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Abstract

An important aspect of human cognition is the sequential
integration of observations while striving for a consistent
mental representation. Recent research consistently stresses
the importance of fast automatic processes for integrating
information available at a certain point in time. However, it is
not clear, how such processes allow for maintaining a
consistent and up to date mental representation in the light of
new information. We compare variants of two methods of
modeling sequential information integration with parallel
constraint satisfaction models: carrying over results from the
previous integration step or decaying input strength of older
observations. Results of these models for consistent and
inconsistent sets of observations are compared to human data
from a diagnostic reasoning task.

Keywords: information integration, belief updating,
diagnostic  reasoning, memory activation, constraint
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Introduction

A key feature of many everyday reasoning tasks is that
observations are processed sequentially. Whether it is in
diagnostic reasoning, in decision making, or in belief
updating, often information becomes available step by step.
If a large amount of information is given all at once, it might
only be perceived and understood sequentially due to
limited cognitive capacities. Although possible implications
of the sequential nature of tasks (e.g., order effects) have
been discussed (e.g., Hogarth & Einhorn, 1992; Wang,
Johnson, & Zhang, 2006), the underlying cognitive
mechanisms are not fully understood. Recent research
consistently points out the importance of fast automatic
processes for integrating information available at a certain
point in time (e.g. Glockner & Betsch, 2008). However, it is
not clear how such processes allow for maintaining a
consistent mental representation in the light of new
incoming information. In this paper, we explore alternative
implementations of such processes in connectionist
constraint satisfaction models.

Previous research has shown that reasoners hold
knowledge structures that reflect the structure of the task in
the environment (e.g., Anderson, 1983; Gigerenzer,
Hoffrage, & Kleinbdlting, 1991; Thomas, Dougherty,
Sprenger, & Harbison, 2008). For example, a physician
learns, with an increasing number of patients encountered,
which symptoms are associated with which diseases and
how strong these associations are. Given such an adapted
knowledge structure, observations can serve as a cue for the
retrieval of associated knowledge from long-term memory
(e.g., Kintsch, 1998; Thomas et al., 2008; Baumann,
Mehlhorn, & Bocklisch, 2007). To maintain a consistent

representation of the task at hand, this newly activated
information somehow needs to be integrated with previous
observations and previously activated knowledge. How is
this achieved?

Wang et al. (2006) have proposed a connectionist model
of sequential integration based on the idea of explanatory
coherence that, probably most prominently, was introduced
by Thagard (1989, 2000) in the field of scientific discovery.
Thagard implemented explanatory coherence among
interconnected propositions in a connectionist constraint
satisfaction model (ECHO). In ECHO, propositions are
represented by nodes. The nodes are interconnected by
symmetric excitatory and inhibitory links representing the
relations (constraints) between them. Nodes representing
observed information are additionally connected to a special
activation node (special evidence unit = SEU), which
always has an activation value of 1 and is the model’s
“energy source”. Connecting not all, but only these data
nodes to the energy source reflects the idea that empirical
data are weighted more strongly than theoretical hypotheses
held by the reasoner (Thagard, 1989).

The strength of a proposition in the network is indicated
by the numerical activation of its node. Before the network
is integrated, activation of all nodes is set to default values.
Then, activation spreads from the SEU to the data nodes and
then to other connected nodes. The net input each node
receives is calculated as the weighted sum of the activation
of all nodes it is connected to. After calculating the input for
each node, the activation of all nodes is updated
synchronously. These two steps are repeated iteratively,
until activation stops changing substantially. The more
consistent a proposition is with the observed information
and other related propositions, the higher is the activation of
its node when the network settles.

The idea of constraint satisfaction has been widely
applied to areas such as text comprehension (Kintsch,
1998), social impression formation (Thagard & Kunda,
1998), visuo-spatial reasoning (Thagard & Shelley, 1997),
causal reasoning (Hagmeyer & Waldmann, 2002), medical
diagnosis (Arocha & Patel, 1995), and decision making
(Glockner & Betsch, 2008). In all of these different tasks,
reasoners need to find an interpretation that is more coherent
with the available information than possible alternative
interpretations. Such coherent interpretations can be the
meaning of a word that fits best in the current context, the
impression about a person that is most coherent with one’s
previous impression about him/her, or it can be the
diagnosis that best explains the set of a patient’s symptoms.

Applied successfully to model various phenomena in all
the above domains, constraint satisfaction models have been
described as a “computationally efficient approximation to

2469



probabilistic reasoning” (Thagard, 2000, p. 95). However,
Thagard’s ECHO has some major limitations. For our
question most importantly, it only models the parallel
integration of information given at a certain point of time.
To incorporate newly incoming observations in a sequential
task, a new network would have to be constructed.

Wang et al.’s UECHO (uncertainty-aware ECHO; 2006),
shares the basic features of ECHO, but can handle
sequentially incoming observations. This is achieved by two
basic changes. First, the network contains not only the
currently available information as in ECHO, but all possible
observations are included from the beginning. Thus, when
new observations come in, the network does not have to be
restructured. Second, the models differ with regard to which
observations are connected to the special evidence unit
(SEU). While in ECHO, all observation-nodes are
connected to the SEU, in UECHO, only those nodes
representing information observed until the current point of
time are connected to the SEU. Due to these two changes,
when a new piece of information is observed, the model
does not have to be rebuilt, but only a new connection
between that observation and the SEU needs to be added.

For modeling sequential information integration, it is not
only important to incorporate new observations into the
network, but also to consistently integrate this new
information with the previous state of the network. One
could think of two basic approaches for implementing this
preservation of the previous state (shown in the models in
Figure 1). In both models, the upper nodes, E1 and E2,
represent possible explanations of the observed symptoms
S1-S4 (represented by the nodes in the middle row). Solid
lines between the nodes represent coherent relations (e.g.,
E1 explains S1), dashed lines represent incoherent relations
(e.g., E1 and E2 contradict each other). In both models, the
symptoms S3 and S1 have been observed.

Figure 1: Two basic approaches to model sequential data
in a constraint-satisfaction network. Either the previous state
of the model is preserved by retaining the initial activation
of the explanation nodes (left) or previous symptoms keep
influencing the activation in the network by a (decaying)
connection to the SEU (right).

In the left model, the previous state of the network is
preserved by retaining the activation of the explanation
nodes. After the first symptom (S3) is observed, the
activation for the explanation nodes is calculated. This
activation is then used as starting value for the integration of
the new symptom (S1).

On the right, the approach proposed by Wang et al. (2006)
is illustrated. Here, activation is reset to default before each
new run. The preservation of the previous state is obtained
indirectly, by connecting not only the new information, but
also previously observed information to the SEU. In the
model, S3 as well as S1 is connected to the SEU. Therewith,
the older observation can continue influencing the current
activation in the network. To account for sequential
observations, the strength of this influence decays over time.
The most recently observed symptom (S1) gets a strong
connection to the SEU, whereas older observations are
connected to the SEU with a decayed strength (S3). This
strength (data excitation - DE) is a function of a decay rate d
and the time interval since the symptom was observed. By
referring to work on memory retention, Wang et al. (2006)
propose to let DE decay exponentially in the square root of
time.

We will show that the first modeling alternative -
retaining output activation from previous runs - is not
appropriate for modeling the integration of sequential
information, because of the dynamics of spreading
activation. The second alternative is explored in more detail.
The resulting activation for both approaches is tested against
human data.

Experiments

Design and procedure

Human data on memory activation during sequential
symptom integration was obtained in two diagnostic
reasoning experiments (see also Baumann et al., 2007;
Mehlhorn, Baumann, & Bocklisch, 2008). In these
experiments, participants were to diagnose hypothetical
patients after a chemical accident. For each patient, a set of
symptoms was presented sequentially on a computer screen
and the task was to find the chemical that best explained this
set of symptoms. The knowledge necessary to solve this
task was taught to participants in an extensive training
session. The knowledge consisted of nine different
chemicals (named with single letters), grouped into three
categories (see Table 1).

Table 1: Domain knowledge participants had to acquire
before Experiment 2 (original material in German).

Category Chemical Symptoms

cough, short breath, headache

cough, vomiting, headache, itching

cough, eye inflammation, itching

skin irritation, redness, headache

skin irritation, short breath, headache, itching

skin irritation, eye inflammation, itching

diarrhea, vomiting, headache

diarrhea, redness, headache, itching

diarrhea, eye inflammation, itching

Landin
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Each chemical caused three to four symptoms. Symptoms
were ambiguous, as each symptom could be caused by two
to six different chemicals. So, only the combination of
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symptoms allowed for unambiguously identifying the
correct diagnosis.

Two types of trials were used in the experiments;
consistent and inconsistent trials (see Figure 2). In
consistent trials, all symptoms consistently pointed towards
one explanation. Thus, the participants’ initial explanation
was supported by all later symptoms. In inconsistent trials,
the explanation suggested by the first two symptoms was
inconsistent with the later symptoms. Here, participants
needed to revise their initial explanation after observing the
third symptom. In such inconsistent trials, it should be
particularly  difficult to integrate symptoms while
maintaining a consistent mental representation. In
Experiment 1 (Baumann et al., 2007), participants were
presented with a total of 340 consistent trials. In Experiment
2 (Mehlhorn et al., 2008), participants worked through a
total of 384 trials, of which 75% were consistent and 25%
were inconsistent.

/441;7
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Figure 2. Example for a consistent and an inconsistent trial
in Experiment 2. Letters in parentheses represent
explanations consistent to all previous symptoms.

In both experiments, two types of dependent measures
were obtained. First, after all symptoms of a patient were
presented, participants explicitly provided their diagnosis.
Second, a probe reaction task was used as an implicit
measure of the activation of explanations during the
sequential task. This measure is based on the idea of lexical
decision tasks (e.g., Meyer & Schvaneveldt, 1971)
according to which participants should respond faster to a
probe that is higher activated in memory than to a probe of
low activation. Each probe was a single letter that was either
one of the names of the nine chemicals (explanations) or
one of nine other letters. Participants were to decide as fast
as possible whether the probe was a chemical name or not.
To reduce possible influences of the probes on each other,
only one single probe was presented in each trial. Using this
measure, it was possible to monitor the activation of
explanations in the course of the sequential reasoning task
with as little impact on the task itself as possible.

Such an implicit measure that directly tracks the
activation of explanations in memory is especially suited to
evaluate the validity of constraint satisfaction models. The
usual approach to test these models is to compare the
activation calculated in the model to an explicit measure
obtained in human experiments. For example, Wang et al.
(2006) asked their participants for explicit belief ratings
after each new observation. However, explicit belief ratings
have a major drawback. Asking participants during the
course of the task might influence the outcome of the task

itself (c.f. Hogarth & Einhorn, 1992). Directly assessing the
activation in memory with an implicit task is less reactive.

In this paper, we use response time data for three different
types of explanations to assess constraint satisfaction
models. First, we are interested in explanations that are most
consistent with all symptoms observed before the probe’s
presentation (relevant explanations). Second, we are
interested in explanations that participants considered
relevant after earlier symptoms, but are inconsistent with
later symptoms (rejected explanations). Third, we look at
explanations that were inconsistent already with the first
symptom of the trial (irrelevant explanations).

Results

Diagnosis In both experiments and in both types of trials,
the accuracy of diagnoses given at the end of each trial was
quite high (around 95%). This suggests that also in
inconsistent trials, participants were able to solve the task
easily.

Probe Reaction Task The fastest responses in the probe
task occurred for explanations that were relevant given the
symptoms observed up to then. Rejected explanations were
responded to slower than relevant explanations, but faster
than irrelevant explanations. This basic pattern was found in
consistent trials in both experiments, as well as in the
inconsistent trials in the second experiment (see Figure 3).
However, consistent and inconsistent trials differed in the
courses of activation over time. In consistent trials, reaction
times decreased with increasing number of symptoms. In
inconsistent trials, this decrease was less visible, as
integrating the information was more difficult than in
consistent trials. Nevertheless, the fast responses to relevant
explanations show that participants managed to integrate the

symptoms properly.
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Figure 3. Reaction time to relevant, rejected and irrelevant
probes after the 2™, 3, and 4™ symptom. Left graph:
consistent trials (Baumann et al., 2007); Right graph:
inconsistent trials (Mehlhorn et al., 2008)

Models

To assess the wvalidity of the alternative modeling
approaches, we implemented the knowledge used in the
experiments into different constraint-satisfaction networks.
All networks consisted of the whole material participants
needed to learn before the experiment (see Figure 4). We
used 9 nodes representing the symptoms, 9 nodes
representing the explanations (chemicals), and several
connections representing the relations between those nodes.
Nodes representing explanations were interconnected by
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inhibitory links, because the symptoms of each trial were
caused by only one chemical. Explanations and symptoms
were interconnected by excitatory links.

Figure 4. Network for an inconsistent trial in Simulation 3.
Inhibitory connections: dashed lines, excitatory connections:
solid lines. Numbers in parentheses: activation values of
explanation-nodes after the network settles.

In the networks, four basic parameters can be varied.

1. The initial activation of the explanation-nodes before

each run.

2. The initial activation of the symptom-nodes before

each run.

3. The strength of the connection between the nodes.

4. The strength of the connection between the symptom

nodes and the special evidence unit (SEU).

To model the two basic approaches described above, we
used variations of the parameters 1 and 4. The results for
these 2 approaches are presented below. For both
alternatives, we ran various models, testing different values
for parameters 2 and 3. These values did not have any
substantial effect on the model outcome. Therefore, in the
models described below, they are set to fixed values. The
initial activation of symptom nodes (parameter 2) is set to 1
for the currently observed symptom and to O for all other
symptoms. The connection-strength between nodes in the
network (parameter 3) is set to 0.04 for excitatory and to
-0.04 for inhibitory links.

To evaluate the models’ capacity to emulate human
information integration during the course of the task, we
will now take a closer look at the process measure. For each
model, we calculated the activation for the three types of
explanations (relevant, rejected and irrelevant) at three
different times of measurement (after 2, 3, or 4 symptoms).
This activation is directly compared to the human response
time data, which indicate memory activation of
explanations.

Initial activation of the explanation-nodes

Simulation 1 and 2 One method to model sequential data in
constraint-satisfaction models that might seem feasible is to
use the output-activation of the explanation nodes of one run
as the input activation of these nodes in the next run
(compare left side of Figure 1). Thus, explanation nodes are
not reset after each run, but they start with the activation
they obtained in the last run. The observation of symptoms
is modeled by connecting the currently observed symptom

to the SEU. This model is referred to as Simulation 1 in the
following.

The reason why this method is not working is the
continuous influx of activation from the SEU through the
currently observed symptom. Any activation at the
beginning of a run is overwritten by spreading activation
and only the connection strengths determine the stable state
of the network. This can be easily demonstrated by
comparing the results of Simulation 1 with a model that is
identical despite the fact that the explanation nodes are reset
to zero after each run (Simulation 2). Simulation 1 and
Simulation 2 produce exactly the same activation results.
Both do not capture the change in memory activation.
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Figure 5. Activation calculated in the constraint satisfaction
models (Simulation 1 and 2) and reaction times obtained in
the human experiments for consistent (top) and inconsistent
trials (bottom). (Activation values are inverted so that they
can be plotted directly against the reaction time data.)

In Figure 5, the activation-values calculated by these
models are plotted against the human data for consistent (r =
-.58) and inconsistent trials (r = -.63). As shown by the
graphs and the low correlations between human and model
data, the models have an overall bad fit. Although relevant
explanations are activated highest in the models as well as
in the human data, the increasing activation of these
explanations during the course of the trials is not fit by the
models. In inconsistent trials, the model-activation even
decreases with an increasing number of observed symptoms.
Furthermore, contrary to human data, rejected explanations
in the model are activated less than irrelevant explanations.
Such a pattern of activation should only be expected if
incoming information is not integrated properly.

Connection strength to the SEU

Simulation 3 An alternative approach to model sequential
data in constraint-satisfaction models is to use the
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connection strength between the evidence nodes and the
SEU as proposed in UECHO (compare Figure 4 and right
side of Figure 1). Contrary to Simulations 1 and 2, not only
the current symptom but all symptoms observed so far are
connected to the SEU. The strength of links to the SEU
varies depending on the time elapsed since the respective
symptom was observed. The most recently observed
symptom gets a full connection to the SEU (.1). Earlier
observations are connected to the SEU with a decayed
strength. Before each run, the network is reset to its default
values. That is, the activation of all chemicals and of all but
the currently observed symptoms is set to zero.

Again, one model was run for the consistent (r = -.66) and
one for the inconsistent trials (r = -.74). As illustrated by
Figure 6, these models produced a much better fit than
Simulations 1 and 2. As in the human data, relevant
explanations receive the highest and irrelevant explanations
receive the lowest activation. However, the models again
fail to produce the increasing activation of explanations over
the time course.

950
_ 0,1 ¢ Human data
g 900 S —— relevant
= 850 0,0 S v irrelevant
o = N
£ 018 ~tr rejected
= 800 - Model data
S 022 relevant
5 750 = - irrelevant
3 033 ___. rejected
® 700 3 )

04

650

950
7 900 :
% 850 00
£ 800 018
5 750 028
= ©
S 700 033
£ 650 048

600 '

symptoms before target
Figure 6. Activation (simulation 3) and reaction times for
consistent (top) and inconsistent trials (bottom).

Simulation 4 For better capturing the increasing activation
over time, we presumed the influence of each single
symptom would need to be higher. Therefore, we developed
a fourth set of models with a higher weight given to the full
connection between observed symptoms and the SEU. It
was not set to .1, as proposed by Wang et al. (2006), but
to 1. Except for this change, the models were identical to the
models in Simulation 3.

Results of these models are shown in Figure 7. For
consistent trials, the model produces the expected effect.
Differences between the explanations are fit better
(however, they are even overestimated now). Additionally,
the model captures the increase of activation over time. This
better fit is confirmed by a slightly higher correlation with

the human data for consistent (r = -.70) and for inconsistent
trials (r =-.81).
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Figure 7. Activation (Simulation 4) and reaction times for
consistent (top) and inconsistent trials (bottom).

In Simulations 3 and 4, the previous state of the model is

retained by connecting not only the current, but also
previous symptoms to the SEU. By letting the strength of
these connections decrease over time, the order of observed
information is modeled. But is the decay of connection
strengths necessary to model sequential information
integration?
Simulation 5 To clarify this question, we developed a fifth
set of models where, as above, all previously observed
symptoms are connected to the SEU. However, previous
symptoms do not decay, but they keep the full connection
strength of 1.

For consistent trials, this simplified version of the model
fits surprisingly well with the human data (r = -.75). The
model reproduces the activation differences between the
three types of explanations, and the increasing activation
over the time course of the task. However, the weakness of
the model becomes obvious in inconsistent trials. Whereas
the participants’ reaction times reflect a change in their
diagnosis in the light of the new, inconsistent evidence, the
model does not produce a clear difference between relevant
and rejected explanations in terms of activation.

Conclusion

We evaluated two possible approaches for modeling
sequential information integration in diagnostic reasoning.
These approaches differed in the mechanism implemented
to integrate new information with information obtained
earlier. In the first approach, results from the previous
integration step were carried over to be integrated with the
new information. In the second approach, the previous state
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of the network was preserved more indirectly, by connecting
not only the current, but also earlier observations to the
“energy source” of the network.

Results show that the first approach (Simulations 1 and 2)
is not working. No matter what initial activation is used in
the network, it is overwritten by the activation resulting
from the connection to the SEU. The second approach was
more successful. We implemented versions of models that
differed with respect to how strongly observed symptoms
influenced the current activation of the network
(Simulations 3-4). Both models were able to reproduce the
activation differences between explanations found in the
human data. However, the models differed in their ability to
reproduce the courses of explanations’ activation over time.
A simplified version of these models (Simulation 5), where
the influence of earlier evidence did not decay over time,
produced a surprisingly high fit in consistent trials, but
failed to model the activation data in inconsistent trials.

Concluding, our results support the approach for
modeling sequential information integration as it was
proposed by Wang et al. (2006). However, our results
suggest the parameter setting proposed by Wang et al. to be
reconsidered. To adequately model the course of activation
during the task, a much higher amount of activation
spreading from the observed symptoms needs to be
implemented.

We must stress that none of the models was able to
sufficiently fit the pattern of activation in inconsistent trials.
Although Simulations 3 and 4 produce at least the
differences between explanations, they did not model the
course of activation during inconsistent trials adequately.
This might have several reasons. First, the implementation
of constraint satisfaction may be inappropriate. Second, and
more plausible given the success of constraint satisfaction
models in various areas, the deviation between human and
model data demonstrates the involvement of more conscious
reasoning processes during inconsistent trials. In consistent
trials, the automatic activation processes modeled by the
constraint satisfaction networks is perfectly sufficient to
solve the task. In inconsistent trials however, a pure
activation based approach struggles. Nodes would have to
be added or connections other than connections to the SEU
would have to be manipulated. To fully capture cognitive
processes involved in such trials and in tasks with more
complex knowledge  structures, hybrid modeling
approaches, for example production systems including
network dynamics such as ACT-R, might be promising.

Acknowledgements

We thank Matthias Henning, Anja Greiner, Tibor Petzoldt,
Josef Krems and four anonymous reviewers for their helpful
comments on earlier versions of this paper.

References

Arocha, J. F., & Patel, V. L. (1995). Construction-
integration theory and clinical reasoning. In C. A. Weaver,
I, S. Mannes & C. R. Fletcher (Eds.), Discourse

comprehension: Essays in honor of Walter Kintsch. (pp.
359-381). Hillsdale, Lawrence Erlbaum Associates, Inc.

Anderson, J. R. (1983). A spreading activation theory of
memory. Journal of Verbal Learning and Verbal
Behaviour, 22, 261-295.

Baumann, M.R.K., Mehlhorn, K., & Bocklisch, F. (2007).
The activation of hypotheses during abductive reasoning.
Proceedings of the 29th Annual Cognitive Science Society

(pp. 803-808). Austin, TX: Cognitive Science Society.

Gigerenzer, G., Hoffrage, U., & Kleinbolting, H. (1991).
Probabilistic mental models: A Brunswikian theory of
confidence. Psychological Review, 98, 506—528.

Glockner, A., & Betsch, T. (2008). Modeling option and
strategy choices with connectionist networks: Towards an
integrative model of automatic and deliberate decision
making. Judgment and Decision Making, 3(3), 215-228.

Hagmayer, Y., & Waldmann, M. R. (2002). A constraint
satisfaction model of causal learning and reasoning.
Proceedings of the Twenty-Fourth Annual Conference of
the Cognitive Science Society (pp. 405-410). Mahwah, NJ:
Erlbaum.

Hogarth, R. M., & Einhorn, H. J. (1992). Order effects in
belief updating: The belief-adjustment model. Cognitive
Psychology, 24, 1-55.

Kintsch, W. (1998). Comprehension: A paradigm for
cognition. New York: Cambridge University Press.

Mehlhorn, K., Baumann, M., & Bocklisch, F. (2008).
Activation or Inhibition? Why Reasoners are Not Blind
for Alternative Explanations. Proceedings of the 30th
Annual Conference of the Cognitive Science Society (pp.
2083-2088). Austin, TX: Cognitive Science Society

Meyer, D.E., & Schvaneveldt, R W. (1971). Facilitation in
recognizing pairs of words: Evidence of a dependence
between retrieval operations. Journal of Experimental
Psychology, 90, 227-234.

Thagard, P. (1989) Explanatory Coherence. Behavioral and
Brain Sciences. 12. pp. 425-502

Thagard, P., & Kunda, Z. (1998). Making sense of people:
Coherence mechanism. In S. J. Read and L. C. Miller
(Eds.), Connectionists models of social reasoning and
social behavior (pp. 3-26). Mahwah, NJ: Lawrence
Erlbaum Associates.

Thagard, P. & Shelley, C. (1997) Abductive reasoning:
Logic, visual thinking, and coherence. In: M.-L. Dalla
Chiara et al (Eds.), Logic and Scientific methods.
Dordrecht: Kluwer, pp.413-427

Thagard, P. (2000). Coherence in thought and action.
Cambridge, MA: MIT Press.

Thomas, R. P., Dougherty, M. R., Sprenger, A. M. &
Harbison, J. I. (2008). Diagnostic hypothesis generation
and human judgment. Psychological Review, 115, 155-
185.

Wang, H., Johnson, T. R., & Zhang, J. (2006). The order
effect in human abductive reasoning: an empirical and
computational study. Journal of Experimental &
Theoretical Artificial Intelligence. 18(2), 215-247

2474



