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Abstract

Much research on explanation has focused on the ability of
explanations to draw upon relevant knowledge to aid in
understanding some event or observation. However,
explanations may also structure our understanding of events
and related tasks more generally, even when they add no
relevant information. In three experiments, we show that
explanations affect performance in simple, binary decision
tasks where they could not possibly add relevant information.
Whereas people with no explanation for differences in event
probabilities tended to “probability-match,” people with an
explanation tended to “over-match” (behave more
normatively). The results suggest that explanations play a role
in structuring our understanding of events, in addition to
adding relevant information.

Keywords: explanation, probability matching, decision-
making, understanding

Explanations support much intelligent behavior. We explain
trends in the stock market in hopes of avoiding future
economic woes, explain car failure to diagnose a problem,
and we even explain why works of art gives us a chill just to
enhance our appreciation (Keil, 2006). In recent years,
cognitive scientists have begun to examine the importance
of explanation (Lombrozo, 2006; Keil & Wilson, 2000), but
despite agreement that explanations serve many goals, the
empirical literature has focused on a limited set of tasks and
functions. The purpose of this paper is to show a novel (and
perhaps unintuitive) case where having an explanation
changes performance in order to suggest a broader utility of
explanation than currently exists in the literature.

Most work on explanation has examined cases where the
explanation provides additional relevant information to help
one understand the connection between an observation and
other knowledge. For example, category learners often
explain the correlations between an exemplar’s properties to
better understand the category structure (e.g., a bird nests in
trees because it has wings), and this affects their
applications of the category (e.g., Murphy & Wisniewski,
1989). Explanations also improve our understanding of
social events, where we often call upon prior social

experiences to make sense of others’ behavior (Jones &
Nisbtt, 1972). Laboratory studies of how explanations draw
upon relevant knowledge relate directly to cases in the real
world, where, for example, explaining the cause of a social
problem (e.g., homelessness, global warming) by
incorporating knowledge of social structures affects how we
might try to solve that problem.

A major goal in our research program to examine and
understand the role of explanation in cognition is to identify
and explore the many ways that explanations can influence
behavior. Although we are very interested in how
explanations invoke relevant knowledge to help us
understand events (Hummel, Landy, & Devnich, 2008;
Hummel & Ross, 2006; Taylor, Landy, Ross, & Hummel,
2008), in this paper we investigate a different aspect of how
explanations may influence performance. We consider
whether explanations sometimes affect performance in very
simple tasks without adding relevant information.

Our novel theoretical claim is that explanations can affect
performance without adding task-relevant information by
providing general ways to organize an understanding of a
situation or event. We evaluated this idea by examining how
explanations impacted behavior on a relatively low-level
task, in which additional causal information is of no use. In
our view, the explanations served as a task frame, which led
participants who received it to structure their understanding
of the task differently from those without an explanation.

We chose a binary prediction task, in which participants
predict which of two outcomes will occur on the next trial,
for many trials. On these tasks, people tend to “probability
match,” or predict each outcome roughly the percentage of
times that the outcome tends to occur (for a review, see
Vulkan, 2000). This behavior is non-normative, since
predicting the most likely event on each trial maximizes
correct predictions.

We added explanations to this paradigm in the following
way: Participants in the No Explanation condition were told
they would be predicting which of two events would occur
on the next trial, from trial to trial, and that one event was
more likely than another. Participants in the Explanation
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condition were also provided a story explaining why the two
events occurred with unequal likelihood, though this
explanation did not directly add information about the
probabilities of the events. Critically, any differences
between conditions in this paradigm could not be due to the
explanation adding relevant causal information.

How might explanations of the distribution source affect
behavior in the probability matching paradigm? We
speculated that explanations would lead the Explanation
group to “overmatch”—to predict the more common
outcome a greater percentage of times than it actually
occurred (to behave more normatively)—more than the No
Explanation group. There are many possible reasons for
this consistent with our view that explanations provide a
way to structure one’s understanding of a task: For one,
having an explanation might shape one’s expectations about
the likelihood of the two events, such that on each trial, the
more likely event is preferred in the prediction.
Alternatively, the explanation might draw attention to the
mechanisms causing one event to occur more often, leading
to increased confidence in the more likely outcome.

Setting aside, for the moment, how exactly explanations
might structure the task, note that any difference across
conditions would suggest that explanations add something
more to cognition than task-relevant causal information.
Furthermore, if explanations cause differential behavior in
what is considered to be a relatively low-level task (fish and
pigeons show the same behavior as humans; Behrand &
Bitterman, 1961; Bullock & Bitterman, 1962), then the
effects of explanation could be impressively far reaching.

Experiment 1-Basic Probability Matching

The goal of Experiment 1 was to investigate whether
explanations serve partly to structure people’s
understanding of basic tasks (like the probability matching
task). If so, then people with explanations should perform
differently than those without. In the case of probability
matching, we predicted that the Explanation condition
would show more over-matching than the No Explanation
condition. Further experiments would narrow in on the
particular reasons for the explanation advantage.

Method

Participants and Design Forty-six University of Illinois
undergraduates participated for course credit, twenty-five
randomly assigned to the Explanation condition and twenty-
one to the No Explanation condition.

Materials Two line drawings were shown to participants
during the experiment, one representing a medal winner
from the Olympics and another representing the Great Wall
of China (see Figures la and 1b.) All other instructions were
displayed in text on a computer screen.

Figures 1a and 1b: Drawings used in Experiments 1 and 2
depicting an Olympic medal winner and the Great Wall.

Procedure The experiment was conducted on Macintosh
computers. Participants signed a consent form prior to the
experiment and then read the instructions. For the
Explanation condition, instructions stated that a
commemorative coin was produced for the 2008 Olympics
and that a mistake was made in manufacturing so the side
with the medal winner tended to come up more often than
the side with the Great Wall. Participants were asked to
make predictions for a sequence of coin flips as to whether,
on the next trial, the coin would come up with the medal
winner or the Great Wall. After their prediction, they would
be shown the outcome of the flip. Finally, they were told
that a counter at the top of the screen would indicate their
overall performance after each trial. A black line would
indicate their performance level on the previous trial.

The No Explanation condition was identical, except that
participants were not told about the coin; instead, they were
asked to predict which of two line drawings (either a person
or two wavy lines) would appear on the next trial, for a
sequence of trials. Furthermore, they were told that the
drawing of a person tended to appear more often than the
drawing of the two wavy lines.

There were 100 prediction trials. For 70 trials, the
outcome was the person and for 30 the outcome was the two
wavy lines. Subjects were not told how many trials the
person would appear. On each trial, participants were asked
to press the “P” key to predict the medal winner (person) or
the “W” key to predict the Great Wall (two wavy lines.)
After they entered their choice, participants viewed the
outcome and their performance level, and then they pressed
the “N” key to continue. Every 20 trials, they were
reminded the purpose of the experiment. The Explanation
condition was told, “Remember to choose the side of the
coin that you think will come up next,” and the No
Explanation condition was told, “Remember to choose the
drawing that you think will come up next.”

After the prediction phase, participants were told that the
experiment contained 100 trials and were asked to estimate
how many of these trials resulted in the person side up.
Next, participants answered questions regarding their
strategies during the predictions task. They were given a list
of options in a text file and told to delete the strategies they
did not use. They were also given the same set of strategies
again and asked which they thought was the best strategy
for going about the task. The strategy reports did not lead to
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consistent results across experiments, so they are omitted
from our analyses and discussion. At the end of the session,
participants were debriefed.

Due to experimenter error, 4 participants in the
Explanation condition and 1 participant in the No
Explanation condition did not complete the frequency
judgments and strategy report tasks. In addition, 2
participants in the Explanation condition and 3 participants
in the No Explanation did not give a frequency judgment
(answered “I don’t know.”) Finally, 2 participants in the
Explanation condition and 5 participants in the No
Explanation condition entered a range of values for their
frequency judgment (e.g., “between 60 and 80 trials.”) For
these participants, we used the mean of the endpoints in our
analyses.

Results and Discussion

Predictions As predicted, the Explanation condition
predicted the more frequent outcome greater than 70% of
the time (78.5 trials, SD = 9.7) and on more trials than the
No Explanation condition (71.9 trials, SD = 11.3). The
Explanation condition average was significantly different
from 70, #(24) = 4.40, p < .01, but the No Explanation
condition average was not, #(20) = .77, p = .45. The
difference between conditions was significant, #(40) = 2.10",
p <.05.

Frequency Judgments The conditions did not differ in
their average frequency judgments, suggesting that the
increase in predictions for the more likely event was not due
to inflation in perceived frequency of that event. On
average, participants in the Explanation judged the
frequency of the person drawing to be 73.8 (SD = 7.2),
compared to 73.3 (SD = 9.6) in the No Explanation
condition. The groups did not differ in their average
frequency estimations, #(27) = .31, p =.76.

The results from Experiment 1 show that simply having
an explanation can affect performance in a basic cognitive
task without adding relevant information. This perhaps
unintuitive outcome is consistent with the idea that
explanations serve partly to structure one’s understanding of
a task, and thus, lead to differences in behavior.

Experiment 2—Probability Matching With Bets

We had two goals for Experiment 2: first, to replicate the
findings from Experiment 1, and second, to increase the
power of the difference between conditions by allowing
participants to place a bet on each prediction, which could
then be used to weight the individual predictions.

" Throughout the paper, degrees of freedom for between
subjects tests with unequal sample sizes were the Welch-
Satterthwaite values. This may cause degrees of freedom to
differ within the same experiment across tests, since they
are dependent on the variances of the samples.

Method

Participants and Design Twenty-two University of Illinois
undergraduates participated for course credit, equal numbers
assigned to the Explanation and No Explanation conditions.

Materials and Procedure The materials and procedure
were identical to Experiment 1, except that participants in
both conditions made bets on their predictions. After each
prediction, they were told to bet 1, 2, or 3 chips (not
corresponding to monetary value) by pressing the key
corresponding to their bet. If they were correct (incorrect),
they would win (lose) the amount of chips bet. The
performance bar at the top of the screen was adjusted
corresponding to the magnitude won or loss on each trial.

Results and Discussion

Predictions Experiment 2 replicated the results from
Experiment 1. Participants in the Explanation condition
predicted the person side up, on average, on 88.5 trials (SD
= 11.4), whereas participants in the No Explanation
condition predicted the person side up on 77.1 trials (SD =
17.3) of trials. The No Explanation condition average did
not differ from 70, #(10) = 1.36, p = .20, but the Explanation
condition average did, #(10) = 5.38, p <.01. The difference
between conditions only approached significance, #(17) =
1.83, p = .08, although, when summing the wins and losses
across bets, the average for the Explanation condition (2.21,
SD = .63) was greater than that of the No Explanation
condition (1.49, SD = .94), #(17) =2.11, p < .05.

Frequency Judgments As in Experiment 1, there were no
differences in the frequency estimates, suggesting that the
Explanation advantage is not due to belief in a greater
likelihood of the more common event. On average,
participants in the Explanation condition judged the
frequency of the person drawing to be 74.9 (SD = 5.8),
compared to 73.4 (SD = 7.3) in the No Explanation
condition. The groups did not differ significantly, #18) =
.65, p=.62.

Experiment 3—Diagnosis with Multiple Cues

In Experiment 3, we generalized our results with the basic
probability matching task to a slightly richer scenario where
people made predictions based on the presence of a
diagnostic cue. Before each prediction, participants viewed
one of two possible cues, which were associated with
unique (and opposite) outcomes for 70% of the trials. The
outcomes were reversed for the remaining trials.
Participants were told to make their prediction of the
outcome based on the cue, but as in Experiments 1 and 2,
only the Explanation condition was told why the cues
tended to lead to particular outcomes. Generally, the task
was isomorphic to two intermixed basic probability
matching tasks—one task for trials with cue A, and another
task with cue B.
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Method

Participants and Design Thirty-five University of Illinois
undergraduates participated for course credit, twenty
randomly assigned to the Explanation condition and fifteen
to the No Explanation condition.

Materials Two drawings of “red blood cells” were shown to
participants during the experiment, one very round cell and
the other very large. All other instructions were displayed in
text on a computer screen.

Procedure The experiment was conducted on Macintosh
computers. Participants signed a consent form prior to
participating. The procedure was similar in structure to that
of the previous two Experiments, but the cover story was
new. For the Explanation condition, instructions stated that
participants would learn to measure genetic markers for
particular traits. They would be shown drawings of bloods
cells coming from patients who have either a gene that
generally causes them to be taller than average, or a gene
that promotes having a strong immune system. The gene
that causes tallness usually (but not always) also causes
blood cells to be larger than average. The gene that
improves the immune system usually also causes red blood
cells to be particularly round. Participants’ task was to
observe the shape and size of an individual’s blood cell and
then predict whether that individual was either taller than
average or has a strong immune system. To predict taller
than average, they should push the “T” key, and to predict
strong immune system, they should push the “T” key. After
their prediction, they would be shown the correct answer—
“The outcome was T (or 1.)” Finally, they were told that a
counter at the top of the screen would indicate their overall
performance after each prediction. A black line would
indicate their performance level on the previous trial.

The No Explanation condition was identical, except that
participants were not told that the shapes referred to red
blood cells, nor that they were using the shapes to predict
the traits “taller than average” and “good immune system”;
instead, they were told simply that if the shape is
particularly large, the outcome is likely to be “T.” If the
shape is particularly round, the outcome is likely to be “I.”

There were 120 prediction trials. For round cue trials, 42
(70%) of the outcomes were “I,” and for large cue trials, 42
(70%) of the outcomes were “T”; the other trials had the
opposite outcome. Participants were not told the actual
number of trials the more likely outcome would appear. On
each trial, participants were asked to press the “T” key or
the “I” key to predict the outcomes “T” or “I.” After they
entered their choice, participants viewed the outcome and
their performance level and then they pressed the “N” key to
continue. Every 20 trials, they were reminded the purpose of
the experiment. The Explanation condition was told,
“Remember to choose the trait you think the next patient
will have. Press T if you think they will have a gene that

tends to make them taller than average. Press I if you think
they will have one that encourages them to have a strong
immune system,” and the No Explanation condition was
told, “Remember to choose the result that you think will
come up next. Results will be either T or I.”

After the prediction phase, participants were told that the
experiment contained 120 trials, on 60 of which the cue was
“round” and on the other 60 the cue was “large.” Separately
for each cue, they were asked to guess how many of the 60
trials resulted in the “T” outcome. Then, they answered
questions regarding their strategies during the predictions
task. They were asked to give two strategy reports, one for
trials when the cue was “round” and another for when the
cue was “large.” After the strategy questionnaire,
participants were given a debriefing form and dismissed.

Three participants in the Explanation condition and one
participant in the No Explanation gave frequency estimates
of 60 for both of the cues. Since these estimates were likely
due to confusion regarding the estimation task, they were
removed from the analyses.

Results and Discussion

Predictions The predictions data were analyzed for each
cue, separately, and then collapsed across the two cues. For
the “round” cue, the Explanation condition predicted a
strong immune system greater than 70% of the time (88.5%
of trials, SD = 11.1) and on more trials than the No
Explanation condition (76.2% of trials, SD = 15.1). The
Explanation condition average was significantly different
from 70, #(19) = 7.44, p < .01, but the No Explanation
condition average was not, #(14) = 1.60, p = .13. The
difference between conditions was significant, #25) = 2.66,
p <.05.

For the “large” cue, the Explanation condition predicted
tall greater than 70% of the time (84.5% of trials, SD =
16.5) and on more trials than the No Explanation condition
(75.1% of trials, SD = 15.6). The Explanation condition
average was significantly different from 70, #(19) = 3.92, p
< .01, but the No Explanation condition average was not,
t(14) = 1.27, p = .22. The difference between conditions was
only marginally significant, #(31) = 1.72, p <.10.

Collapsed across cue, the Explanation condition predicted
the more likely outcome greater than 70% of the time
(86.5% of trials, SD = 13.6) and on more trials than the No
Explanation condition (75.7% of trials, SD = 15.1). The
Explanation condition average was significantly different
from 70, #(19) = 5.41, p < .01, but the No Explanation
condition average was not, #(14) = 1.45, p = .17. Finally, the
Explanation condition predicted significantly more trials
with the person side up than did the No Explanation
condition, #(28) =2.19, p < .05.

Frequency Judgments The frequency judgments did not
differ between conditions, both when the cue was “large”
and when it was “round.” When the cue was “large,”
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participants in the Explanation condition judged the
frequency of the “T” outcome, on average, to be 42.4
(70.7%; SD = 10.4), compared to 38.9 (64.8%; SD = 9.5) in
the No Explanation condition. The groups did not differ in
their average frequency estimations, #29) = .98, p = .34.
When the cue was “round,” participants in the Explanation
judged the frequency of “T” outcome, on average, to be 26.6
(44.3%; SD = 14.6), compared to 23.5 (39.2%; SD = 11.2)
in the No Explanation condition. The groups did not differ
significantly, #29) = .66, p = .51.

Collapsed across cue, for each participant we computed
the estimated frequency of the more likely outcome by
averaging the estimate of “T” when the cue was “large” and
60 minus the frequency estimate of “T” when the cue was
“round” (since all trials that were not “T” were “I”’). The
average estimate for the Explanation condition was 37.9
(63.2%; SD = 8.0), compared to 37.7 (62.8%; SD = 10.0) in
the No Explanation condition. The group averages were not
significantly different, #(25) = .06, p = .95.

The overall pattern of results was similar to that of
Experiments 1 and 2. Participants in the Explanation
condition over-matched (predicted the more likely outcome
more than 70% of trials), but participants in the No
Explanation condition did not. Also, collapsed across cues,
the Explanation condition predicted the more likely outcome
more often than the No Explanation condition. Finally, the
frequency judgments of the two groups were not
significantly different.

General Discussion

Many previous studies have shown that explanations are
crucial for thinking and reasoning tasks, in which the
explanation helps to understand some observation by
drawing upon relevant prior knowledge. However, our
findings suggest that explanations are not merely
information couriers, since they also affect performance
(indeed, improve normative responding) on even very
simple tasks where additional information is not at all
useful. Based on these results, we suggest that one role
explanations play in cognition is to help to organize a
person’s understanding of a situation or event, so that
having an explanation leads to differences in behavior
relative to not having an explanation.

How Explanations Might Structure Understanding

As we mentioned earlier, explanations may help to shape
our understanding of an event in many possible ways. The
goal for our discussion is to consider a few possibilities in
more detail, and to suggest how future research could
explore their implications.

Increased Rational Responding One possibility is that
giving an explanation for the differences in the event
likelihoods tended to engage more analytic processes in the
Explanation condition than in the No Explanation condition.

In effect, this might have raised the number of participants
in the Explanation condition who thought deeply about the
task and decided consciously to endorse the normative
strategy—to choose the more likely event on every trial.
Previous research shows that people using the normative
response pattern do tend to be higher in cognitive ability,
suggesting a relation between high-level reasoning and
normative responding (West &  Stanovich, 2003).
Conveniently, this pattern could be observed in the data by
comparing the number of strictly normative participants in
the two conditions.

In fact, we found very small and highly similar levels of
normative participants across conditions. In Experiment 1,
both conditions had 1 such participant. In Experiment 2, we
found 3 and 2 normative participants in the Explanation and
No Explanation conditions, respectively. In Experiment 3,
we found zero normative participants. These data suggest
that the explanation condition was not more likely to
endorse the normative strategy, suggesting that a shift in
rational reasoning was does not account for the effect.

Mental Simulation Another possibility is that having an
explanation for the difference in outcome likelihoods allows
one to mentally simulate the event (e.g., the coin flip) before
each prediction, and this leads to a bias in predicting the
more likely outcome, perhaps because it is more natural to
simulate. This account applies to Experiments 1 and 2,
where the coin flip is a discrete, simulable event, but less to
Experiment 3 where simulating the relation between the
shape of a blood cell and a medical trait seems less natural.
Whether or not all cases of explanation affecting
performance are due to mental simulation, there are ways to
test the role of simulation in explanation-based predictions.
For example, one could directly manipulate the ease of
simulating the events and look for an influence of
simulation ease on levels of normative responding. Another
method is to have participants perform a task that would
either facilitate or work against the particular simulation
(see Barsalou, 2008, for a review of simulation effects),
where the prediction is that simulation-consistent behaviors
lead to more predictions of the likely outcome. Current
studies in our lab are beginning to address these issues.

Strength and Believability Previous research shows that
the strength, or believability of an explanation impacts
judgments related to the explananda. For example,
Fugelsang et al. (2004) gave people either a strong or weak
explanation for the relation between some causal variable
and an outcome and then had people observe contingencies
between the variable and the outcome. After viewing the
same contingency data, people with a stronger explanation
gave higher ratings of causal power than those with a weak
explanation. If explanations affect judgments of causal
power, they might also affect sequential predictions.
Specifically, people with a stronger explanation may predict
the more likely outcome on a greater number of trials than
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those with a weak explanation. Along the same lines, one
could view our No Explanation condition as the Extremely
Weak Explanation condition, in which case our current
results are attributable to explanation strength.

A simple way to test this idea is to generate explanations
with more and less strength and look for differences in
performance as a function of strength. Also, to test the role
of strength in our current in experiments, one could ask
participants before the prediction task for an estimate of the
number of trials the more likely event will occur. If
estimates of frequency parallel causal power judgments,
then one would predict higher frequency estimates in the
Explanation Condition than the No Explanation Condition.
We are currently running a version of Experiment 2, where
in place of the predictions task, people estimated how many
trials (out of 100) the picture of the person would appear.
Considering only people who gave an estimate greater than
50 (those who understood from the instructions that the
person would appear more often), the average estimate from
the Explanation condition is 68.4 (SD = 9.4) compared to
69.5 (SD = 5.8) in the No Explanation condition, which is
not a significant difference, #(20) = .37, p > .1.

In each of the accounts we considered, the explanation
was purported to structure the task by adding cognitive
resources other than particular, task-relevant information.
Whether these resources include general reasoning
procedures, mental simulations, or top-down biases for
interpreting data, the simple presence of an explanation
appears to be a catalyst for higher cognitive processing.
That is, explanations affect the structure, as well as the
content, of thought.

Conclusion

Explanation is a powerful cognitive function. Previous
research on explanation has concentrated on the ability of
explanations to call upon relevant knowledge to improve
our understanding of some event, and this knowledge often
affects people’s judgments in related tasks. Although we
agree that explanations are crucial for connecting everyday
observations to knowledge, we suggest that explanations
have other functions beyond adding relevant information.
Explanations may shape our understanding of events and
scenarios, such that behavior in related tasks is often
different (and sometimes normatively improved) compared
to behavior without an explanation. Future research will
need to explore this view with developments in theory and
new empirical findings.
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