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Abstract 

Much research on explanation has focused on the ability of 
explanations to draw upon relevant knowledge to aid in 
understanding some event or observation.  However, 
explanations may also structure our understanding of events 
and related tasks more generally, even when they add no 
relevant information. In three experiments, we show that 
explanations affect performance in simple, binary decision 
tasks where they could not possibly add relevant information. 
Whereas people with no explanation for differences in event 
probabilities tended to “probability-match,” people with an 
explanation tended to “over-match” (behave more 
normatively). The results suggest that explanations play a role 
in structuring our understanding of events, in addition to 
adding relevant information. 

Keywords: explanation, probability matching, decision-
making, understanding 

 

Explanations support much intelligent behavior. We explain 

trends in the stock market in hopes of avoiding future 

economic woes, explain car failure to diagnose a problem, 

and we even explain why works of art gives us a chill just to 

enhance our appreciation (Keil, 2006). In recent years, 

cognitive scientists have begun to examine the importance 

of explanation (Lombrozo, 2006; Keil & Wilson, 2000), but 

despite agreement that explanations serve many goals, the 

empirical literature has focused on a limited set of tasks and 

functions. The purpose of this paper is to show a novel (and 

perhaps unintuitive) case where having an explanation 

changes performance in order to suggest a broader utility of 

explanation than currently exists in the literature. 

 Most work on explanation has examined cases where the 

explanation provides additional relevant information to help 

one understand the connection between an observation and 

other knowledge. For example, category learners often 

explain the correlations between an exemplar’s properties to 

better understand the category structure (e.g., a bird nests in 

trees because it has wings), and this affects their 

applications of the category (e.g., Murphy & Wisniewski, 

1989). Explanations also improve our understanding of 

social events, where we often call upon prior social 

experiences to make sense of others’ behavior (Jones & 

Nisbtt, 1972). Laboratory studies of how explanations draw 

upon relevant knowledge relate directly to cases in the real 

world, where, for example, explaining the cause of a social 

problem (e.g., homelessness, global warming) by 

incorporating knowledge of social structures affects how we 

might try to solve that problem. 

 A major goal in our research program to examine and 

understand the role of explanation in cognition is to identify 

and explore the many ways that explanations can influence 

behavior. Although we are very interested in how 

explanations invoke relevant knowledge to help us 

understand events (Hummel, Landy, & Devnich, 2008; 

Hummel & Ross, 2006; Taylor, Landy, Ross, & Hummel, 

2008), in this paper we investigate a different aspect of how 

explanations may influence performance.  We consider 

whether explanations sometimes affect performance in very 

simple tasks without adding relevant information. 

 Our novel theoretical claim is that explanations can affect 

performance without adding task-relevant information by 

providing general ways to organize an understanding of a 

situation or event. We evaluated this idea by examining how 

explanations impacted behavior on a relatively low-level 

task, in which additional causal information is of no use.  In 

our view, the explanations served as a task frame, which led 

participants who received it to structure their understanding 

of the task differently from those without an explanation. 

 We chose a binary prediction task, in which participants 

predict which of two outcomes will occur on the next trial, 

for many trials. On these tasks, people tend to “probability 

match,” or predict each outcome roughly the percentage of 

times that the outcome tends to occur (for a review, see 

Vulkan, 2000). This behavior is non-normative, since 

predicting the most likely event on each trial maximizes 

correct predictions. 

 We added explanations to this paradigm in the following 

way: Participants in the No Explanation condition were told 

they would be predicting which of two events would occur 

on the next trial, from trial to trial, and that one event was 

more likely than another. Participants in the Explanation 
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condition were also provided a story explaining why the two 

events occurred with unequal likelihood, though this 

explanation did not directly add information about the 

probabilities of the events. Critically, any differences 

between conditions in this paradigm could not be due to the 

explanation adding relevant causal information. 

 How might explanations of the distribution source affect 

behavior in the probability matching paradigm? We 

speculated that explanations would lead the Explanation 

group to “overmatch”—to predict the more common 

outcome a greater percentage of times than it actually 

occurred (to behave more normatively)—more than the No 

Explanation group.  There are many possible reasons for 

this consistent with our view that explanations provide a 

way to structure one’s understanding of a task: For one, 

having an explanation might shape one’s expectations about 

the likelihood of the two events, such that on each trial, the 

more likely event is preferred in the prediction. 

Alternatively, the explanation might draw attention to the 

mechanisms causing one event to occur more often, leading 

to increased confidence in the more likely outcome.  

 Setting aside, for the moment, how exactly explanations 

might structure the task, note that any difference across 

conditions would suggest that explanations add something 

more to cognition than task-relevant causal information. 

Furthermore, if explanations cause differential behavior in 

what is considered to be a relatively low-level task (fish and 

pigeons show the same behavior as humans; Behrand & 

Bitterman, 1961; Bullock & Bitterman, 1962), then the 

effects of explanation could be impressively far reaching. 

Experiment 1–Basic Probability Matching 

The goal of Experiment 1 was to investigate whether 

explanations serve partly to structure people’s 

understanding of basic tasks (like the probability matching 

task).  If so, then people with explanations should perform 

differently than those without. In the case of probability 

matching, we predicted that the Explanation condition 

would show more over-matching than the No Explanation 

condition. Further experiments would narrow in on the 

particular reasons for the explanation advantage. 

Method 

Participants and Design Forty-six University of Illinois 

undergraduates participated for course credit, twenty-five 

randomly assigned to the Explanation condition and twenty-

one to the No Explanation condition. 

 

Materials Two line drawings were shown to participants 

during the experiment, one representing a medal winner 

from the Olympics and another representing the Great Wall 

of China (see Figures 1a and 1b.) All other instructions were 

displayed in text on a computer screen. 

 
 

Figures 1a and 1b: Drawings used in Experiments 1 and 2 

depicting an Olympic medal winner and the Great Wall. 

 

Procedure The experiment was conducted on Macintosh 

computers. Participants signed a consent form prior to the 

experiment and then read the instructions. For the 

Explanation condition, instructions stated that a 

commemorative coin was produced for the 2008 Olympics 

and that a mistake was made in manufacturing so the side 

with the medal winner tended to come up more often than 

the side with the Great Wall. Participants were asked to 

make predictions for a sequence of coin flips as to whether, 

on the next trial, the coin would come up with the medal 

winner or the Great Wall. After their prediction, they would 

be shown the outcome of the flip. Finally, they were told 

that a counter at the top of the screen would indicate their 

overall performance after each trial. A black line would 

indicate their performance level on the previous trial. 

 The No Explanation condition was identical, except that 

participants were not told about the coin; instead, they were 

asked to predict which of two line drawings (either a person 

or two wavy lines) would appear on the next trial, for a 

sequence of trials. Furthermore, they were told that the 

drawing of a person tended to appear more often than the 

drawing of the two wavy lines. 

 There were 100 prediction trials. For 70 trials, the 

outcome was the person and for 30 the outcome was the two 

wavy lines.  Subjects were not told how many trials the 

person would appear.  On each trial, participants were asked 

to press the “P” key to predict the medal winner (person) or 

the “W” key to predict the Great Wall (two wavy lines.) 

After they entered their choice, participants viewed the 

outcome and their performance level, and then they pressed 

the “N” key to continue. Every 20 trials, they were 

reminded the purpose of the experiment. The Explanation 

condition was told, “Remember to choose the side of the 

coin that you think will come up next,” and the No 

Explanation condition was told, “Remember to choose the 

drawing that you think will come up next.” 

 After the prediction phase, participants were told that the 

experiment contained 100 trials and were asked to estimate 

how many of these trials resulted in the person side up. 

Next, participants answered questions regarding their 

strategies during the predictions task. They were given a list 

of options in a text file and told to delete the strategies they 

did not use. They were also given the same set of strategies 

again and asked which they thought was the best strategy 

for going about the task. The strategy reports did not lead to 
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consistent results across experiments, so they are omitted 

from our analyses and discussion. At the end of the session, 

participants were debriefed. 

 Due to experimenter error, 4 participants in the 

Explanation condition and 1 participant in the No 

Explanation condition did not complete the frequency 

judgments and strategy report tasks. In addition, 2 

participants in the Explanation condition and 3 participants 

in the No Explanation did not give a frequency judgment 

(answered “I don’t know.”) Finally, 2 participants in the 

Explanation condition and 5 participants in the No 

Explanation condition entered a range of values for their 

frequency judgment (e.g., “between 60 and 80 trials.”) For 

these participants, we used the mean of the endpoints in our 

analyses. 

Results and Discussion 

Predictions As predicted, the Explanation condition 

predicted the more frequent outcome greater than 70% of 

the time (78.5 trials, SD = 9.7) and on more trials than the 

No Explanation condition (71.9 trials, SD = 11.3). The 

Explanation condition average was significantly different 

from 70, t(24) = 4.40, p < .01, but the No Explanation 

condition average was not, t(20) = .77, p = .45. The 

difference between conditions was significant, t(40) = 2.10
1
, 

p < .05. 

 

Frequency Judgments The conditions did not differ in 

their average frequency judgments, suggesting that the 

increase in predictions for the more likely event was not due 

to inflation in perceived frequency of that event. On 

average, participants in the Explanation judged the 

frequency of the person drawing to be 73.8 (SD = 7.2), 

compared to 73.3 (SD = 9.6) in the No Explanation 

condition.  The groups did not differ in their average 

frequency estimations, t(27) = .31, p = .76. 

 The results from Experiment 1 show that simply having 

an explanation can affect performance in a basic cognitive 

task without adding relevant information. This perhaps 

unintuitive outcome is consistent with the idea that 

explanations serve partly to structure one’s understanding of 

a task, and thus, lead to differences in behavior. 

Experiment 2–Probability Matching With Bets 

We had two goals for Experiment 2: first, to replicate the 

findings from Experiment 1, and second, to increase the 

power of the difference between conditions by allowing 

participants to place a bet on each prediction, which could 

then be used to weight the individual predictions. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1
 Throughout the paper, degrees of freedom for between 

subjects tests with unequal sample sizes were the Welch-

Satterthwaite values.  This may cause degrees of freedom to 

differ within the same experiment across tests, since they 

are dependent on the variances of the samples. 

Method 

Participants and Design Twenty-two University of Illinois 

undergraduates participated for course credit, equal numbers 

assigned to the Explanation and No Explanation conditions. 

 

Materials and Procedure The materials and procedure 

were identical to Experiment 1, except that participants in 

both conditions made bets on their predictions. After each 

prediction, they were told to bet 1, 2, or 3 chips (not 

corresponding to monetary value) by pressing the key 

corresponding to their bet. If they were correct (incorrect), 

they would win (lose) the amount of chips bet. The 

performance bar at the top of the screen was adjusted 

corresponding to the magnitude won or loss on each trial. 

Results and Discussion 

Predictions Experiment 2 replicated the results from 

Experiment 1. Participants in the Explanation condition 

predicted the person side up, on average, on 88.5 trials (SD 

= 11.4), whereas participants in the No Explanation 

condition predicted the person side up on 77.1 trials (SD = 

17.3) of trials. The No Explanation condition average did 

not differ from 70, t(10) = 1.36, p = .20, but the Explanation 

condition average did, t(10) = 5.38, p < .01. The difference 

between conditions only approached significance, t(17) = 

1.83, p = .08, although, when summing the wins and losses 

across bets, the average for the Explanation condition (2.21, 

SD = .63) was greater than that of the No Explanation 

condition (1.49, SD = .94), t(17) = 2.11, p < .05. 

 

Frequency Judgments As in Experiment 1, there were no 

differences in the frequency estimates, suggesting that the 

Explanation advantage is not due to belief in a greater 

likelihood of the more common event. On average, 

participants in the Explanation condition judged the 

frequency of the person drawing to be 74.9 (SD = 5.8), 

compared to 73.4 (SD = 7.3) in the No Explanation 

condition.  The groups did not differ significantly, t(18) = 

.65, p = .62. 

Experiment 3–Diagnosis with Multiple Cues 

In Experiment 3, we generalized our results with the basic 

probability matching task to a slightly richer scenario where 

people made predictions based on the presence of a 

diagnostic cue. Before each prediction, participants viewed 

one of two possible cues, which were associated with 

unique (and opposite) outcomes for 70% of the trials. The 

outcomes were reversed for the remaining trials. 

Participants were told to make their prediction of the 

outcome based on the cue, but as in Experiments 1 and 2, 

only the Explanation condition was told why the cues 

tended to lead to particular outcomes. Generally, the task 

was isomorphic to two intermixed basic probability 

matching tasks—one task for trials with cue A, and another 

task with cue B. 
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Method 

Participants and Design Thirty-five University of Illinois 

undergraduates participated for course credit, twenty 

randomly assigned to the Explanation condition and fifteen 

to the No Explanation condition. 

 

Materials Two drawings of “red blood cells” were shown to 

participants during the experiment, one very round cell and 

the other very large. All other instructions were displayed in 

text on a computer screen. 

 

Procedure The experiment was conducted on Macintosh 

computers. Participants signed a consent form prior to 

participating.  The procedure was similar in structure to that 

of the previous two Experiments, but the cover story was 

new.  For the Explanation condition, instructions stated that 

participants would learn to measure genetic markers for 

particular traits. They would be shown drawings of bloods 

cells coming from patients who have either a gene that 

generally causes them to be taller than average, or a gene 

that promotes having a strong immune system. The gene 

that causes tallness usually (but not always) also causes 

blood cells to be larger than average. The gene that 

improves the immune system usually also causes red blood 

cells to be particularly round. Participants’ task was to 

observe the shape and size of an individual’s blood cell and 

then predict whether that individual was either taller than 

average or has a strong immune system. To predict taller 

than average, they should push the “T” key, and to predict 

strong immune system, they should push the “I” key. After 

their prediction, they would be shown the correct answer—

“The outcome was T (or I.)” Finally, they were told that a 

counter at the top of the screen would indicate their overall 

performance after each prediction. A black line would 

indicate their performance level on the previous trial. 

 The No Explanation condition was identical, except that 

participants were not told that the shapes referred to red 

blood cells, nor that they were using the shapes to predict 

the traits “taller than average” and “good immune system”; 

instead, they were told simply that if the shape is 

particularly large, the outcome is likely to be “T.” If the 

shape is particularly round, the outcome is likely to be “I.” 

 There were 120 prediction trials. For round cue trials, 42 

(70%) of the outcomes were “I,” and for large cue trials, 42 

(70%) of the outcomes were “T”; the other trials had the 

opposite outcome. Participants were not told the actual 

number of trials the more likely outcome would appear. On 

each trial, participants were asked to press the “T” key or 

the “I” key to predict the outcomes “T” or “I.” After they 

entered their choice, participants viewed the outcome and 

their performance level and then they pressed the “N” key to 

continue. Every 20 trials, they were reminded the purpose of 

the experiment. The Explanation condition was told, 

“Remember to choose the trait you think the next patient 

will have. Press T if you think they will have a gene that 

tends to make them taller than average. Press I if you think 

they will have one that encourages them to have a strong 

immune system,” and the No Explanation condition was 

told, “Remember to choose the result that you think will 

come up next. Results will be either T or I.” 

 After the prediction phase, participants were told that the 

experiment contained 120 trials, on 60 of which the cue was 

“round” and on the other 60 the cue was “large.” Separately 

for each cue, they were asked to guess how many of the 60 

trials resulted in the “T” outcome. Then, they answered 

questions regarding their strategies during the predictions 

task. They were asked to give two strategy reports, one for 

trials when the cue was “round” and another for when the 

cue was “large.” After the strategy questionnaire, 

participants were given a debriefing form and dismissed. 

 Three participants in the Explanation condition and one 

participant in the No Explanation gave frequency estimates 

of 60 for both of the cues. Since these estimates were likely 

due to confusion regarding the estimation task, they were 

removed from the analyses. 

Results and Discussion 

Predictions The predictions data were analyzed for each 

cue, separately, and then collapsed across the two cues.  For 

the “round” cue, the Explanation condition predicted a 

strong immune system greater than 70% of the time (88.5% 

of trials, SD = 11.1) and on more trials than the No 

Explanation condition (76.2% of trials, SD = 15.1). The 

Explanation condition average was significantly different 

from 70, t(19) = 7.44, p < .01, but the No Explanation 

condition average was not, t(14) = 1.60, p = .13. The 

difference between conditions was significant, t(25) = 2.66, 

p < .05. 

 For the “large” cue, the Explanation condition predicted 

tall greater than 70% of the time (84.5% of trials, SD = 

16.5) and on more trials than the No Explanation condition 

(75.1% of  trials, SD = 15.6). The Explanation condition 

average was significantly different from 70, t(19) = 3.92, p 

< .01, but the No Explanation condition average was not, 

t(14) = 1.27, p = .22. The difference between conditions was 

only marginally significant, t(31) = 1.72, p < .10. 

 Collapsed across cue, the Explanation condition predicted 

the more likely outcome greater than 70% of the time 

(86.5% of trials, SD = 13.6) and on more trials than the No 

Explanation condition (75.7% of trials, SD = 15.1). The 

Explanation condition average was significantly different 

from 70, t(19) = 5.41, p < .01, but the No Explanation 

condition average was not, t(14) = 1.45, p = .17. Finally, the 

Explanation condition predicted significantly more trials 

with the person side up than did the No Explanation 

condition, t(28) = 2.19, p < .05. 

 

Frequency Judgments The frequency judgments did not 

differ between conditions, both when the cue was “large” 

and when it was “round.” When the cue was “large,” 
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participants in the Explanation condition judged the 

frequency of the “T” outcome, on average, to be 42.4 

(70.7%; SD = 10.4), compared to 38.9 (64.8%; SD = 9.5) in 

the No Explanation condition.  The groups did not differ in 

their average frequency estimations, t(29) = .98, p = .34. 

When the cue was “round,” participants in the Explanation 

judged the frequency of “T” outcome, on average, to be 26.6 

(44.3%; SD = 14.6), compared to 23.5 (39.2%; SD = 11.2) 

in the No Explanation condition.  The groups did not differ 

significantly, t(29) = .66, p = .51. 

 Collapsed across cue, for each participant we computed 

the estimated frequency of the more likely outcome by 

averaging the estimate of “T” when the cue was “large” and 

60 minus the frequency estimate of “T” when the cue was 

“round” (since all trials that were not “T” were “I”). The 

average estimate for the Explanation condition was 37.9 

(63.2%; SD = 8.0), compared to 37.7 (62.8%; SD = 10.0) in 

the No Explanation condition. The group averages were not 

significantly different, t(25) = .06, p = .95. 

 The overall pattern of results was similar to that of 

Experiments 1 and 2. Participants in the Explanation 

condition over-matched (predicted the more likely outcome 

more than 70% of trials), but participants in the No 

Explanation condition did not. Also, collapsed across cues, 

the Explanation condition predicted the more likely outcome 

more often than the No Explanation condition. Finally, the 

frequency judgments of the two groups were not 

significantly different. 

General Discussion 

Many previous studies have shown that explanations are 

crucial for thinking and reasoning tasks, in which the 

explanation helps to understand some observation by 

drawing upon relevant prior knowledge. However, our 

findings suggest that explanations are not merely 

information couriers, since they also affect performance 

(indeed, improve normative responding) on even very 

simple tasks where additional information is not at all 

useful. Based on these results, we suggest that one role 

explanations play in cognition is to help to organize a 

person’s understanding of a situation or event, so that 

having an explanation leads to differences in behavior 

relative to not having an explanation. 

How Explanations Might Structure Understanding 

As we mentioned earlier, explanations may help to shape 

our understanding of an event in many possible ways. The 

goal for our discussion is to consider a few possibilities in 

more detail, and to suggest how future research could 

explore their implications. 

 

Increased Rational Responding One possibility is that 

giving an explanation for the differences in the event 

likelihoods tended to engage more analytic processes in the 

Explanation condition than in the No Explanation condition. 

In effect, this might have raised the number of participants 

in the Explanation condition who thought deeply about the 

task and decided consciously to endorse the normative 

strategy—to choose the more likely event on every trial. 

Previous research shows that people using the normative 

response pattern do tend to be higher in cognitive ability, 

suggesting a relation between high-level reasoning and 

normative responding (West & Stanovich, 2003). 

Conveniently, this pattern could be observed in the data by 

comparing the number of strictly normative participants in 

the two conditions. 

 In fact, we found very small and highly similar levels of 

normative participants across conditions. In Experiment 1, 

both conditions had 1 such participant. In Experiment 2, we 

found 3 and 2 normative participants in the Explanation and 

No Explanation conditions, respectively. In Experiment 3, 

we found zero normative participants. These data suggest 

that the explanation condition was not more likely to 

endorse the normative strategy, suggesting that a shift in 

rational reasoning was does not account for the effect. 

 

Mental Simulation Another possibility is that having an 

explanation for the difference in outcome likelihoods allows 

one to mentally simulate the event (e.g., the coin flip) before 

each prediction, and this leads to a bias in predicting the 

more likely outcome, perhaps because it is more natural to 

simulate. This account applies to Experiments 1 and 2, 

where the coin flip is a discrete, simulable event, but less to 

Experiment 3 where simulating the relation between the 

shape of a blood cell and a medical trait seems less natural. 

 Whether or not all cases of explanation affecting 

performance are due to mental simulation, there are ways to 

test the role of simulation in explanation-based predictions. 

For example, one could directly manipulate the ease of 

simulating the events and look for an influence of 

simulation ease on levels of normative responding. Another 

method is to have participants perform a task that would 

either facilitate or work against the particular simulation 

(see Barsalou, 2008, for a review of simulation effects), 

where the prediction is that simulation-consistent behaviors 

lead to more predictions of the likely outcome. Current 

studies in our lab are beginning to address these issues. 

 

Strength and Believability Previous research shows that 

the strength, or believability of an explanation impacts 

judgments related to the explananda. For example, 

Fugelsang et al. (2004) gave people either a strong or weak 

explanation for the relation between some causal variable 

and an outcome and then had people observe contingencies 

between the variable and the outcome. After viewing the 

same contingency data, people with a stronger explanation 

gave higher ratings of causal power than those with a weak 

explanation. If explanations affect judgments of causal 

power, they might also affect sequential predictions. 

Specifically, people with a stronger explanation may predict 

the more likely outcome on a greater number of trials than 
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those with a weak explanation. Along the same lines, one 

could view our No Explanation condition as the Extremely 

Weak Explanation condition, in which case our current 

results are attributable to explanation strength. 

 A simple way to test this idea is to generate explanations 

with more and less strength and look for differences in 

performance as a function of strength. Also, to test the role 

of strength in our current in experiments, one could ask 

participants before the prediction task for an estimate of the 

number of trials the more likely event will occur. If 

estimates of frequency parallel causal power judgments, 

then one would predict higher frequency estimates in the 

Explanation Condition than the No Explanation Condition. 

We are currently running a version of Experiment 2, where 

in place of the predictions task, people estimated how many 

trials (out of 100) the picture of the person would appear. 

Considering only people who gave an estimate greater than 

50 (those who understood from the instructions that the 

person would appear more often), the average estimate from 

the Explanation condition is 68.4 (SD = 9.4) compared to 

69.5 (SD = 5.8) in the No Explanation condition, which is 

not a significant difference, t(20) = .37, p > .1. 

 In each of the accounts we considered, the explanation 

was purported to structure the task by adding cognitive 

resources other than particular, task-relevant information. 

Whether these resources include general reasoning 

procedures, mental simulations, or top-down biases for 

interpreting data, the simple presence of an explanation 

appears to be a catalyst for higher cognitive processing. 

That is, explanations affect the structure, as well as the 

content, of thought. 

Conclusion 

 Explanation is a powerful cognitive function. Previous 

research on explanation has concentrated on the ability of 

explanations to call upon relevant knowledge to improve 

our understanding of some event, and this knowledge often 

affects people’s judgments in related tasks. Although we 

agree that explanations are crucial for connecting everyday 

observations to knowledge, we suggest that explanations 

have other functions beyond adding relevant information. 

Explanations may shape our understanding of events and 

scenarios, such that behavior in related tasks is often 

different (and sometimes normatively improved) compared 

to behavior without an explanation. Future research will 

need to explore this view with developments in theory and 

new empirical findings. 
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