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Abstract 

We present a computational model of false recall phenomena. 
The model is based on an integrated architecture including 
modules that have been successful at accounting for other 
types of memory tasks. Words presented in a list are 
represented by semantic vectors from a co-occurrence model, 
and are encoded into a composite store. At test, the model 
generates a list of candidate words from the lexicon and 
decides which of these words to recall using a recognition 
process. We show that the model is able to account for a wide 
range of effects in false recall, including levels of false recall 
in DRM studies, item-level effects, number of associates, and 
categorical vs. associative list structure.  

Keywords: False recall; co-occurrence representations; 
memory models; free recall; generate-recognition models 

Introduction 

The Deese/Roediger-McDermott (DRM) paradigm (Deese, 

1959; Roediger & McDermott, 1995) has provided 

fundamental evidence about how humans can remember 

events that were not stored. In this paradigm, a subject is 

typically given a list of items to encode. The list contains 

clusters of items related to a critical lure that is not 

presented on the list; during subsequent recognition or 

recall, the critical lure is remembered at similar levels as the 

encoded items. For example, given pillow, snore, bed, tired, 

etc. to encode, subjects are likely to falsely recall or 

recognize sleep. Exactly what type of information and 

overlap is necessary between the targets and the critical lure 

still remains the topic of considerable debate. The DRM 

paradigm has received much recent attention as a task to 

understand false memory in applied fields, such as 

eyewitness testimony.   

From a cognitive modeling perspective, the DRM 

paradigm is particularly challenging because a full 

understanding of the illusion requires an account of both the 

structural organization of semantic memory and the process 

of memory retrieval. As Estes (1975) originally noted at the 

outset of cognitive modeling, one cannot study structure or 

function independently; observed human behavior is an 

interaction of the two, and to fully understand a cognitive 

operation, we need a model that explains both structure and 

function, and how the two interact to produce behavior.  

Accounts of false recall have tended to focus on general 

verbal conceptual frameworks. Recently, the first 

computational model of false recall was presented (the 

fSAM model of Kimball, Smith, & Kahana, 2007). While 

the fSAM model is an excellent step towards a formal 

framework for understanding false recall, the model focuses 

on an account of process rather than structure. The model 

represents the associative connections between words in 

memory by using association norms, or by hand-fitting 

representations. While the process of the fSAM model may 

be a correct one, an explanation of a semantic behavior such 

as false recall also requires an account of the representation 

that the process operates upon. We believe that integrating 

models that create a realistic structural representation with 

such process models can yield great benefits. If we do not 

have the correct account of structure when we build the 

process model, we may have to posit a more complex 

processing mechanism than humans actually use in order to 

produce the complex behavior seen in humans. In reality, 

much of the requisite complexity for a behavior may be 

coded in the structure of the representation, and a much 

simpler processing mechanism will suffice to produce the 

behavior (cf. Jones & Mewhort, 2007).    

A promising class of models that can be used to explain 

the structure of semantic memory are co-occurrence 

learning models. Examples include Latent Semantic 

Analysis (LSA; Landauer & Dumais, 1997), the Topics 

model (Griffths, Steyvers, & Tenenbaum, 2007), and 

BEAGLE (Jones & Mewhort, 2007). These models build 

semantic representations for words by observing co-

occurrence statistics in a large text base. They have seen 

considerable success at accounting for a variety of semantic 

behaviors directly from their representations, such as 

synonymy test performance, semantic similarity ratings, 

association norms, and identification times (Johns & Jones, 

2008). Due to their success, it seems natural to use co-

occurrence representations as structural representations in a 

process model of false recall.  

However, co-occurrence models only provide an account 

of the structure of memory. To produce sophisticated 

behavior as in false recall, we require a suitable processing 

model to interface with this structure. In this paper, we 

present an account of the process of false recall that operates 

on a realistic semantic representation learned by a co-

occurrence model. We build semantic representations for 

words using the recent Semantic Distinctiveness Memory 

(SDM) model (Johns & Jones, 2008). Words presented on a 

DRM list are retrieved from the SDM mental lexicon and 

are stored in a composite memory store. At test, the model 

retrieves a list of candidate words from the lexicon that are 

similar enough to the composite store, and this candidate list 

is then used by a recognition module which decides whether 

or not to recall the word. Our account is an integrated 
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architecture fusing together models of semantic 

representation, recognition, and memory search that have 

proven successful at accounting for other types of memory 

data. It is the integration of these components that produces 

our free recall behavior. The integrated architecture of these 

models is displayed in Figure 1. By integrating different 

models it is possible to explain more data than any single 

model can explain by itself. The different aspects of the 

false recall model will now be described in turn. 

 

 
Figure 1. The architecture of the full memory system. 

 

False Recall through Search and Recognition  

Our false-recall model is based on classic generate-

recognition models (e.g. Kintsch, 1970), in which items are 

internally generated and are then tested with a recognition 

check. These simple models will be extended with a 

mechanism that searches through a fully quantified mental 

lexicon built by a co-occurrence learning model. Once a 

search set is created, these words are then tested with a 

recognition model that has been shown to be susceptible to 

false recognition. Hence, there are four different modules of 

the model that we will describe: 1) the lexical 

representations, 2) the encoding process, 3) the search 

process, and 4) the recognition process.  

 

1. Lexical Representations from SDM 

To simulate the contents of semantic memory, we use 

representations constructed by the SDM model (Johns & 

Jones, 2008), a recent co-occurrence learning model. The 

SDM model produces semantic representations similar to 

those created by other models such as LSA, but it also 

simulates the effect of semantic distinctiveness on a word‟s 

strength in memory. We have demonstrated, using both a 

corpus analysis (Johns & Jones, 2008) and an artificial 

language learning experiment (Recchia, Johns, & Jones, 

2008), that words that occur in more semantically distinct 

contexts are more strongly represented within memory. 

Johns & Jones (2008) showed that this SDM model 

produces better fits to both lexical decision and naming 

times, and produces superior semantic organization 

compared to other models. In addition, the model can 

account for semantic isolation effects, semantic similarity 

ratings, and word association norms. 

As in other co-occurrence learning models, SDM builds a 

term-by-document matrix from a text corpus. The 

modification that the SDM model makes, in comparison to 

other co-occurrence models, is the type of information 

added into the word-by-document matrix: instead of raw 

frequency, it uses a semantic distinctiveness (SD) value 

representing how distinct the current context is compared 

with the previous contexts that the word has occurred in. 

The first step in computing this SD value is to create a 

„context‟ or „document‟ vector, which we call a composite 

context vector (CCV). This vector represents the meaning of 

the current context. For each word that occurs in a document 

(W1,...,WN), the word‟s vector is added into the composite 

vector.  Formally, this is: 

 (1) 

where N is the set of words in the document, and Ti is the 

memory trace corresponding to word i. The next step is to 

compute a similarity value (given by a vector cosine) 

between each word that occurs in the context and the CCV. 

This similarity value is then transferred through an 

exponential probability density function to give an SD 

value: 

 (2) 

where λ is a fixed parameter with a small positive value; as 

λ is increased the difference in the value of high vs. low 

similarity contexts is accentuated. This SD metric is the 

value added into the memory slot for that word and context. 

A context with a high SD value means that it is more 

distinct compared with the other contexts that a word has 

appeared in. This practice gives greater salience to more 

unique contexts, in terms of the word‟s magnitude, than 

redundant contexts. 

These SDM representations will be used as the lexical 

structure that drives recall. SDM representations are sparse 

vectors, in which non-zero values contain a number between 

0 and 1 that represents how important that particular context 

was to forming the semantic representation for that word. 

Even though the typical practice is to reduce the 

dimensionality of these vectors using some type of vector 

reduction technique, as is done in LSA (Landauer & 

Dumais, 1997) and the Topics model (Griffiths, et al., 

2007), we use the raw episodic traces. In a test of the raw 

vectors against LSA, we find that the model attains a better 

fit to semantic similarity ratings and backward association 

strength, and the model only does slightly worse on forward 

association strength. In the following simulations, the SDM 

lexicon was built by training on the TASA corpus, and the 

vectors will have a resulting dimensionality of 36,700. 

 

2. Encoding Process 

We use a single composite vector to represent a study list. 

The representations for each word seen in a study list are 

retrieved from the SDM mental lexicon, and are summed 

into a composite vector, which represents of the “gist” of all 

words on the list. Word vectors are first normalized so that 

each word adds approximately the same amount of 
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information, and each is weighted by a uniform random 

number between 0 and 1 prior to addition to simulate 

encoding failure.  

The use of a composite vector is one of the reasons that 

this model will be able to account for a variety of false 

memory results. It is based on the assumption that humans 

encode the meaning of items in the context of the other 

items encoded. From this perspective, the task of recall may 

involve a process that determines if a particular word‟s 

semantic representation is coherent with the gist 

representation that was seen in the study list. This approach 

has some similarities with the claims of Fuzzy Trace Theory 

(FTT; Brainerd & Reyna, 2002), which proposes that 

(among other things) memory stores „gist‟ traces of events, 

and these are traces that capture the meaning of an episode, 

without specific perceptual features. In a similar way, our 

model encodes a composite vector of all the words that 

occur in a specific study list, and this vector represents the 

gist of the study list.  

 

3. Search Process 

To internally generate words to test with recognition, a 

searching mechanism within the mental lexicon is 

employed. The SDM lexicon contains approximately 70,000 

words. Hence, the searching process is a difficult one: it 

requires extraction of the words that occurred on the list 

(and are encoded within the composite vector), whilst 

ignoring all other words. Due to the immensity of this 

searching task, the word representation must be of sufficient 

resolution, and the SDM model contains this necessary 

structure. 

Firstly, we define the similarity between a word in the 

lexicon and the study list‟s composite trace as the cosine 

between their respective vectors. This value is then 

converted to one minus the magnitude of the word under 

consideration divided by the maximum magnitude in the 

lexicon (approximately 1000). Formally, this is 



Sim  cos(word, probe)* 1
len(word)

max




















, 

 

(3) 

where len returns the magnitude of the word in memory. 

This similarity value is then used to drive the searching 

process. This process is simply based on classic signal 

detection: If the similarity between a word in the lexicon 

and the composite is greater than a criterion, then the word 

is added into the search set. This criterion is fixed at 0.1 

across all our simulations. The criterion seems intuitively 

low because the SDM vectors are sparse vectors, hence, the 

cosines that are taken with this model tend to be low. 

 

4. Using RSA for the Recognition Process  

Once the search set is compiled, we need a decision 

mechanism to determine if the retrieved words actually 

occurred. This is necessary because the model does not store 

any item-level information, so it is not possible to conduct 

item-to-item comparisons. Instead, a process is necessary to 

determine if the retrieved word‟s semantic representation is 

coherent with the study list‟s representation.  

In Johns & Jones (2009) we describe a recognition model 

that is designed to do exactly this. This model also uses the 

semantic representation that the SDM model creates and 

encodes a study list in the same manner as described above. 

There are two main aspects to this recognition model, 

amplification and decision. 

 

a) Amplification The recognition model is based on an 

analogy to amplification. For each item in the search set, the 

recognition attempts to amplify the word‟s representation in 

the composite memory representation. This is accomplished 

in two ways - by adding probe information into the 

composite and by removing contradictory information. How 

efficiently a candidate word‟s semantic information is 

amplified within the composite may be viewed as 

confirmatory information (signal), and how much 

mismatching information is amplified (noise) may be 

viewed as contradictory information. Contradictory 

information is taken out by simply multiplying the memory 

vector by a uniform random number between 0 and 1 at 

each location where the probe word contains no information 

(i.e. where the probe vector is 0). This process causes the 

probe word‟s representation to increase in the memory store. 

This process is intimately tied to the decision process 

described below because how efficiently the word is 

amplified within memory determines the decision that is 

made.  

 

b) Decision Two different types of information are used by 

the RSA model to decide whether the candidate word was 

encoded or not: 1) similarity information and 2) 

contradictory information. Similarity information is simply 

assessed with a cosine between the probe vector and the 

composite vector. If this cosine exceeds a certain criterion 

(set at 0.991 in the following simulations) then an „old‟ 

decision is made. 

Contradictory information is the amount of information 

the model has that the word did not occur in the study list. 

This information is used to make „new‟ decisions, and is 

done by taking the absolute difference between the defining 

portions of the probe and the corresponding locations within 

the memory vector, and dividing this summation by the 

magnitude of the probe. The resulting value is between 0 

and 1, where it will be 0 if all of the probe information is 

contained in memory, and it will be 1 if none of the probe 

information is contained within memory. Because 

contradictory information decreases across iterations, this 

value is a running count. If this count exceeds a criterion 

(set at 3.9 in the following simulations), then a „new‟ 

decision is made. A detailed formal treatment of both the 

amplification and decision process can be found in Johns & 

Jones (2009).  
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Discussion 

This model is based off of classic generate-to-recognition 

models (e.g. Kintsch, 1970) and utilizes a mental lexicon 

built by a co-occurrence learning model. At study, the 

presented list is encoded into a composite memory vector. A 

searching process then utilizes this composite vector to 

search through the mental lexicon and pull out the most 

similar words to the composite, in order to create a search 

set. Once this search set has been created, the words in this 

set are given to a recognition model, which decides whether 

or not to recall a word.  

The parameter space for this processing model is very 

simple – there are only three fixed parameters. These 

parameters are not manipulated across the different 

simulations, so there is very little complexity actually built 

into the processing model. Instead the emphasis in this 

model is based on the contents of memory for different 

experiments, and not processing differences across tasks.  

 

Simulations 

The methodology that we use in simulating false recall 

results is very simple: we take the words used in a specific 

experiment, retrieve the vector representations from the 

SDM model, encode the words in a study list to a composite 

representation, and feed this composite to the search and 

recognition processes.  

 

Simulation #1: Levels of False Recall 

Different levels of false recall are observed in different 

DRM lists. Here we simulate three different sets of DRM 

lists: 1) the DRM lists from Roediger & McDermott‟s 

(1995) classic study, 2) the extended DRM list set from 

Stadler, Roediger, & McDermott (1999), and 3) the more 

variable lists from Gallo & Roediger (2002). The levels of 

veridical recall were also tested to ensure that the model is 

attaining true recall levels as well as false recall levels. 

 

Method The DRM lists for the above described studies 

were attained from the specified papers. One list (that for 

man) was excluded because it was in the stop list that the 

SDM model was trained with. For a single trial, four DRM 

lists were randomly selected and added into the composite. 

Then the proportion of studied items recalled was recorded, 

as well as the number of critical lures falsely recalled on 

each trial. In total, 250 trials were run for each set of DRM 

lists. This limited number of trials was conducted because of 

the large amount of computation that this model requires. 

 

Results The levels of false and veridical recall across the 

different DRM lists are displayed in Figure 2. This figure 

shows that the model attains a very good approximation to 

the levels of recall across the different list sets. Also, the 

level of non-critical word intrusions across the different list 

sets was also recorded. For the lists from Roediger & 

McDermott (1995) 2.2 non-critical words intruded on 

average. In the Stadler, et al. (1999) lists, 1.8 words 

intruded, and in the Gallo & Roediger (2002) 3.5 words 

intruded. These predictions are slightly high compared to 

the empirical studies, but considering the massive search 

task that the model must undertake (searching through 

70,000 words), the pattern is nonetheless impressive. 

However, this comparison only provides qualitative 

evidence that the model is attaining false recall levels 

equivalent to those observed in experimental data. As 

Stadler, et al. (1999) and Gallo & Roediger (2002) have 

shown, there is considerable variability in the amount of 

false recall across lists within an experiment. Because our 

model possesses individual representations for each word, it 

is possible to measure the different levels of false recall that 

are seen for particular critical words in the model and 

compare these quantitatively with empirical results.  

 

 

Figure 2. The simulated levels of veridical and false recall 

and the corresponding empirical results. 

 

Simulation #2: Item-Level Analysis 

Stadler, et al. (1999) and Gallo & Roediger (2002) have 

both published the levels of false recall observed with 

different DRM lists. As both of these studies show, there is 

considerable variability in the levels of false recall elicited 

by different DRM lists. To test the model‟s quantitative 

predictions, we correlated the levels of false recall for the 

model and data using the same words from each experiment.  

 

Method 54 lists from Stadler, et al. (1999) and Gallo & 

Roediger (2002) were obtained from these studies. Again, 

four DRM lists were added into a single composite vector 

and the levels of false recall for the different critical words 

were attained. In total, 250 trials were simulated for both the 

lists from the Stadler, et al. and the Gallo & Roediger study. 

 

Results Across the 55 lists (with repeats removed), a 

significant correlation of r = 0.496, p < 0.001 was obtained 

between the model‟s predictions and the behavioral data. 

Hence, it appears that the model is producing relative levels 

of false recall across different critical items that shows 

strong correspondence to the false recall levels in humans.  
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If the five lists that the model does worst on (king, rough, 

needle, smell, and health) are removed, then the correlation 

increases to an r = 0.675, p < 0.001. There is no principled 

reason to remove these items, but it does show that for the 

majority of lists the model is giving a good approximation. 

However, this simulation does not rule out the possibility 

that these critical words are being recalled not due to 

semantic similarity, but to some other factor in their 

representation (e.g. frequency). To further demonstrate that 

the amount of semantic information about a specific word 

contained in memory is driving false recall, we conducted a 

simulation manipulating the number of associates to a 

critical word.   

 

 
 

Figure 3. Simulation of Robinson & Roediger (1997). 

 

Simulation #3: Effect of Number of Associates 

Robinson and Roediger (1997) have demonstrated that as 

the number of associates to a critical word contained within 

a study list is increased, the probability of falsely recalling 

the critical word increases substantially. Their result 

strongly suggests that a causal factor underlying false recall 

is the amount of semantic information about a critical word 

that is contained in memory. The same pattern should be 

predicted by our model: as the number of associates to a 

word is increased, the similarity of the probe to the 

composite will also increase. This causes the critical lure to 

have a higher probability of being included in the search set 

and also to be accepted by the recognition model.  

 

Method We used the same lists as did Robinson and 

Roediger. (1997). On each repetition, five different DRM 

lists were selected and 3, 6, 9, 12, or 15 items in the list 

were randomly selected and added into the study list. 

Probability of the model recalling a critical word was 

recorded. 

 

Results The results of this simulation are displayed in 

Figure 3. This figure shows convincingly that the amount of 

semantic information contained within the memory vector 

about a particular word is driving the levels of false recall. 

As the number of associates to a critical word is increased, 

the probability of the model falsely recalling the critical 

word increases as well. In Johns & Jones (2009) we show 

that the recognition component of our model (RSA) is able 

to simulate the results of Robinson & Roediger (1997) when 

this same experimental setup is tested through a recognition 

experiment, rather than a recall test. Hence, there are two 

reasons the model is able to account for this result: the 

search set is more likely to include the critical word as the 

number of associates to a critical word is increased, and the 

recognition model is more likely to accept it.  

 

Simulation #4: Categorical vs. Associative Recall  

Park, Shobe, & Kihlstrom (2005) examined the levels of 

false recall that are seen with critical lures for associative 

lists and categorical lists. Specifically, the categorical study 

lists were composed of subordinate (vertical) category 

instances, while the association lists contain horizontal free 

associates (the typical DRM lists). Park, et al. (2005) found 

significantly lower levels of false recall for the category 

labels than for the DRM critical words. 

 

Method The category labels were taken from Park, et al. 

(2005). The corresponding category lists were attained from 

the Battigue & Montague (1969) norms and the DRM lists 

were the six used in the Park, et al. study. Study lists were 

created by adding four lists from both of these categories. 

The probability of accepting the critical lure for the DRM 

lists and the category lists was recorded. In addition, the 

probability of accepting the studied items was also recorded. 

 

 

Results The results of this simulation are displayed in Table 

1. The levels of false recall to DRM lists and category lists 

for the model are very similar to those found by Park, et al. 

(2005). That is, the level of false recall to the DRM list is 

much higher than that for category labels, mirroring what 

was found in the empirical study using the same materials.  

 

Simulation #5: Relationship between False 

Recognition and False Recall 

Both Stadler, et al. (1999) and Gallo & Roediger (2002) 

have reported a significant correlation between levels of 

false recognition and levels of false recall. Stadler, et al. 

report r = 0 .77, p < 0.001 across lists, while Gallo & 

Roediger (2002) report r = 0.78, p < 0.001 between recall 

and recognition across their lists. These correlations are 

likely artificially inflated because in these studies 

recognition occurred after a recall period, but it does show 

that there is a relationship between levels of false recall and 

Table 1. Simulation of Park, et al. (2005) 

 

 Category Lists DRM Lists 

 Old Critical Old Critical 

Data 0.79 0.0 0.74 0.33 

Model 0.59 0.0 0.675 0.23 
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recognition. Due to the fact that in our recall model a 

recognition component is used to make a decision about 

whether a specific word occurred or not, we expect the 

model to attain a similar relationship between the predicted 

levels of false recall and false recognition. 

 

Method Levels of false recall were simulated for the lists 

contained in Stadler, et al. (1999) and Gallo & Roediger 

(2002). Levels of false recognition were computed with the 

RSA model, described in Johns & Jones (2009), for these 

same lists. 250 trials were done for both models. 

 

Results For the lists from Stadler, et al. (1999) a correlation 

of R = 0.578, p < 0.001 was obtained, and for the lists from 

Gallo & Roediger (2002) a correlation of r = 0.574, p < 

0.001 was found between the levels of false recognition and 

false recall. These correlations are smaller than those 

reported in the behavioral results because, as described 

above, recall preceded recognition in those studies. This 

relationship is not surprising considering that the RSA 

recognition model plays an intricate role in our recall model. 

However, it does demonstrate that the searching mechanism 

employed by the recall model plays a key role in the levels 

of false recall. This simulation shows that both the searching 

and the recognition processes contained in the recall model 

are creating the level of false recall that the model attains.  

 

Conclusion 

This model demonstrates the power of using cognitively 

plausible representations of words. By incorporating 

semantic representations based on a co-occurrence learning 

model, we require only a very simple processing model to 

explain a wide range of false recall data. In addition, the 

model is more constrained than models using hand-coded 

semantic representations because it provides an account of 

both memory structure and process, and how the two 

interact to produce false recall.  

Further, this approach not only allows us to make 

quantitative predictions about levels of false recall expected 

in DRM lists, but it allows for the integration of models that 

are used to explain different aspects of memory. Integrated 

together with the SDM model (Johns & Jones, 2008) and 

the RSA model (Johns & Jones, 2009) these models explain 

a significant number of effects across many different 

paradigms. This integration also allows for a greater 

simplicity across all of the models, as well as the possibility 

to be combined with other models, such as the TCM 

(Sederberg, Howard, & Kahana, 2008). Across all three 

models there are a total of four parameters, which is less 

than many models designed to explain a single paradigm. 

There are obviously many results that these models cannot 

explain, but due to the simplicity of these different models it 

is an appealing architecture to investigate with other 

memory phenomena. 
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