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Abstract

Modeling how intuitive physics concepts are learned from
experience is an important challenge for cognitive science.
We describe a simulation that can learn intuitive causal
models from a corpus of multimodal stimuli, consisting of
sketches and text. The simulation uses analogical
generalization and statistical tests over qualitative
representations it constructs from the stimuli to learn abstract
models. We show that the explanations the simulation
provides for a new situation are consistent with explanations
given by naive students.
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Introduction

Many people have intuitive models of physical domains that
are at odds with scientific models (Minstrell, 1982;
McCloskey, 1983; diSessa, 1993; Brown, 1994). While
productive for reasoning about everyday physical
phenomena, these naive models cause patterns of
misconceptions. These misconceptions may result from
improperly generalizing or contextualizing experience
(Smith, diSessa, & Roschelle, 1994) or from incorporating
instruction into a flawed intuitive framework (Vosniadou,
1994). Understanding how such intuitive models come
about is an important problem for understanding how people
learn physical domains (Forbus & Gentner, 1986).

We believe it is important for computational models of
domain learning and conceptual change (e.g. Ram, 1993;
Esposito et al., 2000) to encompass the learning of the initial
intuitive concepts. This paper describes a simulation of
learning intuitive physics models from experience.
Experiences are provided as combinations of sketches and
natural language, which are automatically processed to
produce symbolic representations for learning. The system
identifies and encodes instances of the concepts to be
learned and constructs qualitative representations of
behavior across time. Analogical generalization is used
with a statistical criterion to induce abstract models of
typical patterns of behavior, which constitutes our
representation of intuitive models. These models can be
used to make predictions and perform simple counterfactual
reasoning. We compare its explanations to those of human
students on a simple reasoning task (Brown 1994).

We next briefly summarize the relevant aspects of
qualitative process theory and structure-mapping theory
used in the simulation. Then we describe how our stimuli
are represented and encoded, motivated by results and ideas
from the cognitive science literature (diSessa, 1993; Talmy,
1988; Zacks, Tversky, & lyer, 2001). The learning process
itself is described next, followed by how the learned models
are used in reasoning. We show that the simulation’s
explanations of a situation where a book is at rest on a table
are compatible with student explanations (Brown, 1994).
We close with other related work and future work.

Background

People’s intuitive physical knowledge appears to rely
heavily on qualitative representations (Forbus & Gentner,
1986; Baillargeon, 1998). Consequently, we use qualitative
process theory (Forbus, 1984) as part of our model. In QP
theory, physical processes are the mechanism of causality
for changes in dynamic systems. However, the learning we
are describing here is what provides the foundation for
ultimately learning physical processes; in the framework of
(Forbus & Gentner, 1986), we are modeling the construction
of protohistories from experience, and building on those a
causal corpus consisting of causal relationships between
those typical patterns of behavior. To model these patterns
of behavior, we use the concept of encapsulated history
(EH) from QP theory.

An encapsulated history represents a category of
abstracted behavior, over some span of time. It can include
multiple qualitative states and events. Encapsulated
histories are used when a learner does not yet understand
how to reduce a behavior to physical processes.
Encapsulated histories are a type of schema, and
consequently have variables. The participants are the
entities that an EH is instantiated over. The conditions are
statements which must be true for an instance of the EH to
be active. When an instance of an EH is active, the
statements in its consequences are assumed to be true.
Encapsulated histories are a form of explanatory schema:
When instantiated, they provide an explanation for a
behavior via recognizing it as an instance of a typical
pattern, and furthermore can provide causal explanations, if
there is causal information in the consequences.
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Since EHs can include multiple qualitative states, they
can be used for learning causal relationships between
behaviors and properties of the world. In naive mechanics,
for example, the models of movement, pushing, and
blocking learned by the simulation are represented by
encapsulated histories. Figure 1 shows an EH learned by
the simulation. This can be read as: P1 pushes P2 while P1
and P2 touch; the direction from the pusher P1 to the
pushed P2 matches the direction of the push; and pushed P2
consequently moves (M1) in the direction of the push.
When given a novel test scenario, the EHs learned by the
system are checked to see if there are entities that match the
participants. If so, instances of those EHs are created. Each
EH instance is active only if the statements in its conditions
hold in the scenario. If the consequences fail to hold, that is
a prediction failure for the EH.

define-encapsulated-history PushO05

Participants:

Entity(?P1l), Entity(?P2), PushingAnObject (?P3)
Direction(?dirl), Direction(?dir2)
Conditions:

providerOfMotiveForce (?P3, ?Pl), objectActedOn (?P3,
?P2), dir-Pointing(?P3, ?dirl), touches(?Pl, ?2P2),
dirBetween (?P1, ?P2, ?2dirl), dirBetween (?P2, ?P1,
?2dir2)
Consequences:
causes-SitProp (Push05,
(exists ?M1
(and MovementEvent (?M1),
objectMoving (?M1, ?P2),
dir-Pointing (?M1, ?dirl)))

Figure 1: An encapsulated history relating pushing and
movement.

Our hypothesis is that people wuse analogical
generalization to construct encapsulated histories. To model
this process, we use SEQL (Keuhne et al., 2000). SEQL is
grounded in structure-mapping theory (Gentner, 1983), and
uses the Structure-Mapping Engine, SME (Falkenhainer et
al 1989) as a module. Given two representations, a base and
a target, SME computes a set of mappings that describe how
they can be aligned (i.e. correspondences), candidate
inferences that might be projected from one description to
the other, and a structural evaluation score that provides a
numerical similarity score. SEQL uses SME as follows.
SEQL maintains a list of exemplars and generalizations.
Given a new exemplar, it is first compared against each
generalization.  If the score is over the assimilation
threshold, they are combined to update the generalization.
Otherwise, the new exemplar is compared with the
unassimilated exemplars.  Again, if the score is high
enough, the two exemplars are combined to form a new
generalization. Otherwise, the exemplar is added to the list
of unassimilated exemplars. The combination process
maintains a probability for each statement in a
generalization, based on how frequently it occurred in the
exemplars generalized within (Halstead & Forbus, 2005).
These probabilities are used in our simulation for doing
statistical tests.
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Figure 2: A sketched behavior

Multimodal Stimuli

To reduce tailorability, we provide experiences to the
simulation in the form of sketches accompanied by natural
language text. This serves as an approximation to what
learners might perceive and hear in the world. The sketches
are created in CogSketch® (Forbus et al., 2008), an open-
domain sketch understanding system. In CogSketch, users
draw and label glyphs to link the content of the sketches to
concepts in CogSketch’s knowledge base’. CogSketch
automatically computes qualitative spatial relations between
the glyphs such as topological relations, relative size, and
positional relationships (e.g., above). Behaviors are
segmented according to qualitative differences in behavior,
such as changes in contact and actions of agents. This is
common practice in qualitative reasoning research, and
seems psychologically plausible (Zacks, Tversky, and lyer,
2001). Each distinct state is drawn as a separate sketch.
The sequential relationships between them are drawn as
arrows on the metalayer, where other sub-sketches are
treated as glyphs, as shown in Figure 2. Figure 3 shows a
close-up of one of the sketched states. The child, truck, and
car are glyphs in the sketch. The two right-pointing arrows
are pushing annotations.
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Figure 3: Example state drawn in CogSketch.

Our encoding of the physical phenomena of pushing,
movement, and blocking as separate concepts is motivated
by two lines of evidence. diSessa (1993) notes that people
are unlikely to confuse successful resistance (i.e. a wall
blocking a person’s push) from nonsuccess (i.e. a ball
moving due to tugging a string) in recalling events, and that
these phenomena are encoded separately. Talmy (1988)
attributes this separation of success and nonsuccess

! CogSketch is available online at
http://spatiallearning.org/projects/cogsketch_index.html

% CogSketch uses a combination of knowledge extracted from
OpenCyc (www.opencyc.org) and our own extensions for
qualitative, analogical, and spatial reasoning.
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encoding to varying language schemata between the two
conditions.

For information not easily communicated via sketching,
we use simplified English, which is converted to predicate
calculus via a natural language understanding system
(Tomai & Forbus, 2009). Here is one of the sentences from
our example: “The child child-13 is playing with the truck
truck-13.” The special names child-13 and truck-13 are
the internal tokens used in the sketch for the child and the
truck respectively, so that linguistically expressed
information is linked with information expressed via the
sketch. This sentence leads to these assertions being added

to the exemplar:
(isa truck-13 Truck)
(isa playl733 RecreationalActivity)
(performedBy playl733 child-13)
(with-UnderspecifiedAgent playl733 truck-13)

If the NLU system finds an ambiguity it cannot handle, it
displays alternate interpretations for the experimenter to
choose. But again, the choices are created by the NLU
system: No hand-coded predicate calculus statements are
included in the stimuli.

To be sure, this method of simulation input has
limitations: Sketches are less visually rich than images, and
they do not provide opportunities for the learner to
experiment.  Nevertheless, we believe that this is a
significant advance over the hand-coded stimuli typically
used by other systems, given the reduction in tailorability.
CogSketch is being developed in part as a model of human
visual perception, so there is independent support for many
of its representational choices. Sketching and simplified
English are natural human communication methods, so
preparation of stimuli is simplified as well.

Learning

The simulation is provided with a set of target phenomena
that it is trying to learn, here pushing, movement, and
blocking. We assume that for a truly novice learner, words
used in contexts of behaviors that they do not understand are
clues that there is something worth modeling.

Given a new stimulus, a set of exemplars is produced, one
for each occurrence of a target phenomenon. Since an
instance of a particular phenomenon may continue across
state boundaries, these occurrences can span multiple states.
Temporal relationships between these occurrences are
derived to support learning of preconditions and
consequences. For example, consider a series of states S;-
Ss, where a man is pushing a crate in S;-S, and not in Sz,
and the crate moves in S,-S; but not in S;. The motion
would have a startsburing relationship with the
pushing. Each stimulus observed by the simulation is
automatically temporally encoded into exemplars using this
strategy.

Generalizing behaviors

For each target phenomenon, the simulation maintains a
separate copy of SEQL, a generalization context (Friedman
& Forbus, 2008). A generalization context has an entry

pattern that is used to determine when an exemplar is

relevant. For example, the entry pattern for pushing is (and
(isa ?x PushingAnObject) (providerOfMotiveForce ?x

?y) (objectActedon ?2x 2z)). Figure 4 shows the
generalization contexts and their contents after the learning
experiment described below. Multiple generalizations exist
in Pushing and Moving contexts because certain exemplars
are not structurally similar enough to share a generalization.
Consequently, each generalization within a context
represents a different behavior of the same concept. Our
simulation currently operates in batch mode, only
constructing models after all stimuli have been processed.

Pushing
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o 000 [
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Figure 4: Generalization contexts after learning

Constructing intuitive models

The simulation creates encapsulated histories from
protohistories in two steps: (1) Statistics are used to
determine which generalizations are worth modeling with
encapsulated histories, and (2) worthwhile generalizations
are parameterized to create encapsulated histories. We
discuss each step in turn.

Filtering generalizations

Not all analogical generalizations lead to useful
encapsulated histories. If the conditions are too broad,
inaccurate predictions will result. The probability
information constructed during generalization provides an
important filter. We assume a probability threshold t (here,
0.9) for correlation. That is, if any target phenomenon p is
in a generalization with probability P(p) > t, then p is
considered a correlated phenomenon within  that
generalization’s context. A generalization is decisive if the
binary entropy H(P(p)) < H(t), for all phenomena p
correlated with its generalization context. Entropy is the
appropriate criterion to use because it measures information
gain (i.e., low entropy implies high gain). All decisive
generalizations are parameterized into encapsulated
histories.

Extracting Causal Models from Generalizations
The system creates one encapsulated history per decisive
generalization. Expressions whose probability is lower than
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the probability threshold t are filtered, thus reducing
contingent phenomena.  Expressions that remain are
analyzed to determine what role they should play in the
encapsulated history. An expression is held to be either (a)
a cause of the state, (b) a consequence of the state, or (c) a
condition that holds during the state, based on analyzing the
temporal relationships involved. If the expression occurs
before the start of the current state and persists until or
throughout the current state, it is a possible cause. If an
expression temporally subsumes or coincides with the state,
it is a possible condition. If it begins during, with, or
immediately after the end of the current state, it is a possible
consequence.

Probabilities and temporal relationships are used to
hypothesize causal relationships. For instance, in one
generalization, movement starts with a pushing event with
P=0.5, and starts after a pushing event with P=0.5. In this
case, movement is not a likely condition for pushing
because it only satisfies the temporal requirement half the
time. Conversely, movement is a likely consequence,
because starting with and starting after are both permissible
temporal relations of consequences.

After the causes, conditions, and consequences are
determined, the simulation defines an encapsulated history
by introducing variables for the entities that appear in the
conditions, existence statements for the entities that only
appear in the consequences, and using the attribute
information in the generalization to construct the
participants information. Figure 1 and 6 illustrate. Notice
that, while the learning process removes most irrelevancies,
in Block00 the entity 2?P1 is included even though it is
not causally relevant. It is there because the examples
involving pushing all involve the pushing agent standing or
sitting on a surface — so to the simulation, blocking must
involve touching something else.

Reasoning with Encapsulated Histories

Given a new scenario, the simulation attempts to make
sense of it by instantiating its encapsulated histories. For
each EH, it finds combinations of entities that satisfy its
Participants and Conditions constraints. When these
constraints are completely satisfied for a set of entities, an
instance of that EH is considered to be active, meaning that
the statements in its Consequences are assumed to hold.
As shown in Figure 1, this can include predicting new
phenomena. When some of these constraints are violated,
or some of the consequences are not satisfied, the EH
instance can be wused for generating counterfactual
explanations, as explained below.

To illustrate, consider a scenario used by Brown (1994)
and others, illustrated in Figure 5. The sketch shows a book
on a table. Gravity pushes down on the book and the table.
The scenario description includes two occurrences of
pushing: gravity pushing the book and gravity pushing the
table. The encapsulated history in Figure 6 can be
instantiated sufficiently to be considered for inference by
the simulation, since the criterion is that all non-event

participants be identifiable in the scenario. Event
participants need not be identified because these can be
instantiated as predictions.

=

{ b

Figure 5: An example from Brown (1994) for testing learned
knowledge

Specifically, activating Block00 to explain gravity
pushing the book requires assuming two additional events:
(1) the book ?P2 pushes some adjacent object ?P3 in the
direction ?dirl of the initial push, and (2) the entity ?P3
blocks the book ?P2. The table alone satisfies the
constraints on ?P3, binding the last of the non-event
participants. This is sufficient grounds for the simulation to
instantiate new pushing and blocking events, binding them
to ?P6 and ?P7, respectively.

define-encapsulated-history BlockO00
Participants:

Entity (?P1), Entity(?P2), Entity(?P3), Entity(?P4),
PushingAnObject (?P5), PushingAnObject (?P6)

Blocking (?P7)

Conditions:

providerOfMotiveForce (?P5, ?P2), objectActedOn (?P5,
?P3), providerOfMotiveForce (?P6, ?P3),
objectActedOn (?P6, ?P4), doneBy(?P7, ?P4),
objectActedOn (?P7, ?P3), dir-Pointing(?P5, 2dirl), dir-
Pointing (?P6, ?dirl), dirBetween (?P2, ?P3, ?2dirl),
dirBetween (?P3, ?P4, ?dirl), dirBetween (?P3, ?P2,
?dir2), dirBetween (?P4, ?P3, ?dir2), touches(?P2, ?P3)
touches (?P3, ?P4), touches(?P2, ?P1l)

Figure 6: An encapsulated history relating pushing and
blocking phenomena

The simulation has two strategies for answering questions
about a scenario. If the question concerns a phenomenon
that is predicted by the EH instances it has created for the
scenario, it answers based on that information, including
any causal argument provided as part of the EH. If the
guestion concerns some phenomenon that is not predicted, it
assumes that phenomenon occurs and looks at what new
EHs could be instantiated to explain it. The instantiation
failures for those EH instances are provided as the reasons
for the phenomenon not occurring, as shown below.

Experiment

To test whether this model can learn psychologically
plausible encapsulated histories from multimodal stimuli,
we compare explanations it provides for a question from
Brown’s (1994) assessment of student mental models. We
start by summarizing Brown’s results, and then we describe
the conditions used for the simulation and compare its
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results. If the explanations used by the students and the
simulation are compatible on the same reasoning task, then
the simulation has learned psychologically plausible
intuitive models.

Brown’s results

A question about the scenario in Figure 5 was asked of
students: Does the table exert a force against the book?

Brown reported that 33 of 73 students agreed that the
table exerts an upward force on the book, because it must, in
order to counteract the downward force of the book. This is
the scientifically correct answer. However, the 40-student
majority denied that the table exerted this force. Their
reasons fell into five categories:

1. Gravity pushes the book flat, and the book exerts a
force on the table. The table merely supports the
book (19 students)

The table requires energy to push (7 students)
The table is not pushing or pulling (5 students)
The table is just blocking the book (4 students)
The book would move up if the table exerted a
force (4 students)

We query our simulation similarly, to determine whether
it can reproduce some of the reasons that students gave.

abkown

Simulation setup

Our simulation was implemented using the Companions
Cognitive Systems architecture (Forbus et al., 2008). We
used 17 multi-state sketches as stimuli, using examples
motivated by the mental models literature cited earlier. This
set did not include the test scenario. The SEQL assimilation
threshold was set to 0.5 and the encapsulated history
probability threshold was set to 0.9. The temporal encoding
step resulted in 28 pushing exemplars, 16 moving
exemplars, and 6 blocking exemplars. These exemplars
produced ten generalizations across the three generalization
contexts, as illustrated in Figure 4. Six of these
generalizations were decisive, leading to the push—move
model of Figure 1, the push—block model in Figure 6, and
four additional models.

The four additional models learned by the system were
not activated during this test scenario. Three EHs described
movement behaviors caused by pushing, with minor
variations in the conditions. The fourth EH describes
classic “billiard ball” causality, with a push causing motion,
which then causes another push and setting another entity
into motion.

Comparison with human results

Given these EHs, how does the system perform? Upon
receiving the test scenario, the system activates EHs to infer
the additional events of the book pushing down against the
table and the table pushing down against the ground.

For the query, since the simulation does not have the
event of the table pushing the book as a current prediction, it
uses the counterfactual strategy. Only the EH of Figure 1
can provide a possible explanation. Assuming this EH is

active, the simulation gets a new prediction: The book
should move upward as a result of the push. This prediction
contradicts the book’s lack of motion in the scenario.
Consequently, it answers that the table does not push up on
the book, because in that case the book would move
upward, and it does not. This is essentially the same as
answer 5, given by four students.

After the proof by contradiction, the system cites
activated EHs in which the book and table jointly participate
to explain their behavior in the scenario. Consequently, it
uses the EH in Figure 6 to explain that gravity pushes down
on the book, that the book pushes down on the table, and
that the table blocks the book. This is similar to answer 4,
given by four students. This explanation also resembles
answer 1, given by 19 students, though the students cite the
concept of support, which was not among the simulation’s
target phenomena. These results support the hypothesis that
the models learned by the simulation are like those used by
naive students.

Could the system learn models corresponding to the other
answers? If the target phenomena and corpus included the
concept of support and energy, it seems likely to us that it
could, but this is an empirical question. With a different
corpus of examples — perhaps including examples like those
used by Camp & Clement (1994) and the rest of Brown
(1994) — the simulation may be capable of coming to the
correct model. Answer 3 may rest on an interpretation of
events being mutually exclusive, i.e., if the table is blocking,
then it cannot be doing the other actions.  Further
experiments should clarify this.

Related Work

The closest simulations are the COBWEB (Fisher, 1986)
model of conceptual clustering and INTHELEX (Esposito et
al., 2000), which develops and revises prolog-style theories.
COBWEB does unsupervised learning of hierarchical
relationships between concepts, in contrast with our use of
supervised learning (via entry patterns in generalization
contexts) of causal models. COBWEB calculated
probabilities of features, whereas SEQL provides
probabilities of structured relations. INTHELEX uses
refinement operators to model multiple steps in a trajectory
of learned models, whereas we focus only on one transition,
the first. Both COBWEB and INTHELEX used hand-
represented input stimuli, whereas ours is derived by the
simulation from sketches and natural language. Ram (1993)
discusses SINS, a robot navigation system that retrieves
cases, adapts control parameters, and learns new
associations incrementally. While both our system and
SINS develop concepts incrementally from experience, our
system learns models of physical behaviors and causal laws,
and SINS learns associations between environmental
conditions and control parameters.

Lockwood et al. (2005) used CogSketch and SEQL to
model the learning of spatial prepositions, using single
sketches labeled with words, in contrast to the sequence of
sketches labeled with sentences used here.
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Discussion & Future Work

We have described how analogical generalization and
qualitative representations can be used to model the process
of learning initial intuitive models. To reduce tailorability,
the simulation inputs were combinations of sketches and
simplified English. The resulting explanations resemble a
subset of those of given by human students on a scenario.

While we believe that this is a significant first step, there
is much more to be done. First, a broader variety of
phenomena must be tested, to provide more evidence as to
generality. Second, we need to conduct statistical tests to
determine how order-sensitive the simulation is, and how
the quality of models learned varies with the number of
examples provided. By comparing models learned with
different numbers of examples, can we find sequences of
models that correspond to known developmental
trajectories? That will help determine how much of the
development of mental models this simulation can explain.
Finally, we plan to incorporate these ideas in a larger-scale
model of conceptual change, where the quality and content
of its predictions guide future learning.
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