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Abstract applicable to a wide range of different acquisition models
A number of different measures have been proposed for eval- (€.g., it should not be limited to probabilistic models).
uating computational models of human syntactic category ac-  Thjs paper proposes a hew evaluation measure which meets
quisition. They all rely on a gold standard set of manually de- L . . .
termined categories. However, children’s syntactic categories these criteriasubstitutable precision and recall. It relies on a
change during language development, so evaluating against a classical idea from linguistics, viz., that words which ha
fixed and final set of adult categories is not appropriate. Inthis - the same syntactic category occur in similar syntactic envi
paper, we propose a hew meastastitutable precision and . .
recall, based on the idea that words which occur in similar fonments. It does not require a gold standard, and therefore
syntactic anirOR’rgt%n{ﬁrzgaéfa%z %a(r:g?ecitreggé)’-u\i/gﬁi (;Jnst?n t(tlcijs suitable for evaluating pre-adult categories. At the same,t
gse e(lﬁ:g%rgh?ggl clustering, frequent framgs,yBaygsian HMM) ityields resul_ts that cor_relate with gold-standard-balsm-
and show that the results correlate well with those obtained sures. We will show this by applying our new measure, as
using two gold-standard-based measures. well as existing measures, to three standard models that dis
. cover syntactic categories in child-directed speech. iBtise
Introduction first time these models have been systematically compared;

By the time children reach school age, they have achieved thgrevious authors have used their own evaluation measudes an
remarkable feat of acquiring most of their native languagepnly applied them to their own data sets, thus making a com-
typically without explicit instruction. This includes thec-  parison across models difficult.
quisition of syntactic categories (noun, verb, adjective, etc.). )
A number of computational models of category learning have Gold-standar d-based Evaluation Measures
been developed, most of which conceptualize the problem ag the following section we describe two evaluation measure
one of grouping together words whose syntactic behavior ighat have been used to evaluate category acquisition models
similar. Typically, the input for the model is taken from a€o  Both require gold-standard labeled data, which is problem-
pus of child-directed speech, and clusters are createdibasatic from an acquisition standpoint for the reasons presfipu
on distributional information (Redington et al., 1998; Min  discussed. Hand-labeled data is also scarce, particiftarly
2003; Parisien et al., 2008). languages other than English.

A problem common to all existing models is the evaluation Some of the models we investigate categorize word types
of the model clusters. Often researchers have tested tpatout (a type being a word such dsck), whereas others categorize
of their models against gold-standard category assigrsnenttokens (particular instancesiick). In order to compare both
such as that available in the CHILDES database (MacWhinkinds of models, the measures we describe are used to score
ney, 2000). These gold-standard categories are based on tfigkens, not types.
intuition of human annotators and are representative oft adu
morphosyntactic knowledge. Therefore, this type of evaluaMatched Accuracy This measure is widely used in the
tion is not ideal for assessing the syntactic categoriehivf ¢ field of Natural Language Processing for unsupervised part-
dren, as these may include linguistically valid distinn8amot  of-speech tagging, in which the tokens of a text are automat-
recognized by the gold standard. Conversely, the gold starieally annotated (“tagged”) with cluster numbers. To obtai
dard may make distinctions that children do not have, or onlythe matched accuradylA, the clusters induced by the model
acquire during language development. For example, at thare mapped onto the gold-standard categories in order to pro
age of two, English-learning children have not fully acedir vide a gold-standard part-of-speech label for each clugtar
the verb category (Olguin & Tomasello, 1993), and functlona is then defined as the percentage of word tokens with correct
categories such as determiners are acquired even latepKensategory labels. The crucial aspect is the mapping between
et al., 2005). the clusters and the gold standard categories. In this paper

It is therefore highly desirable to develop an evaluationwe use many-to-one accuracy, where each model cluster is
measure that does not make reference to an (adult) gold stamatched onto the gold-standard category with which it share
dard. On the other hand, the measure should give results thtie most tokens. This can result in a situation where meltipl
correlate with gold-standard-based measures, indicéitiag  clusters are mapped onto the same gold standard category.
it is capable of capturing the linguistic distinctions inkxet  This means the model is not penalized for creating more fine-
in the gold-standard. Finally, the ideal measure needs to bgrained clusters than the gold standard.
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Pairwise Precision and Recall These measures are widely clustered together (Eq. 3).
used in the cognitive literature on category acquisition

(e.g., Redington et al. 1998; Mintz 2003), and are sometimes P= YsesYcec|SOCl(sNef —1) 2)
referred to as accuracy and completeness. To compute them, Seeclel(lc]—1)
we consider all possible word pairs. If the words in a pair are _ Ssesdeeclsncl(fsnel—1)

, ) R= 3
grouped together by the model correctly (i.e., they are @& th Sseslsl(ls|—1)

same gold-standard category and in the same model cluste
a true positive t(p) is recorded; if they are not in the same
gold-standard category, a false positivigo) is recorded. If
the two words are not grouped together by the model, but ar
in the same gold-standard category, then a false negdtije (
is recorded. Pairwise precision and recall is then defined as

%’ecause the models we are investigating use context infor-
mation that is similar to frames, there may be danger of over-
fitting the evaluation measure to the models and their tngini
Eata. To avoid this, we compuf# and SR using a separate
test corpus. The S-clusters used for evaluation are based on
frames found in both the training and the test corpus, but the
tp tp words within each S-cluster are from the test corpus onky (th
P= tpt fp PR= tpt (1)  test words must be in the training corpus vocabulary). Un-
der the distributional definition, syntactic categories ¢
interpreted as expectations of substitutability, regzsslof
whether the members of the category have appeared in the

the same category in the gold-standa® thus measures same syntactic context. By using separate, additionaltdata
the proportion of correct pairs within the model clustering M€asuré supstltutable precision and rgcall, we evglgaate_ th
(i.e., whether the model clusters together the correct gord extent to which these learned expectations of substititiabi

while PR measures the number of correct pairs as a fractiofd€neralize to increasing amounts of data.

of all pairs in the gold standard (i.e., whether all correait® If a frame is made up of words with multiple (model) clus-
have been found). ter memberships, the model may have discovered a valid am-

biguity. For example, the frame — cakeis (using gold stan-
Substitutable Precision and Recall dard tags) ambiguous betwetmmye — cakey (“We are go-
ing to eat cake today”), which has an S-cluster consisting of

Our goal is to capture the essential nature of syntactic- catevords such adake andeat, andtoprep — cakey (“Put the
gories without using the actual categories themselvedriDis juice next to his cake”), with a corresponding S-cluster con-
butional analysis gives us the notionsabstitutability (Har-  sisting of words such dsis or that. For this reason, we add
ris, 1946; Brown & Fraser, 1964) as the key aspect of syntaceluster membership information (as found by the model be-
tic categories. Substitutable categories are made up afsvor ing evaluated) to each frame word, as well as to the words in
with identical “privileges of occurrence”, i.e., a syntaatat-  the S-clusters.
egory consists of words which may be substituted for each By using a separate test corpus, we introduce a dependency
other within a sentence without making the sentence ungranen the size of the test set. In our experiments, we use a test se
matical. For examplehe and she both belong to the same thatis six times the size of the training set (we use the Manch
category becausdee is happy andsheis happy are both gram- ~ ester corpus (1.5M words) to train, and the rest of CHILDES
matical. (9M words) to test). Additionally, we only evaluate on frasne

The measure we propossjbstitutable precision and re- that occur more than once within the test data, since a single
call, evaluates category acquisition models by testing whethepccurrence gives no information about which words should
substitutable words — words which appear in the samd€e clustered together, and a single occurrence of a rarg¢ even
contexts — have been clustered together. Because nearl?lso gives little information about which wordst to cluster
identical sentences (which would be necessary to strictljogether.
evaluate substitutability) are rare in corpora, we reswigr . R
notion of context tdrarr)lle)s: two words apgearing in the cor- Models of Syntactic Category Acquisition
pus with exactly one word in between. From these frames, wé this section we briefly describe three modets syntac-
create substitutable clusters (S-clusters) that conffseset  tic category acquisition that we will use to test our evatrat
of word types that appear within the same frame. There is &hethod. These models were chosen primarily for being rep-
one-to-one correspondence between S-clusters and framesfesentative of the space of possible models: they differ, fo

Substitutable precision and recall are calculated sitgilar €X@MPle, in their treatment of syntactically ambiguousdsor
to standard pairwise precision and recall. However, thissdo and whether or not they categorize every word in the corpus.

not require a gold standard; instead, the set of clugtears INote that we retain the pairwise nature of pairwise precision

duced by the model is compared with the set of S-clusters and recall, which leads to the second term in the products (i.e., the
Substitutable precisio8P (Eq. 2) thus measures whether the "UTIber of non-identical pairs in a clusteré(|c| — 1))
clusters consist of substitutable words, while substitietae- we use the wordtodelsloosely; the authors of these systems do

' not always assume that they are modeling human learning, but may

call SRmeasures to what extent substitutable words have beesnly be examining the possible usefulness of distributional cues.

Note thattp+ f p is the total number of pairs within model
clusters, whereap + fn is the total number of pairs within
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Frequent Frames larity between vectors is computed using the Spearman rank
correlation, and a tree structure is created by iteraticilg-
tering together the most similar words (or previously cegiat
clusters). By “cutting” the tree at different heights, difént

Our first model is based on the frequent frames (FF) proce
dure for discovering syntactic categories described bytMin
(2003), which has been influential in the language acquisi
tion community (see, e.g.,@nez & Maye 2005). Mintz’s ap- numbers of clusters can be. produced. The best results of Red-
proach is inspired by behavioral experiments suggestiag th I"gton et al. (1998) are witm = 1000, m = 150, and two
human learning of syntactic categories is strongly aided b>posmons on either side of each target word as context. We

the presence of frequently occurring frames (Mintz, 2002)US€ the same parameters here. _ _
In this case, a frame is defined as any ordered pair of words /A" important property of this hierarchical clustering (HC)

(a,b) that occurs in the corpus with a single intervening word.model is the fact that the context vector for each word type

(Note that this differs from our use in the context of evalua-cOmPines the context counts for all tokens of that word.
tion, where the categories assigned to the words are also if-he€refore, every token of a particular word is assigned ¢o th

cluded in the frame.) The most frequent frames in the corpuS2Me sSyntactic category, regardless of the specific coirtext

are recorded, and for each one, all words that occur withifVhich it appears. _
that frame are assigned to the same cluster. Although HC does not cluster every word in the corpus,

Our implementation follows Mintz in initially defining a its coverage is far more complete than that of FF. Even in

cluster for each frame whose frequency is at least 00686 ? very large corpus, Zipff’s law ens?rﬁs that the 1000 most
the total number of frames in the corpus. Pairs of clustetis wi reduent words aﬁcount or mOStIO t ? corpus.”Despr[e its
the highest overlap in word types, proportionally to theest ~ Proad coverage, however, HC only performs well on words

of the two clusters, are then iteratively merged until thgea  With high frequency, unlike children, who can learn words
number of clusters is reached. (and their usage, i.e. their syntactic categories) on tsésud

One drawback of FF is that only a very small percentagevery few observations (Woodward et al., 1994). In contrast,

of tokens are clustered (4%—8% in Mintz’'s experiments withFhF may cat'egc')drlzi some w]?rds that occur only once, provided
corpora of child-directed speech), and these are almogi-exc they occur inside frequent frames.
sively nouns and verbs. The clusters do, however, have verBayesian Hidden Markov M odel

high accuracy (i.e., words that are grouped together alalost Unlike the previous algorithmic approaches, the third ap-

ways belong to the same gold standard category), and Mm%roach is based on a probabilistic model. We consider the
points out that a much larger percentage of tokens (48%+

61%) belong to the same types as those clustered, suggestiBayeSIEln HMM (BHMM) proposed by Goldwater & Grif-

Rfhs (2007) as our third model because it contrasts with the
that the_se tokens cquld be added to the same clusters. Hoﬁfevious two on several levels: in addition to being based on
ever, this does nothing to cluster the large number of wor

) .. ._a probabilistic model, it categorizes every word in the ¢
types that never appear in a frequent frame. Moreover, it ig- P 9 Yy P

. o ocand i n | with ambiguity, i.e., it m ign differen
nores the problem of syntactic ambiguity: first, because |t|a d it can deal with ambiguity, i.e., it may assign different

not clear what to do if a word t i< initiall ‘aned t tokens of the same word type to different clusters.
ot clea atto do 1t-a word type 1S Initially assigned 10— ¢ 4 ariant of the standard HMM, this model assumes that
multiple clusters, and second, because it assumes thatall r

maining tokens should belong to the same cluster, which mathe corpus is probabilistically geperated as a sequendawf ¢
not reflect any true ambiguity ' {er labels (tags), each qf wh|ch_ inturn generates the obderv

' word. The model considers different possible sequences of
Hierarchical Clustering tags, searching for a sequence that can explain the observed
words well, while also being linguistically plausible. Ihig
case, plausibility is enforced using Bayesian priors to-cap
ture the intuition that the HMM transition and output distri

Researchers in both cognitive science and computatiamal li
guistics have proposed algorithms for syntactic category i

duction based on clugtering context vectors (Redingtoh et a butions aresparse, i.e., that each tag is followed by relatively
1998; Clark, 2000; Sdltze, 1995). We implemented the algo- few other tags with high probability, and outputs relatjwel

rithm described by Redingtpn etal. (1998), WhICh has prOb'few words with high probability. In contrast to the other mod
ably had the most impact in language acquisition. It treat

the n most frequent word types in the corpus as the targestels’ neighboring words affect the BHMM’s decision about a
word’s category only indirectly, through their categoripéds.

words, and tham most frequent types are used as context Our implementation of the BHMM uses Gibbs sampling to

words (wherem < n). For each target word, a context vector identify a sequence of tags that has high probability urtoker t

tvh:'\tlrl]. ‘ 'V”t“ |stcreaéed, withy equ{a;: Eﬁ tr:e nuinberdofSUmei model. In this implementation, the only free parameter ef th
€1th context word co-occurs wi € larget word. SpecliC 46 is the number of clusters used. In our experiments, we

context posmo_ns (e.g., one word to the left of thg targed t ran the Gibbs sampler for 2000 iterations.
words to the right) are accounted for by collecting separate

vectors for each position and concatenating them. The simi- M odel | mplementation and Experiments

3\We use a slightly lower cutoff than Mintz (who used 0.13%) in FOr all our experiments, we us_ed the Manch(_aster corpus
order to have enough frames to make 80 clusters in the experiment§Theakston et al., 2001), which is annotated with syntactic
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ADJ | Adjectives, e.g.funny, pink Measures| Spearman’s rho
ADV | Adverbs, e.g.today, just, normally

OTH | Miscellaneous, e.gyes, well, hurray P, PP 0.638
CONJ | Conjunctions, e.gand, or R PR 0.755*
DET | Determiners, e.ga, those, six P, MA 0.677

INF | Infinitival to
N | Nouns and Pronouns, e.gqu, duckie

NEG | Negations, e.gnot Table 2: Spearman’s rho correlations between the rankings
PART | Participles, e.graining, hidden given by a pair of evaluation metrichl(= 12), computed us-
PREP | Prepositions, e.gan, to, after ing the merge condition results; *p < 0.01; *: p < 0.05; all

QN | Quantifiers, e.gmany, all, some . . . o
V | Verbs, e.g.swim, do, is correlations not included in the table are non-significant.
Table 1: Collapsed gold-standard categories Model K PP PR MA P R

Random| 12 | 0.205| 0.324| 0.796 | 0.000065| 0.254458
Random| 53 | 0.096 | 0.254 | 0.720 | 0.000092| 0.173907
categories and is part of the CHILDES database (MacWhBHMM | 12 | 0.570 | 0.263| 0.721 | 0.000221 | 0.308508
ney, 2000). The Manchester corpus consists of transcrid@dMM | 53 | 0.624 | 0.175| 0.747 | 0.000347 | 0.109927
recordings of 12 children interacting with adults, and coBHMM | 80 | 0.657 | 0.128 | 0.775 | 0.000330 | 0.084811

ers an age range of 1 year 8 months to 3 years. Our mode(S 12 | 0.201| 0.864 | 0.361 | 0.000046| 0.375467
are trained only on child-directed speech (CDS), so we dC 53 | 0.330| 0.654 | 0.523 | 0.000117| 0.202372
moved all child utterances, as well as any utterances aontaidC 80 | 0.484| 0.512 | 0.639 | 0.000159| 0.183736
ing unintelligible words; additionally, we split contramhs FF 12 | 0.220| 0.244 | 0.448 | 0.000027| 0.217124
(e.g.,aren’'t) into separate words and added beginning-of-F 53 | 0.219| 0.079| 0.392 | 0.000039| 0.120499
sentence and end-of-sentence markers (which were incluééd 80 | 0.224 | 0.053| 0.423| 0.000043| 0.096760

in the frames used to create S-clusters, but not in the frames

used to train the FF model). This left approximately 1.5M Table 3: Results for the merge condition. The best score
words and 360,000 child-directed utterances. for each evaluation type and number-of-clusters condigon

The original set of syntactic categories used for the Manchh'gh“ghted'
ester corpus contains detailed morphosyntactic infoionati

e.g.,playingis annotategar t |play- PROG. After stripping out gy token, the FF model assigns categories to only those word
the morphological information, the category inventory €on types which appear within frequent frames, and the HC model
tained 53 categories. We also created a collapsed inventoqymy categorizes the 1000 most frequent word types. We re-
consisting of 12 categories (see Table 1). solve this problem in two ways. In theerge condition, we

For each of the models described in the previous sectiorgombine all words that are not clustered by the model into
we varied the number of clusteksover three conditions: 12 one |arge cluster. In thq:)“t condition, we assign each un-
(as in the collapsed category inventory), 53 (as in the valgi  clustered word to its own cluster. The difference in perfor-
inventory) and 80 (to create more fine-grained clustersp Onmance between these two conditions thus indicates thet effec
of the advantages of the substitutable precision-recall-me of the unclustered words.
sures is that they do not depend on the gold standard for the Additionally, it is necessary to assign each token in the
“true” number of clusters; thus there is no penalty for a €lus text to a category, if the model does not categorize tokesis (a
tering that does not have the same number of clusters as thgHMM does). For HC, each token of a given type is assigned
gold standard. to the type’s category. In the FF model, a word type can be-

We also compared eaghcondition against a random base- long to multiple categories, making it unclear which cate-
line. For each cluster in the gold standard, we created a clugjory a particular token should be assigned to. We assigned
ter with the same number of word types, selected at randortokens found in frequent frames to the category defined by
from the full vocabulary (thé&k = 80 andK = 53 conditions  that frame; other instances of ambiguous types were assigne
shared the same random baseline). This results in a randogg g given cluster with probabilitp(ci[w;) = _l&l_ that is,

clustering with the same cluster size distribution as thiel go according to the size of the clusters that inéﬁj&‘g ,the ambigu
standard, and all tokens of each type in the same cluster.

ous word type.
Our goal is to show that substitutable precision and recall

yield informative evaluation results without requiring eld Results

standard. We therefore evaluated each category acquisitiorhe results are given in Table 3. We first discuss them in light

accuracyMA and pairwise precisioRP and recallPR. _ _

A problem arises, however, when we try to compare theCOmparison of Evaluation Measures
three clustering models: they each categorize a diffenét s Figure 1 shows the similar performance of the two precision-
set of the data. The BHMM model assigns categories to evrecall measures. Results f8P and SR are significantly cor-
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Pairwise Precision and Recall Substitutable Precision and Recall
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Figure 1: Pairwise precision and recall on the left, subttltle precision and recall on the right. The size of the {sdidicates
the number of clusters: small points are for 12 clusters,iomgboints for 53, large points for 80. HC and FF results ardtie
merge condition.

12 clusters 53 clusters 80 clusters

10000 10000 -y 10000 e method and the S-clusters. This demonstrates the impertanc

of using separate testing data: the FF models were unable to
generalize to new data.

1000 |, 4 1000 |y 1000 E
. AN ‘ \ Model Performance
§ 3 \ a L The different model types find very different word cluster-
5 10F I B 1008 E ings, as Fig. 2 helps to illustrate. HC creates clusters with
? highly skewed sizes (most extremely so in the 12 cluster con-
ok 1 10 i dition, in which 969 of the 1000 clustered word types are put

into one cluster). The cluster size distribution of FF medel
S Sh is much flatter, indicative of FF's propensity to create tygh
1 1 b 1 b ambiguous clusterings, in which each word type belongs to
many clusters. The BHMM clusterings also have higher lev-
Figure 2: Ranked cluster sizes, measured in typesxdnds  els of lexical ambiguity than the gold standard, resulting i
represents the clusters, which are ordered according & sizmore larger clusters overall, both in terms of types andriske
the y-axis gives the size of the clusters on a log scale (GSBoth BHMM and FF tend towards more ambiguity with more
gold standard; BHMM: Bayesian HMM; HC: hierarchical clusters. It should be noted as well that the token distidiost
clustering, FF: frequent frames). Note the random baselingre highly similar to the type distributions.
clusters have the same type-size-distribution as GS. Keeping these distributions in mind, we can ask how they
affect the evaluation metrics. We expect clusterings with
peaked distributions (most words in few clusters) to per-
related withPP andPR, respectively (Table 2)3P also cor-  form petter on recall-based measurBR(SR), whereas flat-
relates withMA significantly. This demonstrates that without e distributions with high ambiguity may perform better on
using the gold standardP and SR can capture similar dis-  precision-based measurddA, PP, SP). Indeed, we find this
tinctions asPP, PR, andMA. to be the case. BHMM models perform bestRP, MA, and
The values o8P that we obtain are extremely small. Thisis SP, while HC models perform best dPR and SR (Table 3).
due to the fact that, overall, the S-clusters from the fraamres The Random baseline clusterings do surprisingly well, out-
much smaller than the model clusters. Because the S-dusteperforming FF on several measures — even slightlySen
are gathered from a finite set of data, they do not describandSR, for which there should be less advantage for baseline
complete substitutability. In other words, while membéush models linked to the gold-standard. This underlines the im-

in a cluster implies substitutability, non-membershipginet  portance of finding clusters with gold-standard-like siz d
rule out substitutability. However, all models are perediz tributions.

equally by this lack of complete data.

It is also interesting to note that the FF models did not do=T€ct of Unclustered Words
better when evaluated @ andSR, compared t¢*P andPR, Both the HC and FF do not cluster all word types found in
despite superficial similarities between the model's disyy  the training data. The HC model clusters only the most fre-
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Model | K PP PR MA SP SR i i
i 12 0016 0.750 0380 | 0.000030  0.193955 Finally, we also demonstrated that evaluation resultsigiso
HC 53 | 0.059| 0.405| 0.550 | 0.000061| 0.061327 depend on how unclustered words are evaluated.

HC 80 | 0.086 | 0.338 | 0.666 | 0.000091| 0.046781 In future work, we will explore the external validity of sub-
FF 121 0.219| 0.238 | 0.486 | 0.000018| 0.095166 i i ila it is i

FF 53 | 0220 | 0.072 | 0.440 | 0:000028| 0023271 st|tut_able preC|S|on_and r_eqall. While it is important to who
FE 80 | 0.260 | 0.046 | 0.471 | 0.000035| 0.014687 that it correlates with existing evaluation measures, vge al

need to test it against experimental data (e.g., subdiititya
Table 4: Results for the split condition. Scores that have imjudgments). Additionally, we plan to apply it to longitudin
proved with respect to the merge condition are in bold. acquisition corpora to evaluate models which follow thegtim
course of category development.

quent 1000 types, which in our data set make up only 9% of References

types, but account for 95% of the tokens. FF clusters more, R F 1964). Th _— f
types (70%), but these also make up 95% of tokens, indicat- rlc\)/lvgﬂbgr;pis orfaﬁg’&)% e(ty?‘gr??. ecr? ?ﬁg;illtzjogeov eIsO)I/Jr_utax.
ing that some frequent words (i.e., the words in the frames ment, 29(1), 43-79

themselves) remain unclustered.

In the split condition, the remaining types are split up ¢ ™ '™\ . )
into separate clusters, while in the merge condition they ar distribution clustering. IrProceedings of CONNL (pp. 91~
merged into one large cluster. Splitting up unclustereddsor 94).
improvedMA performance for both HC and FF. This increase Goldwater, S., & Griffiths, T. (2007). A fully Bayesian ap-
in MA is expected, given that smaller clusters result in higher Proach to unsupervised part-of-speech tagging. Pio-
accuracy, but the increase was only slight, since relatiiest ceedings of ACL (pp. 744-751).
word tokens were affected. FF models with more clusters als@dmez, R., & Maye, J.(2005). The developmental trajectory
also saw highelPP performance. This again is to be expected; of nonadjacent dependency learnimgfancy, 7, 183—-206.
more surprising is the fact that HC models did not improve.Harris, Z. (1946). From morpheme to utterandenguage,
This indicates that much of HC’s performance in the merge 22(3), 161-183.
condition was due to the unclustered-words clust_er, whieh i Kemp, N., Lieven, E., & Tomasello, M. (2005). Young chil-
cluded 90% of the word types (and thus many with the same  yren's knowledge of the “determiner” and “adjective” cat-
gold standard category). _ o egories. Journal of Speech, Language, and Hearing Re-

SP and SR also decrease in the split condition, in most search, 48(3), 592-609.

0, I i i 1ai -
cases by nearly 50%. This also indicates that original perMacWhinney, B.(2000)The CHILDESproject: Toolsfor an-

formqnce was gregtly boosted by the unclustered-words clus alyzing talk, Mahwah, NJ: Lawrence Erlbaum Associates.
ter, since as a pairwise measuf®, and SR do not capture : . ) oo
clusters with only one word type, effectively removing the Mintz, T.(2002). Category induction from distributionales
unclustered words from this measure. in an artificial languageMemory and Cognition, 30, 678—

686.

Conclusions and Future Work Mintz, T. (2003). Frequent frames as a cue for grammatical
This paper dealt with the problem of evaluating computa- Categoriesin child directed speec@ognition, _90’ 91-117.
tional models of human syntactic category acquisition. WeOlguin, R., & Tomasello, M. (1993). Twenty-five-month-old
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