Music and natural image processing share a common feature-integration rule
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Abstract

The world is rich in sensory information, and the challenge
for any neural sensory system is to piece together the diverse
messages from large arrays of feature detectors. In vision and
auditory research, there has been speculation about the rules
governing combination of signals from different neural
channels: e.g. linear (city-block) addition, Euclidian (energy)
summation, or a maximum rule. These are all special cases of
a more general Minkowski summation rule (Cue,™+Cue,™)"™,
where m=1, 2 and infinity respectively. Recently, we reported
that Minkowski summation with exponent /m=2.84 accurately
models combination of visual cues in photographs [To et al.
(2008). Proc Roy Soc B, 275, 2299]. Here, we ask whether
this rule is equally applicable to cue combinations across
different auditory dimensions: such as intensity, pitch, timbre
and content. We found that in suprathreshold discrimination
tasks using musical sequences, a Minkowski summation with
exponent close to 3 (/m=2.95) outperformed city-block,
Euclidian or maximum combination rules in describing cue
integration across feature dimensions. That the same exponent
is found in this music experiment and our previous vision
experiments, suggests the possibility of a universal
“Minkowski summation Law” in sensory feature integration.
We postulate that this particular Minkowski exponent relates
to the degree of correlation in activity between different
sensory neurons when stimulated by natural stimuli, and
could reflect an overall economical and efficient encoding
mechanism underlying perceptual integration of features in
the natural world.
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Introduction

A compound visual or auditory stimulus is easier to detect
than either one of its components (e.g. Robson & Graham,
1981; Green, 1958). Several models have been proposed to
describe the rules governing combination of signals from
different neural channels (Green, 1958; Livingstone &
Hubel, 1987; von der Malsburg, 1995; Treisman, 1998;
Ghose & Maunsell, 1999): e.g. linear (city-block) addition,
Euclidian (energy) summation, or a maximum rule. Now,
Minkowski summation (Eqn.1) is widely used to model how
the detection thresholds of simple and complex visual
stimuli depend on the thresholds for the stimulus

components (e.g. Stromeyer & Klein, 1975; Mostafavi &
Sakrison, 1976; Quick et al, 1978; Robson & Graham, 1981;
Rohaly et al, 1997; Watson & Solomon, 1997; Watson &
Ahumada, 2005; Parraga, Troscianko & Tolhurst, 2005;
Lovell et al, 2006). This might be a special case of a
“universal law” of sensory encoding (Shepard, 1987):-
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where §; is the sensitivity (reciprocal of threshold contrast)
for the compound stimulus, S; is the sensitivity to each
component stimulus, n is the number of components and /m
is the summating Minkowski exponent. It should be noted
that an exponent of unity is simple linear summation (or
‘city-block summation’), an exponent /=2 is the Energy
summation or Euclidian distance (much favored by auditory
scientists), whilst the maximum is given by a high exponent
(e.g. Li, 2002; Zhaoping & May, 2007).

Recently, we extended the applicability of the
Minkowski Summation rule to the perceptual integration of
supratfireshold features in colored photographs of nafural
visual scenes (To, Lovell, Troscianko and Tolhurst, 2008).
In particular, we studied the perception of the difference
between paired images that contain visible and recognizable
differences, and asked how the perception of two composite
differences (e.g. shape and blur) relates to the perception of
single differences (shape or blur separately), see Figure 1.
Subjective rating for the double change in a natural image
stimulus was most accurately modeled by Minkowski
summation of the ratings to the single changes:-

Eqn.1

predicted R3 = (Rl”’ + Rz”’ym

where A7 and RZ are the ratings for each component image
pair, A3 is the rating for the composite stimulus, and
m=2.84, a value similar to those reported in grating
summation experiments (e.g. Graham, 1977; Robson &
Graham, 1981; Watson & Solomon, 1997; Watson &
Ahumada, 2005).

Eqn.2
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Figure 1: Example of colored image pairs used in our
previous vision experiments (To et al., 2008). In this
combination set example, image pairs could differ in blur,
shape, or both blur and shape.

The purpose of the present study is to determine whether
a Minkowski summation rule with exponent /7=3 is equally
applicable to the summation of cues in natural sounds, in
particular musical sequences. An Energy-summation model,
analogous to a Minkowski summation with exponent 2, has
been used to model detection of complex tones (Green,
1958). However, we need to explore whether Minkowski
summation with an exponent /=3 (as in natural vision, To
et al, 2008) might be a closer description of auditory
summation. We asked human subjects to discriminate pairs
of musical sequences, and to give magnitude estimation
ratings for the perceived suprathreshold differences between
pairs of stimuli. In addition, we wished to investigate
whether a single rule can accurately describe integration
across different dimensions: intensity, pitch, timbre and
content.

Our experiment differed from previous studies examining
integration of auditory features (e.g. Green, 1958; Berg &
Green, 1990; Hicks & Buus, 2000) in two ways. First, in
contrast to many discrimination studies, the differences
presented in this experiment were not only substantially
above threshold, but also spanned across a wide range of
categories — intensity, pitch, timbre and content (see
Methods for examples). This allowed us to investigate how
a larger array of cues integrate in more naturalistic stimuli.
Second, unlike typical detection and saliency experiments,
no thresholds or reaction times were recorded: our subjects
were asked to enter magnitude ratings that indicated how
they perceive differences between the sound pairs. The
present experiment shows that, consistent with our previous
findings in vision, a Minkowski summation rule with
exponent /M=2.95 is most successful in modeling the
perceptual feature integration in the processing of musical
sequences.

Method

Presentation and Construction of Stimuli

Musical sequences were presented to subjects using a pair of
Sennheiser HD 280 pro (64 Q) headphones. All sounds were
played on a DELL laptop XPS M1330 — Window Vista — at
level 20 intensity with a sampling rate and bit depth of 44.1
kHz and 16 bit, respectively. The sequences were generated
using a free evaluation copy of Notion Demo (Notion Music
Software, version 1.5.4.0), a piece of music composition
and performance software. Subjects were presented with
160 musical sequence pairs. The sets of stimuli were
generated from 16 parent sequences, each matched with 10
variants that differed in one or two of the following
dimensions: intensity (by changing the dynamics to pp or
ff), timbre (by changing the instrument), pitch (by
transposing the sequence upward or downward by various
chromatic or diatonic intervals) and/or content (by
changing, adding or removing one or more notes). The time
signature was the common (4/4) for all the 2 second
sequences_and the tempo was Vivace — 175 beats
per minute. Each sequence comprised a
single bar (8 eights). The reference sequence was always in
the C major key. Examples of sequences and differences are
shown in Figure 2A.

The experiment were based around combination ses.
Starting from one of 16 single reference stimuli, the subjects
rated the perceived difference between that stimulus and
three others, see Figure 2B. For example, a first pair
(component pair) might differ in one dimension such as
Intensity, the second pair (a second component pair) might
differ in a second dimension such as Pitch (transposition),
and the final pair (the composite) would differ in both
Intensity and Pitch dimensions. All sound pairs contributed
to more than one combination set so that the 160 stimulus
pairs made up 96 combination sets.

Participants

The experiment was performed on 15 subjects — 7 female
and 8 male. Although some had previously participated in
other (visual) rating experiments, they all remained naive to
the purpose of this experiment. Subjects were asked if they
were aware of any hearing difficulties they might suffer.
Prior to the experiment, they were also presented with many
examples of sound stimuli and asked to report any problems
with hearing them.

Procedure

Difference ratings were collected for 160 musical sequence
pairs from each subject, who was initially instructed during
a demonstration session, where they were shown the
different types of differences that could be presented to
them. A training session then followed the demonstration
program. In this phase, subjects were asked to rate 51
musical sound pairs presented in a random order. All
sequences used in the demonstration and training phases
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were different from those to be used in the testing phase
proper. During the demonstration and testing phases,
subjects were repeatedly presented with the same standard
pair whose magnitude difference was defined as ‘20°, see
Figure 2C. They were instructed that their ratings of the
subjective difference between any other test pair should be
based on this standard pair: if they perceived the difference
between the test pairs to be lesser, equal or greater than the
standard pair, their ratings should be less, equal or greater
than 20, respectively. They were instructed to use a ratio
scale so that, if a given sound pair seemed to have a
difference twice as large as that of the reference pair, they
would assign a value twice as large to that sound pair (in
this case, 40). No upper limit was set so that subjects could
rate the differences as highly as they saw fit. Subjects were

A

also told that sometimes sound pairs may be identical and,
in such cases, they should set the rating to zero.

The presentation order of musical pairs was randomized
differently for each subject. Each block started with the
presentation of the standard pair, and this standard was
regularly presented after every 10 trials to remind the
subjects of the standard difference of ‘20’. The musical
sequences lasted 2 seconds each. Because auditory
information is processed serially (time-dependent), to avoid
the task from being one relying too heavily on memory,
subjects were allowed to replay test and standard sequences
as often as they liked, before they entered a numerical
magnitude rating for that stimulus pair on the computer.
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Figure 2: Examples of musical sequences used in the experiment. Panel A shows 4 different sequences (left) changing
along four different dimensions: Intensity, Pitch, Timbre and Content. Sequences in the experiment could change along one
or two of these dimensions. Panel B presents an example of a combination set: the first pair changes in Intensity, the second
changes in Pitch and the third pair changes in both Intensity and Pitch. Panel C shows the specific standard pair used; the
difference between these two sequences was defined as having a magnitude of ‘20°.
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Results

Fifteen subjects were presented with 160 pairs of musical
sequences and were asked to give numerical magnitude
estimates for the perceived difference between the stimuli in
each pair using a standard pair whose magnitude difference
was defined as 20’ (Stevens, 1975; Gescheider, 1997, see
Figure 2). The robustness of these measures of performance
has been assessed in an earlier study [see supplementary
materials in To et al. (2008)]. The purpose of this
experiment was to determine the performance of the
Minkowski Summation with exponent /m=3 model on
auditory feature integration and to examine whether a single
rule can accurately describe integration across different
dimensions.

Sequences could change along one of four dimensions
(Intensity, Pitch, Timbre and Content) so that there were 6
different types of dimensional combinations (16
combination sets of each type). The ratings for sequences
changing along a single dimension spanned different ranges:
Intensity (7.34-24.10, median=17.34), Pitch (19.82-25.18,
median=21.29), Timbre (23.72-36.70, median=28.45) and
Content (17.02-35.57, median=28.09). We compared the
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performance of difterent combination rules — linear
summation, Euclidian summation, the Maximum rule and
Minkowski summation — in predicting the measured rating
(R3) to the composite stimulus in each combination set from
the separate ratings (R7 and R2) to its two component
sound pairs.

As in our previous studies (To et al., 2008), an iterative
search was used to determine the value of the exponent that
minimized the sum of squared deviations between the
predicted value of A3 (Eqn. 2) and the measured value. We
found that a Minkowski summation rule with exponent
m=2.95 generated the most accurate estimations (see panels
A, B, C and D in Figure 3). The correlation coefficients
between predicted and measured ratings ranged between
0.85 and 0.87 in all cases. ANOVA revealed that the
Minkowski summation model was uniformly efficient in
predicting the ratings for all 6 ways of combining any two
of the four different dimensions investigated [Intensity,
Timbre, Pitch and Content; F(5,95)=1.69, P=0.14] and
post hoc Bonferroni analyses found no differences between
squared difference between predicted and measured ratings
among the different types of combinations.
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Figure 3: Predictions of the rating (A3) given to the composite sound pair in each combination set from the individual
ratings (A7 and R2) to the two separate component sound pairs. In panel A, the linear sum of A7 and RZis plotted against
the measured A3, in panel B, the Euclidian sum (Energy Sum) of A7 and RZis plotted against A3, in panel C, the maximum
of R7and RZ2is plotted against A3, in panel D, the Minkowski sum with exponent m=2.95 of A7 and RZis plotted against
R3. For comparison, the results from our previous vision experiments [encompassing 704 combination sets; To et al. (2008)]
are presented in panel E. Lines of equality are shown.
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Discussion

The main finding of this study is that the Minkowski
Summation rule for cue combination with exponent /7=3
can be extended from vision to audition, its accuracy is
consistent for feature integration across different naturally-
occurring stimulus dimensions. We have found that
Minkowski summation with exponent /7= 2.95 outperforms
city-block, Euclidian and maximum combination rules in
describing auditory cue integration across feature
dimensions. A similar exponent (/77=2.84) was previously
reported for visual cue integration in natural scenes (To et
al., 2008). For comparison, we have plotted the results from
our previous vision experiments (encompassing 704 visual
combination sets) in Figure 3E. That the same exponent was
found across different dimensions and modalities, suggests
the possibility of a universal "Minkowski Summation Law"
underlying perceptual integration of features in the natural
world.

A long line of research has demonstrated the applicability
of the Minkowski Summation rule in the integration of
visual information. Hearing experiments have previously
studied feature integration in complex auditory sequences
(e.g. Melara & Marks, 1990), but Euclidian (energy)
summation has been the model of choice to describe
auditory cue combination. Indeed, our results (Figure 2B)
almost support such a summation model (m=2). However,
the results from our music experiment suggest that the
Minkowski Summation with exponent /=3 may just be a
superior model. That the integration of auditory features in
musical sequences follows the same rule as the integration
of visual features in natural scenes supports Shepard’s
theory of a Universal Law for cue combination (Shepard,
1987).

Origin of 3

Shepard (1987) postulated that summation of cues in simple
stimuli might either follow city-block (/m=1) or energy
(m=2) summation models Why should a slightly higher
exponent actually be found. We postulate that the exponent
m=3 relates to the degree of correlation in activity between
different sensory neurons when stimulated by natural
stimuli: city-block (linear) or Euclidian (energy) summation
can be argued to be appropriate if activity is independent,
since each neuron conveys a uniquely important signal. On
the other hand, if responses were highly correlated, the
information given by only one neuron would be sufficient
(the maximum rule). If the responses of sensory neurons or
channels showed small correlations in their responses to
natural stimuli, the most appropriate summating exponent
would be slightly greater than expected if cues were coded
entirely independently. Yen, Baker and Gray (2007) have
recently shown that, when a cat was presented with natural
stimuli (movie clips), the signal correlation of neighboring
V1 neurons was relatively low but it was greater than zero
(r=0.21%0.23 and 0.18+0.20, for neurons recorded using the
same or different electrode respectively). This small degree

of correlation between actual neuronal responses implies
that the “universal” value of the Minkowski summation
exponent should be a little greater than suggested by
Shepard, but still a lot lower than infinity (maximum rule).
Since this degree of correlation is likely to be shaped by the
natural statistics of the world, we suspect that this reflects an
overall economical and efficient encoding mechanism
underlying perceptual integration of features in the natural
world (Field, 1994; Laughlin, de-Ruyter-van-Steveninck &
Anderson, 1998; Nirenberg, Carcieri, Jacobs & Latham,
2001; Barlow, 2001; Lewicki, 2002).

Future directions

The present findings have raised two questions. First, apart
from vision and audition, might the Minkowski Summation
rule with exponent m=3 also apply to feature integration in
other modalities? We are currently examining analogous
feature integration in the sense of touch. Meredith and Stein
(1993) have demonstrated the role of the superior colliculus
in the integration of visual, auditory, somatosensory and
nociceptive information. In addition, Blakemore (2008) has
recently suggested the possibility that normal sensory
integration might rely on feedback to early sensory areas
from polysensory regions of the cortex, in particular the
parietal cortex. These areas are known to be involved in
cross-modal integration, but what about within modality
integration? If these areas also process integration within
individual modalities, then this could explain why feature
integration in the visual and auditory systems follow the
same Minkowski Summation rule. Assuming that perceptual
integration reflects an efficient encoding mechanism shaped
by the statistics of natural stimuli and that polysensory
regions are involved in the integration of information of all
modalities, then feature integration in different modalities,
such as touch, might follow the same rule as in vision and
audition.

Second, having demonstrated the applicability of the same
Minkowski summation rule to visual and auditory stimuli
separately, the next step is to study perceptual integration of
cues across these two modalities. At present, Bayesian
systems are commonly used to model cross-modal
integration (e.g. Ernst & Banks, 2002 and Battaglia, Jacobs
& Aslin, 2003), however the simplicity of the Minkowski
Summation rule could provide an attractive alternative. We
are presently investigating this possibility by performing
suprathreshold discrimination experiments that present
observers with changing auditory and visual stimuli
concurrently.
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