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Abstract

The conventional approach to speech production assumes that
a linguistic control signal feeds down into an execution
module where vocal articulators are coordinated. The
linguistic signal takes the form of a stream of phonological
units or discrete symbolic commands. This characterization
reflects how a variety of control architectures in cognitive
robotics are also based on symbolic commands. There are
problems with symbolic motor control and in robotics there
are alternatives to the assumption of symbols. This paper
focuses on one such alternative. A minimal neural field model
for speech motor planning and production is introduced. The
model illustrates how some simple words may be represented
for perception and production without coding the words in
terms of phonological units. Concluding discussion considers
how a scaled version of the model supports a construction
grammar account of speech and language.

Keywords: speech perception and action; cognitive robotics;
articulatory phonology; construction grammar.

Introduction

In analyzing tongue twisters and spoonerisms, we see that
the apparent production components of an utterance may
sometimes interfere with one other. To explain a spoonerism
under the conventional view, we might attribute the error to
problems with the motor plan. Production units were
somehow sent in the incorrect order. Alternatively, we
might attribute the error to a production mechanism that for
some reason confused its instructions. By isolating the
speech plan from its production, we are obliged to accept
that a word-swap error is either an error in planning or an
error in production. When it comes to implementation there
can be no ambiguous middle ground.

What are the implications of a planning-production
dichotomy? Here is the dilemma. In supposing that speech
unit swap errors are not planned (why would we plan
errors), we are left to believe that swap errors result from
troubles in production. Yet if the production process is
responsible for the serial arrangement of the apparent
components of motor output, a production module would
need to be provided with simultaneous access to the
multiple components of the motor plan. It follows that if a
production module somehow operates on multiple control
instructions concurrently, it is problematic to conceptualize
the control signal as being serially structured. The dilemma
is resolved by rejecting the assumption that the control
signal for speech is a stream of phonological commands.
Motor planning and production are integrated. Control
comes from an abstract and persistent signal rather than
from a sequence of symbolic units to be executed one by
one as they arrive.

Modular vs. Integrated Planning-Production

The relatively new field of cognitive robotics already offers
a variety of models for conceptualizing how complex motor
sequence production may be achieved. In analyzing these
models, a classification scheme quickly becomes apparent.
Models tend to be either modular or integrated. For the sake
of definition, a modular approach conceptualizes the motor
plan and its execution as separate processing tasks, to be
handled by separate modules. In contrast, an integrated
approach views motor control to come from a general and
relatively persistent signal where the details of motor output
are handled by planning-production dynamics. Sophisticated
cognitive robotics architectures are usually not well
characterized as being of solely one or the other approach,
but a brief discussion with some explicit examples is in
order to help better appreciate this modular versus
integrated distinction.

The Theory of Articulatory Phonology (Browman and
Goldstein, 1992, Goldstein et. al., 2006, Goldstein et. al.,
2007, Saltzman & Kelso, 1987) is popularly interpreted to
reflect the modular view. A stream of phonological units
arrives from a singular source to be executed by a task
dynamic model. The task dynamic model coordinates vocal
motors in terms of articulatory gestures. An articulatory
gesture is a related set of vocalic motor movements, also
referred to as an ‘action primitive’ or ‘action unit.” Action
primitives combine into ‘molecules’ that correspond to
phonological commands. The task dynamic model is
responsible for streaming together articulatory gestures to
produce fluid speech. Articulatory Phonology preserves the
concept of the phonologically structured mental lexicon and
related theories of generative syntax by explaining the lack
of invariance in the speech stream as the result of motor
production dynamics. Figure 1 illustrates the popular view
as it depicts speech units in terms of “Hockett’s” Easter
eggs (Hockett, 1955). It should be noted that the bulk of
Articulatory Phonology is not in conflict with an integrated
perspective, a topic this paper will return to. The point being
made here is that the widely held premise of a phonological
control signal arriving from an executive source reflects the
modular approach.

Beer et. al. (1992) provides an example of the integrated
perspective using a six-legged robot that walks like an
insect. A Continuous Time Recurrent Neural Network
(CTRNN)-based nervous system coordinates the robot’s
legs for walking via the interactive dynamics of leg
positions. The phase of each leg informs the phase of other
legs so that walking behavior emerges without a control
signal feeding down to tell each leg specifically what to do.
A single parameter specifies how fast the robot should
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Figure 1: the classic view of speech

travel. By adjusting this speed parameter, analogous to
turning the volume knob on a radio, the interactive leg
dynamics of the robot shift to produce changes along a
continuum in walking gait. Different gaits make the robot
travel at different speeds. Here, the control signal or ‘motor
plan’ is conceptualized simply as the speed control signal.
The signal integrates with system dynamics to determine
output motor behavior.

The task of programming a multi-joint robot arm to
successfully reach for an object serves as a dual example for
contrasting a modular with an integrated approach. With a
modular approach, a vision system determines the position
of an object in Cartesian space, calculates the set of joint
angles that the robot arm would need to have in order to find
the end of the arm at that position, and the arm is then
instructed to move to attain those joint angle positions.
Using this sense-plan-act method, an execution module
interprets the command and smoothly moves the arm to the
target. An integrated approach handles the task in a very
different way. A mechanism is built where the arm moves to
the target position using a feedback loop where the distance
between the end of the arm and the target is systematically
reduced to zero through time. Required joint angle positions
of the arm are never explicitly calculated and the only
control signal comes in the form of persistent parameters,
such as the speed at which the arm should travel. E.g. see
(Hersch & Billard, 2006). For further discussion on this
general topic, the reader is directed to review the
Equilibrium Point Hypothesis (EPH) in motor control.

The purpose of the model presented in the following
pages is to illustrate how the integrated view may be
implemented for speech. As with an integrated approach to
robotic arm reaching and with Beer's insect crawler, explicit
instructions from an executive controller are not found.
Rather, volitional control comes from a persistent signal that
influences production dynamics so that motor output
behavior is realized through complex interactive processes.

The Model

Figure 2 introduces the model. It is constructed of dynamic
fields that interact with each other through adaptive weights.
Input is acoustic sound and motor feedback while output
from the model controls an articulatory speech synthesizer.

F2 : persistent control
signal
spectral
timing

F1: surface-level
model

production dynamics

apparent phonological
sequence produced

Figure 2: this paper’s alternative to the classic view

A Basic Field

The model is founded on dynamic fields. A field is a two
dimensional array of units where each unit is updated once
per 5 millisecond time step with the equation:

(1) ui=—ui+Si+hf—¢i+n+Ewlj-a(uj)
J

The change in activation of a unit, u, is determined by the
sum of influence to the unit minus its current activation.
This influence comes from an outside signal, S, the field's
slightly negative resting bias, /, a fatigue term for the unit,
¢, a noise term, n, and from other units within the field.
Fatigue for the unit increases as a function of time while the
unit is active and decreases over time while the unit is
inactive'. Influence from other units in the field is
determined as the sum of the squashed® activations of
neighboring units multiplied through corresponding within-
field connection weights, w. These within field weights are
specified by a Mexican hat function®. Input to the function is
the Pythagorean distance between two units and output of
the function specifies their connection weight.

A field is mathematically shaped like a torus so that all
units have the same sized neighborhood of surrounding
units. If given no outside input, S, and assuming a well-
selected set of parameters®, a randomly initialized field
quickly approaches a non-zero, non-saturation equilibrium
state. The contoured grid in Figure 3 illustrates a 30x30
field of units near such an equilibrium state after a number
of iterations of Equation 1. Here we may assume that all
units of the field were initialized with small random values
and had received no input from outside the field. Due to the
on-center off-surround nature of the Mexican hat, regions of
the field that were initially slightly more active than other
regions became very active to suppress regions that were
initially only slightly less active.

A field is essentially a change detector and is ‘tuned’ to
respond to specific patterns of change by adjusting the
weights that carry input to the field. After training its
weights, a field's equilibrium state deterministically reflects
the change in input that has recently arrived to the field. To
best introduce this, let us first walk through how input to a
field is realized from the acoustic signal.
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Acoustic Input

Raw sound is processed into frequency bands. The positive
change in power in each band is input to the model via
sensory nodes through time. Figure 3 depicts this as the
vowel transition /i/—/a/ is processed. The spectrogram at the
top of the figure shows the vowel transition and how it is
split into five bands. The average power in each band
through time is found. These band averages are illustrated in
the diagram to the lower left with solid lines. Corresponding
dashed lines in the diagram depict the positive change in the
band-pass signals and this is what is provided as input to the
network from the sensory nodes. At the snapshot in time
depicted, there is virtually no change in the band-pass
signals and thus the input nodes all have activations of zero.
Now imagine as processing proceeds from left to right
through the vowel transition. The input node corresponding
to Band 3 experiences a momentary jump in activation (the
power in other bands mostly does not change or changes
negatively so that inputs for those bands remain at zero).

Node activations are passed to the field using a fully
connected set of weights called an adaptive filter. During
the transition between vowels of Figure 3, the equilibrium
of the field is perturbed by the activation of Node 3.
Depending on the values of the weights from Node 3 to the
field, the field will be bumped out of its current equilibrium
state towards a new equilibrium state.

Multiple Fields and Adaptive Filters

By adding a field to the system of Figure 3, we arrive at the
minimal network depicted to the left in Figure 4. Fields are
labeled F1 and F2 and adaptive filters are now depicted with
singular arrows. The higher field (F2) responds to the lower
field (F1) in the same way that F1 responds to sensory input.
To provide this feedforward input to F2, F1 is sectioned into
25 zones. A zone’s value is found as a function of the sum
of activation of a region of units, as depicted in the right
diagram of Figure 4. The change in average activation of
each zone through time provides feedforward input,
analogous to a sensory node. Like with steady-state acoustic
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Figure 3: vowel transition /i/—/a/ as input to a field
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Figure 4: layering two fields into a minimal network (left);
F1 is sectioned into zones for input to F2 (right)

input, as long as there is not much change in a sending
field's equilibrium state, there is no significant perturbation
to the receiving field.

Notice also in Figure 4 that there is an adaptive filter
connecting F2 back to F1. This is a feedback filter and its
purpose is to prime F1 for expected input. Like F1, F2 is
divided into zones. These zones act as nodes to give
feedback to F1 (and to send feedforward input to other
fields). For feedback however, the zone or node value rather
than the change in node value is what serves as input to the
adaptive filter.

Equation 2 describes these between-field interactions. The
input signal, S, to a unit in F1 is determined from the
feedforward signal, s, to the unit and from the feedback
signal, §, to the unit. The feedforward signal is multiplied
by a constant, k, to adjust the feedforward-feedback ratio. A
gain term, g, is also provided. Feedback and feedforward
signals are the squashed node values, o, or change in
squashed node values, 0, passed through adaptive filters:

S,-=EWUOJ- S,-=EWUOJ-
J J

Let us step through a specific example of how processing
works with the assumption that weights have already been
trained. Consider that the equilibrium pattern of activation
depicted on F1 in Figure 4 is the result of the /i/—/a/ vowel
transition. Then consider another transition: /a/—/u/, yet to
arrive. When this second transition arrives, F1 quickly
moves toward a second equilibrium state corresponding to
/au/. The transition between the two equilibrium patterns in
F1, /ia/—/au/, is 'recognized' as F2 is perturbed toward a
new equilibrium. This F2 equilibrium corresponds to the
triphthong or word: /iau/, "~ yeow." Next assume that F2
was in its "yeow" equilibrium before input to the system
began (the result of hypothetical feedback from other
fields). Because F2 is already at the equilibrium it goes to,
there is no change in F2's activation pattern. Thus, the
persistant feedback signal from F2 'primes' F1 for both the
/ia/ and /au/ transitions. In providing this top-down priming,
the /au/ and /ia/ transitions are more readily detected by F1
as sensory input arrives. We will pursue this further in the
next section, first it is important to introduce the remainder
of the minimal model.
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Motor Output and Proprioceptive Feedback

Changes in equilibrium state attractors of F1 correspond to
coordinated motor movements in both perception and
production. For the sake of simplicity, let us consider these
motor movements in terms of category nodes with the
understanding that activations of category nodes may be
mapped to motor movements. Figure 5 depicts a set of three
motor category nodes added to what we will now call the
input gateway. Output from F1 to these motor nodes is like
feedforward output from F1 to F2 where change in
activation of a zone is the basis of the signal and category
nodes are the simple sum of their input. When there is no
change to the equilibrium state of F1, the motor nodes go to
zero and there is no movement. The motor category nodes
also provide proprioceptive input to F1 using feedback
connections. The motor node array is thus analogous to F2
in its connectivity to F1. It is interesting to note however
that connections from the motor category nodes to F1 can be
considered as feedforward because the activations of the
motor nodes correspond to change in motor parameters.

Timing Coordination

Timing is important in different ways for different
languages. For example, in English the contrast between
"fussy" and "fuzzy" relies on relative voice onset timing. In
other languages, phonological distinctions may be based on
segment durations. In Japanese one might accidentally call
one’s aunt (/obasan/) their grandmother (/obaasan/) simply
by increasing the duration of the first /a/ vowel. A model for
complex motor sequence planning and production requires a
mechanism for encoding the timing relationships of the
components in the sequence.

A spectral timing model is added to the minimal network
of Figure 4 as depicted in Figure 2. It is called a spectral
model because it is built of a bank of resonators, each tuned
to resonate at a slightly different frequency. Resonators are
mathematically described as pendulums (Brady, 20006),
where an input value pushes the pendulum per time step.
The same pushing is given to all resonators and a push is
distributed across time. Think of short temporally patterned
gusts of wind blowing the swings on a playground swing set
where each swing has a different chain length. The input to
a resonator at a given time step - analogous to a sample
from a wind gust - is the sum of change in zone values of
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Figure 5: motor output and proprioceptive feedback is
conceptualized in terms of motor category nodes

F1. Resonators with natural periods related to patterns of
periodic activity in F1 achieve high amplitudes while
resonators that do not relate to patterns of change in F1 do
not achieve high amplitudes. As a resonator passes a ‘firing
phase,” (the middle of the pendulum’s forward swing), it
outputs a function of its amplitude to a summation node or
timing 'expectancy' node. This node provides input through
the input gateway back to F1 as depicted in Figure 5.

Figure 6 walks through the function of the spectral model
as the network responds to the utterance: "got to be yeow."
Track 1 of the figure is a notated spectrogram of this
recorded utterance. Track 2 shows the activations of each of
the five acoustic input nodes through time for the utterance.
Track 3 depicts the sum of positive change of zones in F1
through time. This is the then the signal that is input to all
resonators of the spectral model. Note that /bi/ perturbs F1
into an equilibrium state and F1 remains in that state
through the /i/ vowel of the word "yeow." Track four
presents the response of the spectral timing model (note:
feedback from this node does not influence F1 in Figure 6).
Lastly, Track 5 introduces a sinusoidal wave that depicts if
the oscillator bank will emphasize or filter an input event
based on the periodic structure of the pattern.

The role of the spectral model is to provide a reference
signal for perception and motor coordination - effectively
allowing the network to process events with respect to
temporal structure. The response of the resonator bank to a
given temporal pattern is deterministic regardless of whether
the pattern exhibits periodic structure. Furthermore, a given
temporal pattern generally elicits the same pattern of
response from the resonator bank regardless of initial
conditions. Lastly, the oscillator bank generalizes over rate.
If an input pattern such as the one presented in Track 3 of
Figure 6 were to unfold at a faster or slower rate, the
oscillator bank would provide consistent values at the
timing expectation node relative to events as they unfold.
Imagine all five tracks of Figure 6 being horizontally
compressed or stretched together.

As is noted in the next section, feedback from the spectral
model is shown to influence segment duration, as with
phonological distinctions in Japanese. For a discussion on
timing analysis by oscillation see: (Brady & Port, 2007).
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Figure 6: visualizing response of spectral timing model
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Evaluation Scenario and Results

A simplistic evaluation scenario is pursued for the purpose
of this paper. Three vowel transitions {/au/, /ia/, /ui/} were
recorded from a male actor (this author). The frequency
bands and change in power of the bands corresponding to
sensory node input for /au/ and /ui/ are shown in the bottom
of Figure 7 using the same frequency bands as depicted in
Figure 3 for /ia/. Notice that for /au/, the activation of
Auditory Node 2 is indicative of the transition. For /ia/,
remember that Node 3 is the only node to become
significantly active through the transition. And for /ui/,
Auditory Node 4 is the node that cues the transition.

By allowing an isolated field to settle four times, each
time from different random initial conditions (with fatigue
and noise turned off), four static equilibrium targets were
generated. Using the delta rule’, each of these four targets
was associated with a unique static input vector as depicted
in the tops of Figure 7. Notice that the timing expectation
node is on for the first three vectors and that the fourth
vector (/aau/) is a version of the third (/au/) except with the
timing expectation node turned off. After training, when one
of the vowel transitions is input (with a corresponding
timing node on/off value and with or without motor
feedback), F1 is perturbed to quickly shift towards the
transition’s trained equilibrium target. Connections from F1
to the motor nodes were also trained in this manner.

Four more equilibrium state targets from random initial
conditions were generated. These targets correspond to the
triphthongs or words {/iau/, /uia/, /aui/ and /iaau/} and are
depicted as the four static F2 patterns in Figure 8. Weights
can be trained from F1 to F2, but that does not concern us
now. In this analysis we need only to consider feedback
from F2 to F1. Pairs of F1 activation patterns from Figure 7
were summed to provide targets for training the F2 feedback
filter. For example, the equilibrium of F2 corresponding to
the word /iau/ in Figure 8 is associated (again using the delta
rule) with both the /ia/ and /au/ transitions because its static
F1 target maps to the sum of those two transitions (imagine
/ia/ and /au/ from Figure 7 overlain one on top of the other
to create /iau/’s F1 target in Figure 8).
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Figure 7: associating static input arrays with static F1 targets
(top); frequency band plots for /ui/ and /au/ (bottom)
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Figure 8: equilibrium states of F2 as control signals trained
to prime corresponding F1 targets

Processing essentially works as follows: F1 goes to an
equilibrium corresponding to an input transition and
maintains this equilibrium until fatigue sets in. From
fatigue, the equilibrium eventually spontaneously collapses.
Under the influence of top-down priming from F2, F1 then
immediately shifts toward a new attractor equilibrium that
maps to the other transition that is 'primed' by top-down
activation from F2. Sensory input also has an influence.

To evaluate training, the activations of motor category
nodes were examined through time as the network
responded to manual activations of F2. Specifically, the
network including spectral model feedback was initialized
to the values it had from a run at a snapshot in time just after
the phrase "got to be" (recall Figure 6). From there, F2 was
forced into its equilibrium corresponding to one of the test
words. Figure 9 presents a summary depiction of the
activations of the motor nodes in response to these four
situations. Top-down influence of /iau/ activation in F2 (top
left of figure) resulted in an on-off response of second motor
category node followed by the third motor category node to
theoretically generate the tongue movement sequence for
/iau/. Likewise, the /uia/ signal from F2 produced motor
node activations corresponding to the /ui/ and then /ia/
transitions (top right of figure). Results were successful for
/iaau/ (bottom left) and /aui/ (bottom right) as well.

There are quite a number of issues to discuss. For
instance, notice how the production of /au/ in /iau/ occurs
earlier than the production of /au/ in /iaau/. This is due to the
function of the spectral model. Top-down influence from the
F2 pattern for /iaau/ was hampered until inhibition from the
timing expectancy node subsided. For a more detailed
description of this and other aspects of the model - including
animations and sound files corresponding to this paper -
please visit: http://www.fluidbase.com/mike/ART-STiM
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Figure 9: activations of motor category nodes through time
as network responds to the four F2 feedback patterns
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Conclusion

The model illustrates how a persistent control signal for a
simple motor sequence of two articulatory gestures (a
gesture as the transition between two vowels) may be
implemented. As depicted in Figure 8, control signals for
four gesture-related words are the equilibrium states of F2.
By initializing the network from the same conditions but
with these four different patterns of persistent F2 feedback,
interactive dynamics result in the simulated production of
the four different words. Note that these F2 equilibrium
states do not lend themselves to phonological description. A
linguist would be hard pressed to find patterns in those F2
states that could map to a phonological coding scheme.

A theoretically scaled version of the model allows for
longer sequences of gestures and for increased phonetic
complexity. Fields may be added in parallel to the network
(i.e. as extensions of F1) to respond to change patterns
associated with voice onset time, tongue flaps, labial
movements, and other phonemic features. Fields may also
be added in series (stacked on top of the network, i.e. adding
an F3 and F4 etc.) to allow for longer streams - or sequences
of sequences to form. Multiple processing streams may be
realized by creating multiple stacks of fields and these
streams may interact with each other through lateral
connections. Numerous spectral timers may also be used.

This sketch of a scaled version of the model supports a
construction grammar (Goldberg, 2003, Tomasello, 2003)
approach to speech. In contrast to generative grammar,
where a detailed motor plan is somehow assembled by
means of a formal system, construction grammar views
language production as "a repertoire of complex patterns
that integrate form and meaning in conventionalized and
often non-compositional ways." An utterance can be
imagined as the result of how a variety of persistent
activation patterns or exemplars at the top levels of different
streams combine through network dynamics to produce
motor output. Top-level fields correspond to concepts and
grammatical regularities and act to contextualize each other.
Phenomena such as over-generalization ("I goed to the
store"), tongue twisters, and spoonerisms may better be
appreciated from this integrated conceptualization.

As noted earlier, the Theory of Articulatory Phonology is
not seen to be in conflict with the view taken in this paper.
That is, if we return to consider speech communication and
complex motor control in terms of units, we might now
distinguish between units of planning versus units of
production. Articulatory Phonology is essentially a
framework for theorizing about production units or 'pre-
coordinated action molecules.' Such a perspective is in full
harmony with the use of motor category nodes in the model
presented here. However, this harmony vanishes when
planning units and production units are assumed to be
isomorphic. This paper depicts the motor plan as a process
rather than a product and as such the motor plan cannot be
decomposed into units or analyzed using tree diagrams.

A new era of cognitive robotics is upon us. Because
speech is ultimately a problem of motor planning and

production, a fresh look at speech and language in terms of
robotic control should provide new insights. With robots,
the worldly interface cannot be assumed away. The modular
approach of translating perception and action to and from
the symbols of a formal system is attractive for a variety of
reasons, but integrated control involving feedback loops and
distributed processing is probably more in line with the way
the brain works.
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