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Abstract

We present a computational model of false recall phenomena.
The model is based on an integrated architecture including
modules that have been successful at accounting for other
types of memory tasks. Words presented in a list are
represented by semantic vectors from a co-occurrence model,
and are encoded into a composite store. At test, the model
generates a list of candidate words from the lexicon and
decides which of these words to recall using a recognition
process. We show that the model is able to account for a wide
range of effects in false recall, including levels of false recall
in DRM studies, item-level effects, number of associates, and
categorical vs. associative list structure.

Keywords: False recall; co-occurrence representations;
memory models; free recall; generate-recognition models

Introduction

The Deese/Roediger-McDermott (DRM) paradigm (Deese,
1959; Roediger & McDermott, 1995) has provided
fundamental evidence about how humans can remember
events that were not stored. In this paradigm, a subject is
typically given a list of items to encode. The list contains
clusters of items related to a critical lure that is not
presented on the list; during subsequent recognition or
recall, the critical lure is remembered at similar levels as the
encoded items. For example, given pillow, snore, bed, tired,
etc. to encode, subjects are likely to falsely recall or
recognize sleep. Exactly what type of information and
overlap is necessary between the targets and the critical lure
still remains the topic of considerable debate. The DRM
paradigm has received much recent attention as a task to
understand false memory in applied fields, such as
eyewitness testimony.

From a cognitive modeling perspective, the DRM
paradigm is particularly challenging because a full
understanding of the illusion requires an account of both the
structural organization of semantic memory and the process
of memory retrieval. As Estes (1975) originally noted at the
outset of cognitive modeling, one cannot study structure or
function independently; observed human behavior is an
interaction of the two, and to fully understand a cognitive
operation, we need a model that explains both structure and
function, and how the two interact to produce behavior.

Accounts of false recall have tended to focus on general
verbal conceptual frameworks. Recently, the first
computational model of false recall was presented (the
fSAM model of Kimball, Smith, & Kahana, 2007). While
the fSAM model is an excellent step towards a formal

framework for understanding false recall, the model focuses
on an account of process rather than structure. The model
represents the associative connections between words in
memory by using association norms, or by hand-fitting
representations. While the process of the fSAM model may
be a correct one, an explanation of a semantic behavior such
as false recall also requires an account of the representation
that the process operates upon. We believe that integrating
models that create a realistic structural representation with
such process models can yield great benefits. If we do not
have the correct account of structure when we build the
process model, we may have to posit a more complex
processing mechanism than humans actually use in order to
produce the complex behavior seen in humans. In reality,
much of the requisite complexity for a behavior may be
coded in the structure of the representation, and a much
simpler processing mechanism will suffice to produce the
behavior (cf. Jones & Mewhort, 2007).

A promising class of models that can be used to explain
the structure of semantic memory are co-occurrence
learning models. Examples include Latent Semantic
Analysis (LSA; Landauer & Dumais, 1997), the Topics
model (Griffths, Steyvers, & Tenenbaum, 2007), and
BEAGLE (Jones & Mewhort, 2007). These models build
semantic representations for words by observing co-
occurrence statistics in a large text base. They have seen
considerable success at accounting for a variety of semantic
behaviors directly from their representations, such as
synonymy test performance, semantic similarity ratings,
association norms, and identification times (Johns & Jones,
2008). Due to their success, it seems natural to use co-
occurrence representations as structural representations in a
process model of false recall.

However, co-occurrence models only provide an account
of the structure of memory. To produce sophisticated
behavior as in false recall, we require a suitable processing
model to interface with this structure. In this paper, we
present an account of the process of false recall that operates
on a realistic semantic representation learned by a co-
occurrence model. We build semantic representations for
words using the recent Semantic Distinctiveness Memory
(SDM) model (Johns & Jones, 2008). Words presented on a
DRM list are retrieved from the SDM mental lexicon and
are stored in a composite memory store. At test, the model
retrieves a list of candidate words from the lexicon that are
similar enough to the composite store, and this candidate list
is then used by a recognition module which decides whether
or not to recall the word. Our account is an integrated
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architecture  fusing together models of semantic
representation, recognition, and memory search that have
proven successful at accounting for other types of memory
data. It is the integration of these components that produces
our free recall behavior. The integrated architecture of these
models is displayed in Figure 1. By integrating different
models it is possible to explain more data than any single
model can explain by itself. The different aspects of the
false recall model will now be described in turn.
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Figure 1. The architecture of the full memory system.
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False Recall through Search and Recognition

Our false-recall model is based on classic generate-
recognition models (e.g. Kintsch, 1970), in which items are
internally generated and are then tested with a recognition
check. These simple models will be extended with a
mechanism that searches through a fully quantified mental
lexicon built by a co-occurrence learning model. Once a
search set is created, these words are then tested with a
recognition model that has been shown to be susceptible to
false recognition. Hence, there are four different modules of
the model that we will describe: 1) the lexical
representations, 2) the encoding process, 3) the search
process, and 4) the recognition process.

1. Lexical Representations from SDM

To simulate the contents of semantic memory, we use
representations constructed by the SDM model (Johns &
Jones, 2008), a recent co-occurrence learning model. The
SDM model produces semantic representations similar to
those created by other models such as LSA, but it also
simulates the effect of semantic distinctiveness on a word’s
strength in memory. We have demonstrated, using both a
corpus analysis (Johns & Jones, 2008) and an artificial
language learning experiment (Recchia, Johns, & Jones,
2008), that words that occur in more semantically distinct
contexts are more strongly represented within memory.
Johns & Jones (2008) showed that this SDM model
produces better fits to both lexical decision and naming
times, and produces superior semantic organization
compared to other models. In addition, the model can
account for semantic isolation effects, semantic similarity
ratings, and word association norms.

As in other co-occurrence learning models, SDM builds a
term-by-document matrix from a text corpus. The

modification that the SDM model makes, in comparison to
other co-occurrence models, is the type of information
added into the word-by-document matrix: instead of raw
frequency, it uses a semantic distinctiveness (SD) value
representing how distinct the current context is compared
with the previous contexts that the word has occurred in.
The first step in computing this SD value is to create a
‘context’ or ‘document’ vector, which we call a composite
context vector (CCV). This vector represents the meaning of
the current context. For each word that occurs in a document
(Wy,...,WYy), the word’s vector is added into the composite
vector. Formally, this is:

ccv=2%L,T, 6

where N is the set of words in the document, and T; is the
memory trace corresponding to word i. The next step is to
compute a similarity value (given by a vector cosine)
between each word that occurs in the context and the CCV.
This similarity value is then transferred through an
exponential probability density function to give an SD
value:

sD = E—Ascosina(word,fﬂf} 2

where ) is a fixed parameter with a small positive value; as
A is increased the difference in the value of high vs. low
similarity contexts is accentuated. This SD metric is the
value added into the memory slot for that word and context.
A context with a high SD value means that it is more
distinct compared with the other contexts that a word has
appeared in. This practice gives greater salience to more
unique contexts, in terms of the word’s magnitude, than
redundant contexts.

These SDM representations will be used as the lexical
structure that drives recall. SDM representations are sparse
vectors, in which non-zero values contain a number between
0 and 1 that represents how important that particular context
was to forming the semantic representation for that word.
Even though the typical practice is to reduce the
dimensionality of these vectors using some type of vector
reduction technique, as is done in LSA (Landauer &
Dumais, 1997) and the Topics model (Griffiths, et al.,
2007), we use the raw episodic traces. In a test of the raw
vectors against LSA, we find that the model attains a better
fit to semantic similarity ratings and backward association
strength, and the model only does slightly worse on forward
association strength. In the following simulations, the SDM
lexicon was built by training on the TASA corpus, and the
vectors will have a resulting dimensionality of 36,700.

2. Encoding Process

We use a single composite vector to represent a study list.
The representations for each word seen in a study list are
retrieved from the SDM mental lexicon, and are summed
into a composite vector, which represents of the “gist” of all
words on the list. Word vectors are first normalized so that
each word adds approximately the same amount of
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information, and each is weighted by a uniform random
number between 0 and 1 prior to addition to simulate
encoding failure.

The use of a composite vector is one of the reasons that
this model will be able to account for a variety of false
memory results. It is based on the assumption that humans
encode the meaning of items in the context of the other
items encoded. From this perspective, the task of recall may
involve a process that determines if a particular word’s
semantic representation is coherent with the gist
representation that was seen in the study list. This approach
has some similarities with the claims of Fuzzy Trace Theory
(FTT; Brainerd & Reyna, 2002), which proposes that
(among other things) memory stores ‘gist’ traces of events,
and these are traces that capture the meaning of an episode,
without specific perceptual features. In a similar way, our
model encodes a composite vector of all the words that
occur in a specific study list, and this vector represents the
gist of the study list.

3. Search Process

To internally generate words to test with recognition, a
searching mechanism within the mental lexicon is
employed. The SDM lexicon contains approximately 70,000
words. Hence, the searching process is a difficult one: it
requires extraction of the words that occurred on the list
(and are encoded within the composite vector), whilst
ignoring all other words. Due to the immensity of this
searching task, the word representation must be of sufficient
resolution, and the SDM model contains this necessary
structure.

Firstly, we define the similarity between a word in the
lexicon and the study list’s composite trace as the cosine
between their respective vectors. This value is then
converted to one minus the magnitude of the word under
consideration divided by the maximum magnitude in the
lexicon (approximately 1000). Formally, this is

Sim = cos(word, probe) *Ll _(len(word)]} 3)
max
where len returns the magnitude of the word in memory.
This similarity value is then used to drive the searching
process. This process is simply based on classic signal
detection: If the similarity between a word in the lexicon
and the composite is greater than a criterion, then the word
is added into the search set. This criterion is fixed at 0.1
across all our simulations. The criterion seems intuitively
low because the SDM vectors are sparse vectors, hence, the
cosines that are taken with this model tend to be low.

4. Using RSA for the Recognition Process

Once the search set is compiled, we need a decision
mechanism to determine if the retrieved words actually
occurred. This is necessary because the model does not store
any item-level information, so it is not possible to conduct
item-to-item comparisons. Instead, a process is necessary to

determine if the retrieved word’s semantic representation is
coherent with the study list’s representation.

In Johns & Jones (2009) we describe a recognition model
that is designed to do exactly this. This model also uses the
semantic representation that the SDM model creates and
encodes a study list in the same manner as described above.
There are two main aspects to this recognition model,
amplification and decision.

a) Amplification The recognition model is based on an
analogy to amplification. For each item in the search set, the
recognition attempts to amplify the word’s representation in
the composite memory representation. This is accomplished
in two ways - by adding probe information into the
composite and by removing contradictory information. How
efficiently a candidate word’s semantic information is
amplified within the composite may be viewed as
confirmatory information (signal), and how much
mismatching information is amplified (noise) may be
viewed as contradictory information. Contradictory
information is taken out by simply multiplying the memory
vector by a uniform random number between 0 and 1 at
each location where the probe word contains no information
(i.e. where the probe vector is 0). This process causes the
probe word’s representation to increase in the memory store.
This process is intimately tied to the decision process
described below because how efficiently the word is
amplified within memory determines the decision that is
made.

b) Decision Two different types of information are used by
the RSA model to decide whether the candidate word was
encoded or not: 1) similarity information and 2)
contradictory information. Similarity information is simply
assessed with a cosine between the probe vector and the
composite vector. If this cosine exceeds a certain criterion
(set at 0.991 in the following simulations) then an ‘old’
decision is made.

Contradictory information is the amount of information
the model has that the word did not occur in the study list.
This information is used to make ‘new’ decisions, and is
done by taking the absolute difference between the defining
portions of the probe and the corresponding locations within
the memory vector, and dividing this summation by the
magnitude of the probe. The resulting value is between 0
and 1, where it will be 0 if all of the probe information is
contained in memory, and it will be 1 if none of the probe
information is contained within memory. Because
contradictory information decreases across iterations, this
value is a running count. If this count exceeds a criterion
(set at 3.9 in the following simulations), then a ‘new’
decision is made. A detailed formal treatment of both the
amplification and decision process can be found in Johns &
Jones (2009).
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Discussion

This model is based off of classic generate-to-recognition
models (e.g. Kintsch, 1970) and utilizes a mental lexicon
built by a co-occurrence learning model. At study, the
presented list is encoded into a composite memory vector. A
searching process then utilizes this composite vector to
search through the mental lexicon and pull out the most
similar words to the composite, in order to create a search
set. Once this search set has been created, the words in this
set are given to a recognition model, which decides whether
or not to recall a word.

The parameter space for this processing model is very
simple — there are only three fixed parameters. These
parameters are not manipulated across the different
simulations, so there is very little complexity actually built
into the processing model. Instead the emphasis in this
model is based on the contents of memory for different
experiments, and not processing differences across tasks.

Simulations

The methodology that we use in simulating false recall
results is very simple: we take the words used in a specific
experiment, retrieve the vector representations from the
SDM model, encode the words in a study list to a composite
representation, and feed this composite to the search and
recognition processes.

Simulation #1: Levels of False Recall

Different levels of false recall are observed in different
DRM lists. Here we simulate three different sets of DRM
lists: 1) the DRM lists from Roediger & McDermott’s
(1995) classic study, 2) the extended DRM list set from
Stadler, Roediger, & McDermott (1999), and 3) the more
variable lists from Gallo & Roediger (2002). The levels of
veridical recall were also tested to ensure that the model is
attaining true recall levels as well as false recall levels.

Method The DRM lists for the above described studies
were attained from the specified papers. One list (that for
man) was excluded because it was in the stop list that the
SDM model was trained with. For a single trial, four DRM
lists were randomly selected and added into the composite.
Then the proportion of studied items recalled was recorded,
as well as the number of critical lures falsely recalled on
each trial. In total, 250 trials were run for each set of DRM
lists. This limited number of trials was conducted because of
the large amount of computation that this model requires.

Results The levels of false and veridical recall across the
different DRM lists are displayed in Figure 2. This figure
shows that the model attains a very good approximation to
the levels of recall across the different list sets. Also, the
level of non-critical word intrusions across the different list
sets was also recorded. For the lists from Roediger &
McDermott (1995) 2.2 non-critical words intruded on
average. In the Stadler, et al. (1999) lists, 1.8 words

intruded, and in the Gallo & Roediger (2002) 3.5 words
intruded. These predictions are slightly high compared to
the empirical studies, but considering the massive search
task that the model must undertake (searching through
70,000 words), the pattern is nonetheless impressive.

However, this comparison only provides qualitative
evidence that the model is attaining false recall levels
equivalent to those observed in experimental data. As
Stadler, et al. (1999) and Gallo & Roediger (2002) have
shown, there is considerable variability in the amount of
false recall across lists within an experiment. Because our
model possesses individual representations for each word, it
is possible to measure the different levels of false recall that
are seen for particular critical words in the model and
compare these quantitatively with empirical results.

1.0

I Data
Model

0.8 4

Porportion Recalled

Critical Old Critical
Stadler, et al. (1999) Gallo & Roediger (2002)
Condition

Figure 2. The simulated levels of veridical and false recall

and the corresponding empirical results.

Old Critical Old

Roediger & McDermott(1995)

Simulation #2: Item-Level Analysis

Stadler, et al. (1999) and Gallo & Roediger (2002) have
both published the levels of false recall observed with
different DRM lists. As both of these studies show, there is
considerable variability in the levels of false recall elicited
by different DRM lists. To test the model’s quantitative
predictions, we correlated the levels of false recall for the
model and data using the same words from each experiment.

Method 54 lists from Stadler, et al. (1999) and Gallo &
Roediger (2002) were obtained from these studies. Again,
four DRM lists were added into a single composite vector
and the levels of false recall for the different critical words
were attained. In total, 250 trials were simulated for both the
lists from the Stadler, et al. and the Gallo & Roediger study.

Results Across the 55 lists (with repeats removed), a
significant correlation of r = 0.496, p < 0.001 was obtained
between the model’s predictions and the behavioral data.
Hence, it appears that the model is producing relative levels
of false recall across different critical items that shows
strong correspondence to the false recall levels in humans.
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If the five lists that the model does worst on (king, rough,
needle, smell, and health) are removed, then the correlation
increases to an r = 0.675, p < 0.001. There is no principled
reason to remove these items, but it does show that for the
majority of lists the model is giving a good approximation.

However, this simulation does not rule out the possibility
that these critical words are being recalled not due to
semantic similarity, but to some other factor in their
representation (e.g. frequency). To further demonstrate that
the amount of semantic information about a specific word
contained in memory is driving false recall, we conducted a
simulation manipulating the number of associates to a
critical word.

1.0 1
0.9 -
0.8 -
0.7 4
0.6 -
0.5 - -
0.4 -

0.3 4

Porportion Recalled

0.2 4

0.1 4

0.0 _—
2 4 6 8 10 12 14 16

Number of Associates

Figure 3. Simulation of Robinson & Roediger (1997).

Simulation #3: Effect of Number of Associates

Robinson and Roediger (1997) have demonstrated that as
the number of associates to a critical word contained within
a study list is increased, the probability of falsely recalling
the critical word increases substantially. Their result
strongly suggests that a causal factor underlying false recall
is the amount of semantic information about a critical word
that is contained in memory. The same pattern should be
predicted by our model: as the number of associates to a
word is increased, the similarity of the probe to the
composite will also increase. This causes the critical lure to
have a higher probability of being included in the search set
and also to be accepted by the recognition model.

Method We used the same lists as did Robinson and
Roediger. (1997). On each repetition, five different DRM
lists were selected and 3, 6, 9, 12, or 15 items in the list
were randomly selected and added into the study list.
Probability of the model recalling a critical word was
recorded.

Results The results of this simulation are displayed in
Figure 3. This figure shows convincingly that the amount of
semantic information contained within the memory vector
about a particular word is driving the levels of false recall.

As the number of associates to a critical word is increased,
the probability of the model falsely recalling the critical
word increases as well. In Johns & Jones (2009) we show
that the recognition component of our model (RSA) is able
to simulate the results of Robinson & Roediger (1997) when
this same experimental setup is tested through a recognition
experiment, rather than a recall test. Hence, there are two
reasons the model is able to account for this result: the
search set is more likely to include the critical word as the
number of associates to a critical word is increased, and the
recognition model is more likely to accept it.

Simulation #4: Categorical vs. Associative Recall

Park, Shobe, & Kihlstrom (2005) examined the levels of
false recall that are seen with critical lures for associative
lists and categorical lists. Specifically, the categorical study
lists were composed of subordinate (vertical) category
instances, while the association lists contain horizontal free
associates (the typical DRM lists). Park, et al. (2005) found
significantly lower levels of false recall for the category
labels than for the DRM critical words.

Method The category labels were taken from Park, et al.
(2005). The corresponding category lists were attained from
the Battigue & Montague (1969) norms and the DRM lists
were the six used in the Park, et al. study. Study lists were
created by adding four lists from both of these categories.
The probability of accepting the critical lure for the DRM
lists and the category lists was recorded. In addition, the
probability of accepting the studied items was also recorded.

Table 1. Simulation of Park, et al. (2005)

Category Lists DRM Lists

Old Critical Old Critical
Data 0.79 0.0 0.74 0.33
Model 0.59 0.0 0.675 0.23

Results The results of this simulation are displayed in Table
1. The levels of false recall to DRM lists and category lists
for the model are very similar to those found by Park, et al.
(2005). That is, the level of false recall to the DRM list is
much higher than that for category labels, mirroring what
was found in the empirical study using the same materials.

Simulation #5: Relationship between False
Recognition and False Recall

Both Stadler, et al. (1999) and Gallo & Roediger (2002)
have reported a significant correlation between levels of
false recognition and levels of false recall. Stadler, et al.
report r = 0 .77, p < 0.001 across lists, while Gallo &
Roediger (2002) report r = 0.78, p < 0.001 between recall
and recognition across their lists. These correlations are
likely artificially inflated because in these studies
recognition occurred after a recall period, but it does show
that there is a relationship between levels of false recall and
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recognition. Due to the fact that in our recall model a
recognition component is used to make a decision about
whether a specific word occurred or not, we expect the
model to attain a similar relationship between the predicted
levels of false recall and false recognition.

Method Levels of false recall were simulated for the lists
contained in Stadler, et al. (1999) and Gallo & Roediger
(2002). Levels of false recognition were computed with the
RSA model, described in Johns & Jones (2009), for these
same lists. 250 trials were done for both models.

Results For the lists from Stadler, et al. (1999) a correlation
of R = 0.578, p < 0.001 was obtained, and for the lists from
Gallo & Roediger (2002) a correlation of r = 0.574, p <
0.001 was found between the levels of false recognition and
false recall. These correlations are smaller than those
reported in the behavioral results because, as described
above, recall preceded recognition in those studies. This
relationship is not surprising considering that the RSA
recognition model plays an intricate role in our recall model.
However, it does demonstrate that the searching mechanism
employed by the recall model plays a key role in the levels
of false recall. This simulation shows that both the searching
and the recognition processes contained in the recall model
are creating the level of false recall that the model attains.

Conclusion

This model demonstrates the power of using cognitively
plausible representations of words. By incorporating
semantic representations based on a co-occurrence learning
model, we require only a very simple processing model to
explain a wide range of false recall data. In addition, the
model is more constrained than models using hand-coded
semantic representations because it provides an account of
both memory structure and process, and how the two
interact to produce false recall.

Further, this approach not only allows us to make
quantitative predictions about levels of false recall expected
in DRM lists, but it allows for the integration of models that
are used to explain different aspects of memory. Integrated
together with the SDM model (Johns & Jones, 2008) and
the RSA model (Johns & Jones, 2009) these models explain
a significant number of effects across many different
paradigms. This integration also allows for a greater
simplicity across all of the models, as well as the possibility
to be combined with other models, such as the TCM
(Sederberg, Howard, & Kahana, 2008). Across all three
models there are a total of four parameters, which is less
than many models designed to explain a single paradigm.
There are obviously many results that these models cannot
explain, but due to the simplicity of these different models it
is an appealing architecture to investigate with other
memory phenomena.
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