguistic intuitions) is not adequate. As an
alternative, we proposed substitutable precision and recall,
a measure based on the idea that words which share the
same category occur in similar syntactic environments. We
showed that our new measure significantly correlates with ex-
isting, gold-standard measures: substitutable precisioncorre-
lates with pairwise precision and matched accuracy, and sub-
stitutable recall correlates with pairwise recall.

This paper also presented the first systematic comparison
of three standard acquisition models from the literature: Red-
ington et al.’s (1998) hierarchical clustering model, which
performed well on recall-oriented measures, Goldwater &
Griffiths’s (2007) Bayesian HMM, which performed well
on precision-oriented measures, and Mintz’s (2003) frequent
frame model which showed surprisingly poor performance.

Finally, we also demonstrated that evaluation results strongly
depend on how unclustered words are evaluated.

In future work, we will explore the external validity of sub-
stitutable precision and recall. While it is important to show
that it correlates with existing evaluation measures, we also
need to test it against experimental data (e.g., substitutability
judgments). Additionally, we plan to apply it to longitudinal
acquisition corpora to evaluate models which follow the time
course of category development.
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