Modeling the Role of Memory Function in Primate Game Play

Michael H. Coenl’z, Vandhana Selvaprakashz, Angela M. Dassow’ » Shelley Prudom’, Ricki Colman’, and
Joseph Kemnitz*”

Department of Biostatistics and Medical Informatics'

Department of Computer Sciences?

Department of Zoology3

Department of Physiology4

Wisconsin National Primate Research Center’
University of Wisconsin, Madison, WI 53706
{mhcoen, vandhana}@cs.wisc.edu, {amdassow}@wisc.edu, {sprudom, rcolman, kemnitz}@primate.wisc.edu

Abstract

In this paper, we present a novel interpretation of the role of
forgetfulness (i.e., memory impairment) in understanding
game play in primates. Specifically, we examine how two
primate species play a variant of the Wisconsin Card Sorting
Task (WCST), a widely used clinical assessment game for
measuring neurological and cognitive function. Our goal is to
understand the role that memory plays in both learning and
subsequently playing this game in humans and rhesus
monkeys (Macaca mulatta). We are also interested in
clustering these two populations based on their forgetfulness.
This enables establishing baseline correspondences for cross-
species comparison of memory function between different age
groups, with the intention of enabling translational clinical
treatments for a host of pathologies that involve memory
dysfunction, such as senile dementia and Alzheimer’s disease.
Doing so requires a more in-depth understanding of the role
memory plays in cognitive tests like the WCST, which we
provide here through computational modeling. We also show
this model surprisingly provides a clear indication that
learning of an unknown game has actually occurred. It
thereby disputes earlier monkey studies on a variant of the
WCST by providing evidence their subjects never actually
learned to play the game on which they were being evaluated.
The model also demonstrates that the effect of memory
impairment on game performance is highly non-linear. We
find memory degradation has little gradual effect; rather, it
shows a steep response past a threshold value, which has
strong implications for understanding the dynamics of human
aging.

Keywords: Game Learning; Memory Function; Cross-
Species Cognitive Studies; Translation Medicine; Human
Aging.

Introduction

Few topics evoke a fear of aging as does loss of memory.
However, one may ask whether this fear is realistic. While
it is often the case that the extraordinarily aged suffer both
cognitive and memory related impairments (Boone et al.
1990), what is the impact of a gradual impairment in
memory function? Is it the case that all young people share
near-perfect recall and that this ability deteriorates as a
linear function of their age? Does any loss in memory
imply a direct loss in cognitive function?

We may also wonder about other species of primates.
What age related memory changes do they experience and
are these similar to ours? More importantly, if we found
some way to treat memory dysfunction in another species of
primate, would that treatment translate to people? However,
without a basis for comparison, it is difficult to gage
“normal” as opposed to “abnormal” memory function across
different species.

In this paper, we examine these topics, in the framework
of a variant of the Wisconsin Card Sorting Task (WCST).
This memory-based clinical test is widely used to assess
neurological and cognitive function in people, and its
variants are now being explored in the non-human primate
world. We introduce a computational model of this game
that provides a number of surprising results. Our work
confirms the findings of (Fristoe et al. 1997) that memory
impairment has a highly non-linear impact on performance.
We also found that the variance of forgetfulness among
healthy young adults is enormous. In other words, many
young adults have relatively poor memories but the assays
for detecting this are not informative, as these impairments
have little detectable functional impact.

While formulating this model, we also wondered about
the separate roles of memory in learning as opposed to
playing a novel game. To our surprise, we found that we
could reliably detect when a subject has learned a new game
by modeling their forgetfulness while playing it. This led us
to reexamine previous work on rhesus monkeys playing the
same game and determine that they never actually learned to
play the game on which they were being evaluated. We also
examine how to improve the experimental paradigm to
enable a far more informative set of cross-species cognitive
studies, towards establishing a baseline for translational
medical research.

The Conceptual Set Shifting Task

The Wisconsin Card Sorting Test (WCST) is a standard
clinical task used to assess cognitive function, particularly in
cases of frontal lobe damage, memory impairment, and
senile dementia (Milner 1964; Lezak et al. 2004). The
original game is described in Figure 1. In this paper, we use
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Figure 1: The Wisconsin Card Sorting Test (WCST). The
player’s task is to draw cards from a deck and match them with
one of four displayed cards corresponding to a secret concept
(one of shape, color, or number) of the examiner. So, for
example, if the examiner cares about shapes, the player must
pair correct shapes on cards drawn from the deck to those on the
displayed cards. The player receives positive or negative
feedback after each card is placed. After some number of
correct placements in a row, the examiner secretly changes his
target concept. (From Milner 1964.)

a simplified version of the WCST known as the Conceptual
Set-Shifting Task (Moore et al. 2005), illustrated in Figure
2. This game removes one of the shapes (the “plus sign”)
used in the WCST, and more importantly, changes the
structure such that playing the game does not require verbal
elucidation of the rules, which is required for evaluating
non-human subjects.

In the Conceptual Set-Shifting Task (CSST) (see Figure
2), there are six possible target concepts, namely: triangle,
star, circle, red, green, and blue. The opponent selects a
single concept without revealing it. The player is then
shown a display that contains three objects. Because each
object has both a color and a shape, the game guarantees the
target concept is always contained in some displayed object.
(Namely, the number of concepts (6) = the number of
displayed objects (3) x the number of features/object (2).)
Each guess receives immediate feedback from the opponent
indicating whether it contains the target concept.

The player's goal is to select an object containing the
target concept some number of times, e.g., ten, in a row.
After this, unbeknownst to the player, the opponent selects
some other target concept, in what is known as a concept
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Figure 2: The Conceptual Set-Shifting Task (CSST). In this
example, the opponent’s first target (or secret) concept is
triangle. The player is shown each board in succession. His
goal is to guess a shape — indicated with a dotted circle —
containing the target concept. After the player has correctly
guessed the target concept some number of times, the opponent
changes to a new secret concept, here, red. This change is
called a concept drift. Shapes are labeled with R, G, or B
indicating their respective colors.

drift. As a result, the player must first realize his previous
answer is no longer correct and then determine what the
new concept is. These games are widely studied to
determine the presence of perseverative errors (Lezak et al.
2004), namely, the inability of a subject to successfully
adapt to a concept drift; these types of errors are indicative
of a wide range of clinical pathologies.

However, in this paper, we are interested in using the
CSST to study memory and learning in the context of an
unknown game. Although some variants of the WCST
provide verbal explanation to human players, there is no
way to provide such instructions to non-human primates.
Thus, no player (human or otherwise) of the CSST in our
experiments receives any information about the game in
advance. The game therefore has two distinct components:
(1) learning its rules; and (2) playing it successfully after
rule acquisition occurs.

A Machine Learning Perspective

This type of game is often considered an online learning
scenario in the machine learning community. It is typically
viewed as an adversarial situation, where the opponent
changes the concept as soon as he is convinced the learner
has acquired it, which is known as a concept drift.
Although it is sometimes helpful to view the CSST as an
online learning game, in clinical settings test givers will
often simplify the game if a subject is having difficultly
acquiring a concept. This may involve reducing the number
of required repetitions, reducing the number of trials, or
limiting the number of different concepts. In our scenario,
these are all fixed. We believe, however, that the number of
required repetitions was selected without an appreciation
that it is far larger than necessary. Requiring ten repetitions
reduces that amount of collected data without providing any
additional benefit.  In fact, the expected number of
selections for reaching a concept drift by random guessing is
88,572. (This is determined via a recurrence over the
expected value: E(i) = 3+3E(i—1), for i=10.) We propose
future experiments lower this number significantly; five or
six correct guesses in a row would certainly be sufficient to
insure learning had occurred.

A Computational Model of Game Play

Writing an algorithm to play the CSST optimally as an
online learning game is straightforward and algorithms
are presented in (Zhu et al. 2008; Coen et al. 2009).
However, people and monkeys, whether healthy or
infirmed, do not play the CSST optimally. We assume
this is due to boredom or distraction in all players and
organic brain disorders in players with underlying
pathologies. We therefore model a notion of
forgetfulness by modifying the algorithms presented in
(ibid.). This algorithm is presented in Figure 3 and we
now examine it in more detail.

Let h = (f;,..,f;) be an object with d Boolean features,
representing our hypothesis about the target object. In
the CSST, d = 6, representing the six possible target
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1. Initialize hypothesis h = (1,1,1,1,1,1).
2. Randomly select object x e {x,, X,, X, }
where x = argmax|h A x| (The maximally informative x)

3. Ifxiscorrect, h=hAx

4. If x iswrong, h=hA—x.

5. Ifh =0, go to step 1, as there has been a concept drift.
6. Ifrand() < p, setsome 0 in h to 1. (Forget something.)

Figure 3. Our algorithm for playing the CSST with forgetfulness.
(2) In the beginning, the player initializes his current hypothesis h
to include all possible target concepts, entertaining the notion
they are all equally valid. (2) At each subsequent step, he selects
an object that provides maximal information, based on what has
been so far deduced. Suppose the selected object is green
triangle. (3) If that guess is correct, he knows the target must
either contain green or triangle, so his hypothesis can
immediately be set to (0,1,0,1,0,0). (4) If the guess is wrong, he
knows that neither of these is the target feature, so he can remove
them from his hypothesis. Once the player has narrowed his
hypothesis to a single feature, it is necessarily the target concept
of his adversary, so he may repeatedly guess it. (5) However,
following a concept drift, he will likely need to reset his space of
possible guesses to once include all features. (6) Also, the player
will occasionally forget that some feature has been previously
ruled out in this round.

concepts of red, green, blue, triangle, star, and circle.
For example, a red triangle has the feature vector x =
(100100). We define a concept as a feature vector with
exactly one non-zero value, namely Yfi=1; for example
green has a concept vector (010000). In our game, the
opponent picks a target concept and the player's goal is
to guess it.

At each stage of the game, the player is presented with
d/2 objects, each of which contains 2 features
corresponding to color and shape. Therefore, for each
object, ¥fi=2, as an object may only have one shape and
one color. By the definition of the CSST, the three
objects' features are mutually exclusive, implying ¥fi =6
over all three displayed objects. In other words, the
target concept is always shown to the user on the
display; it is therefore always possible to guess the
correct answer.

In step (6) of the algorithm, we incorporate a
forgetfulness parameter p, which indicates the likelihood
of resetting some previously ruled out feature in our
candidate hypothesis h from 0 back to 1, making it once
again a plausible choice. This captures our intuitive
notion that players will forget concepts that have been
ruled out due to a variety of reasons. We represent
forgetfulness stochastically, using a function rand() that
uniformly draws at random from [0,1]. If the value of
rand() < p, the algorithm forgets something it has
previously learned.

The CSST proceeds in rounds. The player must guess the
correct concept some number of times in a row; here, this
number is ten, corresponding to the length of a round. After
this, the opponent selects a new target in a concept drift, and

the game repeats. The game ends after four concept drifts,
corresponding to five rounds of play.

Experimental Methodology

Humans

The CSST was administered to 55 young adults, between
18-30 years old. These were comprised of a population of
graduate students from multiple institutions and young
professionals. The players interacted with the game via a
web browser under supervision, intended to eliminate
distractions from external influences such as e-mail and
instant messages. The humans receive a minimum of verbal
instruction, namely asking them to sit down and interact
with the browser. Humans have no difficultly latching onto
the notion that the experiment involves clicking on
displayed objects and receiving feedback. Selections are
immediately rewarded with visual feedback in the form of
emoticons.

Monkeys

While humans are quite familiar with interacting with icons
displayed on a computer screen, this is very much a new
experience for the macaques. A group of eight elderly
macaques were therefore trained to use a touch screen
apparatus, similar to the system described in (Voytko 2002).
These monkeys were on a calorie-restricted diet, as part of
an effort to gage the effects of reduced caloric intake on
their cognition. Rewards were therefore given in the form
of highly desired banana pellets, and negative feedback
consisted of a dissonant sound.

The monkeys went through an involved series of training
steps that taught them to: (1) touch objects on the screen; (2)
disregard the position of objects on the screen; and (3) learn
to associate particular objects with a reward when multiple
candidates were displayed. In this sense, the monkeys had
to acquire an inductive bias for playing the CSST that was
already assumed by people familiar with computer
interaction.

We note the monkeys only played four rounds of the
CSST while the human played five. This distinction has no
impact on our results, but as we discovered humans play
faster, we decided to gather more data from them.

The Role of Memory in Game Performance

We note the algorithm in Figure 3 already assumes the
player knows the rules of the game. However, this is not the
case with either our human or monkey population. Neither
species knows the game’s rules in advance and part of the
problem is simply figuring out what is going on during play.
The question of modeling learning using an informed
algorithm is examined in depth in (Coen et al. 2009). Here,
we simply note some basic conclusions of that work.

First, to examine the effects of different values of p, we
ran 10,000 simulations of this algorithm playing the CSST
for 100 different values of p ranging between 0 and 0.8.
The results are shown in Figure 4. From these simulations,
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Figure 4: Mistake per trial as a function of p. We ran 10,000
simulations of our algorithm playing the CSST for 100 different
values of p to determine how forgetfulness affects the number of
errors per trial. This allows us to construct a reverse lookup table,
so we can determine an individual’s forgetfulness p by observing
how mistakes he makes. This curve fits the function
y = 1222x°-310x%+35.2x+2.1, with R? = .999.

we constructed a reverse lookup table, whereby observing
the number of errors per trial made by a player, we can
determine the forgetfulness p corresponding to this number
of mistakes. For example, if p = 0, we expect the player to
make 2.1 errors on average, corresponding to optimal play.
If p = .25, namely, % of the time we expect the player to
forget something he has learned, there will be approximately
12 errors per round. Thus, we can determine a subject’s
forgetfulness simply by looking up his number of mistakes
in our table of p values constructed from these simulations.

For each subject, we recorded all data corresponding to
their play over all rounds of the CSST, including their
selections and timing information. Using each player’s
number of mistakes, we computed his derived forgetfulness
value p, using our lookup table. An aggregate view of the
distributions of forgetfulness values p for the human players
is contained in Figure 5.

We note a very interesting cognitive feature displayed in
this graph; namely, relatively large increases in
forgetfulness p (represented by circles) have little effect on
observed performance (represented by triangles) below a
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Figure 5: Contrasting p and mean errors per round. The aggregate
results for the 43 human subjects who were able to learn the
CSST. The p values were computed from the lookup table
constructed above. The two horizontal lines show the average and
worst case performance of the algorithm above, assuming p = 0,
corresponding to perfect play.

threshold. In fact, only when features are forgotten 15% of
the time does the number of errors surpass the worst case
performance of the optimal algorithm. When p surpasses
20%, performance deteriorates markedly. This sudden
deterioration is functionally due to p fitting a cubic
polynomial, but it mirrors human age-related impairment
quite well. It also suggests that medium grade memory
impairment has little impact on performance in these types
of games. We discuss these implications further below.
Surprisingly, we found we can also use these p values to
determine when an individual has learned to play the game.

The Significance of p in Game Learning and
Game Play

As we mentioned above, there are two stages to playing the
CSST in our scenario. First, subjects must acquire the rules
of the game simply by playing it. This has two distinct
components: (1) figuring out how to get through a round,
namely, determining how to consistently receive rewards;
and (2) adapting to concept drifts, where the previously
rewarded concept must be abandoned in favor of a new one.
Subsequently, they must play the game according to these
rules. We found that the transition from learning to playing
is detectable, even without knowing how the subjects are
learning the rules.

We note that the aggregate view in Figure 5 combines two
distinct stages: (1) that of learning the game and (2) that of
playing the game. Instead of viewing the data en masse, let
us examine the mean p values for the human players over
the individual rounds of the CSST, as in Figure 6. We see
that p undergoes a sudden transition between rounds two
and three, marking a noticeable increase in performance. It
is at this point we consider the subject has learned the rules
of the game. Subsequent decreases in p in rounds four and
five reflect improved asymptotic performance.

Although we intended p to represent forgetfulness in the
algorithm in Figure 3 — which models an expert player with
imperfect memory — it is difficult to view it this way before
the novice player even knows what needs to be
remembered. Thus, we find that p has two distinct
interpretations. When the player is just learning the game,
assuming p represents forgetfulness is not meaningful, as
the player has not yet learned what is important to
remember. Instead, we take p to represent a learning rate.!
In essence, a person with no knowledge of the game acts
like a player who forgets 15% of the time; but this player is
not forgetting, he is learning. However, once the player has
acquired the rules of the game, p drops substantially. We
can establish this further by superimposing the average time
taken per move in each round, as shown in Figure 8. The

! We note the term “learning rate” is used by a variety of
disciplines. For example, in machine learning, it is a parameter
that determines the rate of algorithmic convergence. Its use here
appears justified, as it captures the empirically observed amount of
time and effort necessary for a subject to acquire the game’s rules.
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Figure 6: How p changes by round. Examining the mean value
of p over our 43 human subjects, we note the sudden transition in
p between rounds two and three. We associate this with the
subject having acquired the rules of the game. From this
perspective, the pre-rule version of p reflects an initial learning
rate and the post-rule version of p reflects the intended measure
of forgetfulness.
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Figure 8: Contrasting time per move with p. Human subjects on
average spend the most time per move in round two, as they come
to understand the game they are playing. We call this the primary
learning stage. Once this occurs, the delay drops precipitously,
while the accuracy simultaneously increases. We believe this
demonstrates the subject has learned the unknown game.
(Performance improvements beyond this point are asymptotic.)

players spend the greatest amount of time deciding moves in
round 2, after which the time per move drops precipitously
along with their error rate. We believe this demonstrates
that the game’s rules have been acquired. At this point, p
takes on its intended value representing memory function, as
in the algorithm above. Simultaneously, players can now
move very quickly, as they understand the rules governing
correct move selection. This transition in p therefore
mirrors the transition from a subject learning a game to the
subject playing that game. We are thereby able to determine
when a player has actually learned the CSST.

We may contrast this with data obtained from Zhu et al.
(2008) describing rhesus monkeys playing the CSST. The
poor performance of the monkey population described in
that paper was attributed to a high number of perseverative
errors due to age-related cognitive impairment. However, it
was also hypothesized that perhaps the monkeys were not
given a sufficient chance to actually learn the game. By
examining the transitions of p over the rounds, shown in
Figure 7, we see the complete absence of any transition in p,
indicating that learning had not occurred yet in the
monkeys. Thus, the data appear to describe the monkeys
learning rather than playing the game.

Variance of Memory Function in Young Adults

We have proposed a method to estimate memory
impairment in a subject, using the forgetfulness parameter p
as a proxy in our computational model. Thus, even in cases
where the impact of the impairment on performance is
slight, and perhaps even close to negligible, we can estimate
p for a given player.

Previous work on the WCST found that while age effects
are detectable, they are generally inconsequential for
subjects less than 70 years of age (Boone et al. 1993).
Similarly, a group comprised of octogenarians performed
significantly worse than younger subjects (Haaland et al.
1987). Causally, age related differences in WCST
performance have been attributed to impaired working
memory for adults 60 to 86 years of age (Fristoe et al.
1997).

We are unaware of previous work on the characterization
of memory impairments in young adults; to the best of our
knowledge, this is the first work to suggest that young
adults also suffer from varying levels of memory
impairment. However, this variance is quite difficult to
detect. This is because the assay is insufficiently sensitive
in the range of relevant p values due to its non-linearity.

The transition of p during learning

Forgetfulness p

T 2 B 4
Round number

Figure 7. How p changes by round for rhesus monkeys. The mean
values for all monkeys is shown by the bold, blue line. Note that
there is no sudden decrease in p, as there is for people in Figure 6
above.

(A) Learning rate clusters: 5 (B) Forgetiulness clusters: 5
“ © ®

0 u a0

) W 0 0
T Subject Number

Subject Number
Figure 9. Viewing the variance in human learning rates and
forgetfulness. (A) Clustering subjects based on their learning
rate. (B) Clustering subjects based on p measuring forgetfulness
after learning the game. Identically colored points represent each
cluster, where the point size is indicative of the cluster size.
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However, our computational model allows us to extract
individual p values, which we then clustered using the
Affinity Propagation algorithm (Frey and Dueck 1997) as
shown in Figure 9.

The benefit of clustering is that it allows us to
characterize variations in p and determine its variance
across our sample population. Thus, we see that in both
learning and playing the game, we can clearly distinguish
different degrees of memory impairment in a sample of
young adults.  This is possible even though their
performance on the CSST is quite similar and near optimal
in many cases.

One can therefore say that our model provides a more
sensitive measure of memory dysfunction than the clinical
assessment it is modeling. This is demonstrated by the
clustering in Figure (9b), where p corresponds to
forgetfulness, as discussed above. In the clustering on the
left in Figure (9a), p corresponds to learning rate, which is
not measured by the CSST or the WCST. However, we can
also see differential ability here, but whether it is
attributable to memory or some other cognitive function(s)
is unknown.

We note in the memory-based clustering (9b) that the first
and largest cluster (red and leftmost) contains subjects who
play near optimally — they have an average rho value of 5%,
and made 2.67 mistakes per trial on average. The fifth
cluster on the far right consists of a lone subject who made
94.2 mistakes per trial on average.

Of the 55 human subjects, six were unable to reach the
first concept drift, which we attributed to disinterest and
removed them from further consideration. Of the remaining
49 subjects, only 43 were able to finish the CSST. To our
great surprise, six appeared unable to learn this game in the
number of rounds allotted. Several of them made hundreds
of moves per concept, yet were unable to latch onto the
correct set of rules leading to a concept drift.

Conclusions

The goal of this work has been to establish cognitive
baselines between human and rhesus monkey performance
in the Conceptual Set Shifting Task. Our hope is by
understanding how performance in one species relates to
that of the other, we can enable translational medical
approaches to the wide range of human disease pathologies
affecting memory. Doing so required a far more in depth
understanding of the role of memory in the CSST and other
cognitive assays. We therefore developed a computational
model to describe the role of memory in playing these
games at a fine level of detail.

This work has lead to unexpected conclusions about how
humans learn and play unknown games, the high degree of
memory variance in young adult populations, and the need
for simpler experimental frameworks to derive meaningful
data from non-human primates. Regarding the latter point,
using a smaller number of repetitions per trial would likely
enable the monkeys to transition from learning to playing
the CSST.

Our results agree with predictions about gradual
degradation in human performance as a result of memory
impairment, accompanied by a sudden transition reflecting a
significant impact on problem solving. However, our
finding that a high degree of variation in memory function is
common in younger populations presents a new framework
for examining memory and understanding how it changes
over time.
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