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Abstract

How does object perception influence scene perception? A
recent study of ultrarapid scene categorization (Joubert et
al., 2007) reported facilitated scene categorization for scenes
with consistent objects compared to scenes with inconsistent
objects. One proposal for this consistent-object advantage
is that ultrarapid scene categorization is influenced directly
by explicit recognition of particular objects in the scene. We
instead asked whether a simpler mechanism that relied only
on scene categorization without any explicit object
recognition could explain the consistent-object advantage.
We combined a computational model of scene recognition
based on global scene statistics (Oliva & Torralba, 2001)
with a diffusion model (Ratcliff, 1978) of perceptual
decision making. Simulations show that this model is
sufficient to account for the consistent-object advantage.
Importantly, this effect need not arise from explicit object
recognition, but from the inherent influence certain objects
have on the global scene statistics diagnostic for scene
categorization.
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Introduction

What is the relationship between scene perception and
object perception? Past research has examined how objects
are recognized in consistent or inconsistent scenes (e.g.,
Biederman, Mezzanotte, & Rabinowitz, 1982; Davenport &
Potter, 2004; Palmer, 1975). The general finding is that it is
easier to recognize objects in semantically consistent scenes,
such as recognizing a toaster in a kitchen compared to
recognizing a toaster in a bedroom (Davenport & Potter,
2004; Henderson & Hollingworth, 1999; Palmer, 1975).

One proposed mechanism for facilitated recognition of
objects contained in consistent scenes is an interacting, dual
system account (Davenport, 2007; Davenport & Potter,
2004). At the same time that the object recognition system
is extracting information for an object categorization, the
scene perception system is extracting evidence for a scene
categorization. Object and scene perception systems operate
in parallel, sharing information and converging on a full
description of the environment, facilitating categorizations
that are consistent with one another.

The interacting, dual-system account is supported by
evidence for scene perception facilitating object recognition.
Of course, the converse should be the case as well. Scene
recognition can also be influenced by object perception.

Indeed, Davenport and Potter (2004) found that scene
categorization was facilitated when the scene contained a
consistent object (e.g., a football field with a football player)
compared to an inconsistent object (e.g., a football field
with a priest).

A recent study (Joubert, Rousselet, Fize, & Fabre-Thorpe,
2007) reported a similar advantage for scenes containing
consistent objects versus inconsistent objects in ultrarapid
scene categorization. Participants were presented with
scenes for only 26ms and performed a go/no-go decision
about the scene’s superordinate category (natural or man-
made). As illustrated in Figure 1, scene images either
contained objects consistent with the scenes’ category (e.g.,
an urban street scene with a parked car) or contained objects
inconsistent with the scenes’ category (e.g., an urban street
scene with a large tree). A post-hoc analysis comparing
these two types of scenes showed a consistent-object
advantage such that participants made fewer errors and were
faster to respond when categorizing a scene containing a
consistent object. Joubert et al. explained this consistent-
object advantage with the interacting, dual-system account:
Information extracted by the object recognition system
influences the rapid processing and categorization decision
by the scene perception system. For a scene containing an
inconsistent object, the object information conflicts with the
evidence for the scene’s category, leading to more errors
and slower reaction times.

Previous work has shown that ultrarapid scene
categorization is largely determined by coarse, global scene
properties (Oliva & Schyns, 1997; Schyns & Oliva, 1994).
Furthermore, computational models that represent scenes
based on their global spatial structure are sufficient for
ultrarapid scene categorization (Oliva & Torralba, 2001).
Importantly, such models capture only the diagnostic global
features of scenes without explicitly representing any local
content of the scene, such as the location, presence, or
identity of particular objects (Greene & Oliva, 2009). The
feature set used by these models is based on global image
statistics calculated across the entire scene, such as the
scene’s spatial frequency content.

A possibility suggested by the Joubert et al. (2007) results
is that ultrarapid scene categorization based on global image
properties is influenced in some way by ultrarapid
categorization of particular objects in the scene that are
either consistent or inconsistent with the scene’s category.

We instead asked whether the consistent-object advantage
could be explained by a simpler mechanism that relied only
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on scene categorization without any explicit object
recognition whatsoever.

Consider a forest scene. A small shed in that scene would
be considered an inconsistent object. We could replace that
shed with a consistent object, say a large bush. The global
image statistics of a forest scene with a small shed will only
be slightly different from those of a forest scene with a large
bush. But they will not be identical. And that’s the key.
While perhaps quite small, is the difference in image
statistics between scenes containing consistent objects
versus scenes containing inconsistent objects sufficient to
account for the consistent-object advantage? If so, then the
consistent-object ~ advantage in  ultrarapid  scene
categorization can be explained by scene categorization
alone, without any explicit object recognition.

To explore this possibility, we combined a computational
model of scene recognition based solely on global scene
statistics (Oliva & Torralba, 2001) with a diffusion model
(Ratcliff, 1978) of perceptual decision making.
Interpretation of global scene statistics provides evidence
that drives a stochastic diffusion of perceptual evidence to a
decision threshold. The model aims to explain both response
probabilities and reaction time distributions for categorizing
scenes containing consistent or inconsistent object. The
model includes no explicit object recognition.

This paper is organized as follows: We first attempt a
replication of the consistent-object advantage in scene
categorization. We then analyze the behavioral data using
the pure diffusion model, for reasons that will be made
apparent. Finally, we present fits to observed data of our
computational model combining a scene categorization
front-end with the diffusion model of decision making.

Behavioral Experiment
This experiment attempted to replicate Joubert et al. (2007).

Methods

Participants Fifty Vanderbilt University undergraduate
students (twenty-four male; age 18-23 years) participated in
the experiment for course credit.

Stimuli The stimuli consisted of color images of naturalistic
scenes from an online image database (Oliva & Torralba,
2001). Scene images were divided into categories of natural
and man-made environments. The natural scene category
included images of beaches, fields, mountains, and forests
and the man-made scene category included images of
skyscrapers, urban cities, and streets. Two independent
observers tagged scenes that contained a salient object that
was consistent or inconsistent with the scenes’ natural or
man-made category (reliability = 0.93). 192 natural scenes
(64 with inconsistent objects) and 192 man-made scenes (64
with inconsistent objects) were randomly selected from the
database for the experiment. Scene images were presented
in color and subtended 10.2°x10.2° of visual angle.
Example stimuli are shown in Figure 1.

Natural

Man-made
Il

Consis;tent

Inconsistent

Figure 1: Examples of scene stimuli. Natural scenes (left)
and man-made scenes (right) are shown with consistent
objects (top) and inconsistent objects (bottom). Color
images were used in Experiment 1.

Procedure Participants performed a go/no-go categorization
task with target “go” category (natural or man-made scene)
randomized for each participant. On each trial, a fixation
cross was presented for 500-800ms followed by a brief
presentation of the scene image for 26ms. Participants were
instructed to press the response key if the scene belonged to
the target category and withhold any response otherwise.
Responses could be made for 1000ms after onset of the
scene image and any responses made after this time window
were considered no-go responses. The trial concluded with
a 500ms blank period before the next trial began.

The experiment consisted of two blocks of 192 trials with
an even split of target and distractor trials. Scene images
used as target trials for half of the participants served as
distractors for the other half of participants. The entire
experiment lasted approximately 25 minutes.

Results

Performance was analyzed separately by target category
(natural and man-made) according to accuracy and reaction
times for correct responses (see Figure 2). Both target
category groups showed a consistent-object effect, with
higher accuracy for scenes containing consistent objects
compared to inconsistent objects; this effect was larger for
the natural scene group (11.6% difference; paired Wilcoxon
test: Z=4.17, p<0.001) than the man-made scene target
group (1.4% difference; Z=2.648, p=0.008). Both groups
also showed a consistent-object effect in mean reaction
times, with faster responses to scenes containing consistent
objects; the effect was larger for the natural scene group
(28ms difference; Z=4.167, p<0.001) than the man-made
scene group (10ms difference; Z=2.435, p=0.015).

2529



[ consistent [__] inconsistent

100% 520
500 -
90% 480 -
80% 460 -
440 A
70% - 420 -

man-made natural man-made natural

Figure 2: Average accuracy (left) and RT for correct
responses (right) for consistent-object scenes (dark
columns) and inconsistent-object scenes (light columns).
Error bars represent 95% confidence intervals.

Discussion

We replicated the consistent-object advantage found by
Joubert et al. (2007). For both man-made or natural scene
targets, scenes with consistent objects were categorized
faster and with fewer errors than scenes with inconsistent
objects. The consistent-object advantage was larger for
natural scenes, but this may be explained by stimulus factors
as we did not attempt to equate the natural and man-made
scene images in terms of visual properties or similarity.

Diffusion Model Analysis

The diffusion model is a well-known model of perceptual
decision making (Ratcliff, 1978). Decisions are made
through a stochastic accumulation of noisy evidence over
time toward a decision threshold (see Figure 3). The rate of
accumulation (called the drift rate, v) is determined by the
quality of the perceptual evidence. Higher quality evidence
leads to faster accumulation and faster reaction times.
Changing the decision threshold (@) affects the tradeoff
between speed and accuracy. Overall reaction time is given
by the time for the perceptual decision made by the
diffusion plus time for non-decision factors (7,,), such as
stimulus encoding and motor response. Furthermore, in the
full diffusion model, variability in drift rate, starting point,
and nondecision time can be present and allow for the
diffusion model to account for more detailed patterns of
reaction time distributions.

The diffusion model is typically applied to two-alternative
forced-choice categorization. A recent study compared
different versions of the diffusion model to account for
go/no-go categorization (Gomez, Ratcliff & Perea, 2007).
They tested two versions of the diffusion model, one where
evidence accumulates towards a single decision boundary
for the “go” response with the other boundary at negative
infinity, and another where evidence accumulates to both
“g0” (explicit response) and “no-go” (no response)
boundaries. The two-boundary model was found to provide
the best account of behavior associated with several go/no-
go categorization tasks (Gomez et al., 2007). Therefore, we
modeled the go/no-go scene categorization using a two-

boundary diffusion model, with one boundary for a go
response and the other boundary for a no-go nonresponse.

Before combining the diffusion model with a scene-
recognition front end, we wanted to use the pure diffusion
model as a data analysis device in order to pinpoint the
source of the consistent-object advantage in accuracy and
reaction time. First, the consistent-object advantage could
arise from a differences in the time to perceptually process
and encode scenes containing consistent versus inconsistent
objects, which could be reflected by a difference in the T,
parameter. Second, recognizing consistent  versus
inconsistent objects might bias the decision process, leading
to a potential difference in the decision threshold of the
accumulation process (the « parameter). Third, our
hypothesized simple single process account might suggest
that the consistent-object advantage will arise from a
difference in the quality of the perceptual evidence (the drift
rate, v) driving the accumulation process.

time

Figure 3: The diffusion model. At starting point z, evidence
accumulates at drift rate, v, towards decision bounds defined
by a and 0. Overall reaction time is given by the time of
accumulation plus time for non-decision factors (7,).

Model Fitting

The diffusion model was fitted to reaction time distributions
using standard techniques (see, Ratcliff & Tuerlinckx,
2002). For each individual participant, RT data for scenes
containing consistent versus inconsistent objects were
grouped into 6 RT bins defined by the 0.1, 0.3, 0.5, 0.7, and
0.9 quantiles. Quantile RTs averaged across participants
were then wused to generate predicted cumulative
distributions of response probabilities (Vandekerckhove &
Tuerlinckx, 2007, 2008). Best-fitting model parameters
were found using the SIMPLEX method that minimized the
Pearson chi-square for the observed versus predicted
number of RTs within each RT bin (an additional bin was
included in the fitting to count the number of no-go
responses). The full diffusion model is defined by seven
parameters: starting point of the accumulation process and
its variability (z, s.), decision threshold (a), drift rate and its
variability (v, nu), and the nondecision time and its
variability (7., ;). For our model fits, starting point (z=a/2)
and its variability, variability of drift rate (nu), and
variability of nondecision time (s,) were held constant across
the consistent and inconsistent conditions. We fitted
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versions of the diffusion model where the three key
parameters, decision threshold (@), nondecision time (7,),
and drift rate (v), were either free to vary or were held
constant across the consistent and inconsistent conditions.

Results

The variant of the diffusion model with only drift rate as a
free parameter provided a significantly better fit to the
behavioral data than variants with only nondecision time or
decision threshold as a free parameter. Table 1 shows
values for the chi-square statistic and the appropriate
significance tests for each version of the diffusion model.

Table 1: Diffusion model fits

Free parameters  Chi-square P
All fixed 5.318 --
a 2.746 0.109 (vs. fixed)
Ter 3.645 0.196 (vs. fixed)
v 1.346 0.046 (vs. fixed)
Discussion

Diffusion model analyses of the data from Experiment 1
revealed that a model with a separate drift rates for the
consistent and inconsistent object condition provided the
best account of the behavioral data. Allowing a freely
varying nondecision time did not provide a good fit,
suggesting that the time necessary for scene encoding was
not affected by the consistency of the embedded object. The
consistent-object advantage is best accounted for by
assuming that the quality of the perceptual evidence is
affected by the presence of an inconsistent object.

Scene Categorization Model

To test this further, we extended a successful model of scene
categorization (Oliva & Torralba, 2001). Their model is the
perceptual front-end that extracts evidence for a scene’s
category that then drives the diffusion model of decision
making. Specifically, the scene categorization model
establishes the drift rate of the diffusion process, rather than
allowing the drift rate to be a free parameter.

Model Description

We started with a scene categorization model developed by
Oliva and Torralba (2001). In this model, scenes are
represented by a set of features that describe the global
spatial structure of the scene (Greene & Oliva, 2009; Oliva
& Torralba, 2001). The feature space, known as the spatial
envelope, is defined by measures of global shape properties
that are extracted using a bank of Gabor filters of varying
spatial scale and orientation.

We followed the procedure outlined by Oliva and
Torralba (2001). A bank of Gabor filters spanning four
spatial scales and eight orientations were used to extract the
scenes’ global features. To reduce the dimensionality of the
filter responses, each filter output was down-sampled to a
lower-resolution (4x4) summary. PCA was then used to
further reduce the dimensionality creating a final scene
representation consisting of a 50-element vector. Natural
versus man-made scene categories were defined by a
hyperplane boundary extracted using linear discriminant
analysis (see Figure 4).

We used the results of the linear discriminant function to
establish the drift rate of the diffusion model for each scene
image to be categorized. Specifically, for a given scene, the
output of the linear classifier corresponds to the distance of
that scene from the boundary separating natural versus man-
made scenes. The sign of the distance signifies which
category the scene is classified in and the magnitude of the

Go

Linear Classifier

PCA
x
o)

No-go

Figure 4: The extended scene categorization model. Scenes are first classified by the scene categorization front-end.
The scene’s global spatial frequency is extracted with a bank of Gabor filters (a - polar plot of global spatial energy,
spatial scale and orientation of filters shown by ellipses) and summarized into a low-resolution representation (b -
subimages in the 4x4 grid show the global energy at that spatial location). Scene representations are projected onto a 50-
dimensional principal component space and classified by linear discriminant analysis. The resulting classification value
drives a stochastic accumulation of evidence towards go or no-go response boundaries.
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distance represents the quality of that classification.
Distance is transformed into drift rate with a sigmoid
function that includes a scaling parameter. Using that drift
rate, the decision process is carried out by the diffusion as a
stochastic accumulation of evidence to a threshold.

We want to emphasize that this model assumes no
parameters that vary across scenes containing consistent
versus inconsistent objects. The scene categorization front-
end uses the same discriminant function for scenes with
consistent and inconsistent objects. Distance from the
discriminant function is transformed into drift rate using the
same function for all scenes. The diffusion process
determining the time-course of the decision is the same for
all scenes. It should also be clear that the model contains no
explicit object recognition process. Scenes are represented
by global features that capture the scene’s spatial frequency
structure. The only difference between scenes containing
consistent versus inconsistent object is in the global content,
not recognition of any individual objects in the scenes.

Simulation Method

First, a set of 200 natural and 200 man-made scene images
were randomly selected from the scene database (same as
used in Experiment 1) for creating the PCA. A fifty-
dimensional principal component space was extracted from
these scenes’ Gabor-filtered representations and saved for
the simulations. Next, a training set consisting of another
100 natural and 100 man-made scenes was randomly
selected from the scene database. These scenes were passed
through the Gabor filters, projected into the principal
component space, and used to train the linear discriminant
classifier.

The scene database we used had fewer inconsistent-object
scenes compared to consistent-object scenes, since by
definition, inconsistent objects are not typically found in
those scenes. In order to test an equivalent number of scenes
with consistent and inconsistent objects, we randomly
selected 500 consistent object scenes and inconsistent object
scenes with replacement from the scene database. Scenes
used for training were never included in the testing sets.
Test trials consisted of first passing a scene through the
scene categorization front-end. This stage generated a
classification value from the discriminant function that was
transformed into a drift rate for the diffusion. The drift rate
drove the stochastic accumulation of evidence until a
decision threshold (go or no-go) was reached or 1000ms had
elapsed (tallied as a no-go response).

The three parameters of the model (drift rate scaling
factor, decision threshold, nondecision processing time)
were optimized by fitting the predicted reaction time
distributions to the observed data using the same procedure
used in the earlier diffusion model analysis. We tested the
model’s performance with both natural and man-made
scenes as targets. The entire simulation procedure was
repeated with twenty-five separate training and testing sets.

Results

Performance was analyzed separately by target category
(natural and man-made) according to accuracy and reaction
times for correct responses across simulation repetitions (see
Figure 5). The model showed a consistent-object effect only
when the target was a natural scene. Accuracy was higher
(Z=4.24, p<0.001) and reaction times were faster (Z=4.37,
p<0.001) for consistent-object scenes compared to
inconsistent-object scenes. With man-made scenes as the
target, mean differences in both accuracy and reaction time
trended in the manner of a consistent-object advantage, but
did not reach significance (Z=0.977, p=0.328; Z=1.44,
p=0.15); recall that the difference observed for human
subjects was also quite small.

[ consistent [__] inconsistent
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Figure 5: Simulation results. Average accuracy (left) and
correct response RTs (right) for consistent (dark columns)
and inconsistent (light columns) object scenes.

Discussion

Simulations of ultrarapid natural scene categorization with
the extended scene categorization model showed a
significant consistent-object advantage for categorizing
natural scenes as targets and a small (but not significant)
advantage for man-made scenes; this difference across
target scene category is qualitatively comparable to what
was observed in Experiment 1. These initial simulations
suggest that the global features extracted by the perceptual
front-end of our model were influenced by the presence of
an inconsistent object. This subtle influence may be
sufficient to explain the lower accuracy and slower reactions
times associated with scenes containing inconsistent objects.

Conclusions

The aim of our work was to test whether the consistent-
object advantage observed by Joubert et al. (2007) could be
explained using global scene categorization mechanisms
without object recognition. By this account, semantically
inconsistent objects in scenes can influence the global
perceptual evidence diagnostic for scene categorization
without any explicit recognition of consistent versus
inconsistent objects in the scene.

Consistent with this simple scene categorization account,
we presented evidence from a diffusion model analysis that

2532



suggests a difference in the quality of the perceptual
evidence available from scenes containing consistent versus
inconsistent objects. Furthermore, we showed that a scene
categorization model coupled with the diffusion model
accounts well for the consistent-object advantage. Instead of
distinct scene and object perception systems operating in
parallel and competing or cooperating for categorization, the
consistent-object advantage can be explained by a single
scene perception system that interprets the global statistics
found in natural scenes.

It is important to place our findings in their appropriate
context. First, we are not arguing that explicit recognition
of objects never matters for scene categorization. It goes
without saying that fully understanding the environments
we encounter during our everyday visual experience
requires successful object recognition. However, in the case
of ultrarapid ultrasuperordinate scene categorization, we
have shown that explicit representation and recognition of
objects in those scenes is not necessary to account for the
influence of consistent or inconsistent objects. Second, it
goes without saying that this demonstration is evidence of
sufficiency and not necessity. Further converging evidence
is needed to know whether mechanisms described in our
model underlie ultrarapid scene categorization in humans.

The computational model we proposed extends a current
class of successful scene categorization models to predict
both response probabilities and reaction times. This model
offers a richer description of scene categorization by
accounting for the time course of the perceptual decision.
Further behavioral research and application of this model is
necessary to better understand the underlying mechanisms
of scene categorization and to characterize the relationship
between scene and object perception.
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