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Abstract

The ability to imperfectly but robustly enumerate a set of
alternatives manifests itself in many human activities.
However, many cognitive models have fundamental
difficulties with this task, which often leads to degenerate
behavior. The primary source of this problem is the conflict
between mechanisms of long-term reinforcement and the
need for short-term inhibition of recent items. Our analysis
of a pair of pervasive domains of human activity finds that
the long-term reinforcement process is balanced by a short-
term inhibition. ~We have implemented this empirical
finding in a variation of the knowledge reinforcement
equation of the ACT-R architecture. This new mechanism
not only prevents degenerate behavior in memory retrieval,
but also emerges as a source of the power law distribution
observed in the environment, supporting the proposition that
the power law distribution arises from the interaction of the
environment and cognition itself.

Keywords: Cognitive Architectures, Bayesian Learning,
Human Memory, Power Law of Learning.

Introduction
A key aspect of many cognitive tasks, including
planning and game playing, involves sequentially

examining and evaluating a number of possible options.
Many everyday tasks also have that characteristic, such as
attempting to name all fifty states of the United States, or
all members of one’s research group.

Such  enumeration is seldom exhaustive and
unstructured. For instance, even (or especially) chess
grandmasters seldom evaluate more than a few potential
moves in any given position. Also, people’s ability to
enumerate large sets of objects also tends to be limited to a
small number of items before repetition sets in, unless they
resort to domain-specific strategies (e.g., relying on
geographical or alphabetical order to name the 50 states).

However, as limited as this enumeration capacity might
be, it also turns out to be highly pervasive and problematic
for many current computational models of cognition. Many
modern cognitive architectures and frameworks, unlike
earlier models such as production systems (e.g.,
McDermott & Forgy, 1978), do not include explicit control
mechanisms such as refraction, a mechanism that
temporarily prevents the reapplication of a just-performed
action, such as retrieving a specific piece of information.
Even more problematic, some of those architectures, e.g.,
ACT-R (Anderson & Lebiere, 1998; Anderson et al.,
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2004), include mechanisms that reinforce a piece of
information after it has been accessed, making it even more
likely to be accessed in the future. Young (2003) has
pointed out that the lack of refraction, together with those
reinforcement mechanisms, can lead to pathological
behaviors such as out-of-control looping where one piece
of knowledge becomes so active that it is constantly
retrieved at the expense of others.

This problem has also occurred in even more serious
form in the development of higher-level languages that
include implicit or explicit retrieval loops for checking
logical conditions often involving universal quantifiers
(Jones, Crossman, Lebiere, & Best, 2006; Jones, Lebiere,
& Crossman, 2007). Nested loops are particularly difficult
to deal with because they invalidate many of the potential
attempts to deal with the problem. Of course, this kind of
processing is cognitively very difficult, and people
certainly don't perform it perfectly or completely, but they
usually manage to accomplish the task to some extent
while avoiding the pathological behavior often exhibited
by the cognitive models. While modelers can often
prevent such behavior by carefully crafting their models to
imbed clever strategies reflecting their meta-knowledge of
the task, such knowledge engineering methods lack
cognitive plausibility.  They also contribute to the
brittleness and lack of portability of cognitive models when
they are transferred to real world situations that lack the
predictability, static nature, constrained scale, and limited
complexity of laboratory experiments.

What is needed is an understanding of the human ability
to enumerate a limited set of alternatives. Specifically, we
need to analyze the environmental, cognitive and neural
constraints that allow us to balance the long-term desire to
reinforce more commonly accessed items to facilitate
future retrievals together with the short-term need to avoid
iterated retrievals that lead to looping behavior. These
constraints, of course, must include those that come from
observing human behavior. The constraints then need to
be implemented in computational form that integrates with
the other architectural mechanisms to provide the proper
functional characteristics that allow the cognitive models
to display the same robustness and adaptivity, as is
commonly exhibited by human experimental participants,
without recourse to constant engineering on the part of the
modeler.



Environment Analysis

Following the rational analysis approach (Anderson, 1990),
we view the environment as the primary shaper of
cognition. Indeed, it was the analysis of Anderson &
Schooler (1991) that led to the reinforcement mechanism
in ACT-R that is largely responsible for the degenerate
behavior described above. The primary insight of that
analysis was that the odds of an item appearing in many
common contexts such as email correspondence or
newspaper headlines increased as a power law of
frequency and decreased as a power law of recency. The
latter, in particular, provides a boost in activation after an
item is accessed, leading to a much higher probability of
immediate subsequent retrieval unless that item is
specifically excluded, such as through explicitly marking
conditions on retrievals or tagging by a mechanism such as
a declarative version of visual finsts (Pylyshyn, 1989). It is
fair to ask what we might add to the prior analysis of
Anderson and Schooler. Significantly, that analysis used
domains that were not directly relevant to (or specifically
excluded data related to) the short time scales of interest
here. Therefore, we will follow the same rational analysis
methodology in analyzing domains involving the
consecutive access of large numbers of items, but rather
than exclude items processed at short intervals, we will
focus on them. We have selected two such domains that
are pervasive in human activity and provide large amounts
of regular data for such an analysis: language processing
and arithmetic computations.

Language

To be able to draw broad and robust conclusions, we
analyzed a broad array of text corpuses, from a scientific
book chapter and proposal (about 30K words each) to
classic books such as Dickens’ “A Christmas Carol” (about
100K words) and Joyce’s “Ulysses” (about 300K words)
and a large section of a reference book, the Encyclopedia
Britannica (about 300K words). Figure 1 plots the odds of
a given word appearing a certain number of words after its
previous appearance (a.k.a. lag), averaged over all words
of each text. The plot is on a log-log scale in order to
easily display the expected power-law relations.
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Figure 1: Odds of appearance as a function of lag
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As observed, the relation is largely invariant of corpus,
with statistically insignificant variations for very short lags
(especially 1, which reflects infrequent word repetitions).
For lags of 10 or more, the curve is roughly linear, i.e. the
odds decrease as a power law of lag as in the original
analysis. However, for short lags, the odds of appearance
gradually deviate from the power-law, with a precipitous
decline for immediate word repetitions (i.e. lag=1). This
deviation can be interpreted as an inhibition of return in the
environment that should be reflected in the appropriate
cognitive mechanisms, inasmuch as it is the opposite
dynamic to the current short-term reinforcement.
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Figure 2: Odds of 10 most common words

We performed a more detailed analysis to rule out the
possibility that this result was an artifact of grammatical
rules or irregular words. Figure 2 establishes that the
pattern holds for the ten most common words, albeit with
additional noise resulting from the smaller sample size.
Those words should probably be excluded because their
syntactic roles are usually distinctive enough to result in
procedural rather than declarative processing (if they are
processed at all — articles are often not lexically processed).
An important question is whether this pattern holds for less
common words, and whether the period of inhibition is
sensitive to word frequency. To answer that question, we
categorized the words by frequency of appearance.
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Figure 3: Odds by word frequency in Ulysses



Figure 3 and 4 present a frequency analysis where words
were grouped into five quintiles according to their
frequency in the two largest texts. The curves for each
quintile are parallel, capturing the frequency effects (other
than for the first quintile of most common words at long
lags)'. Both figures, but especially figure 4 (and one
would expect Britannica to be more regular and less
linguistically idiosyncratic than Ulysses), establish that the
inhibition effect is not dependent on word frequency.
Rather, the maximum odds of appearance occur around lag
of 8-10 for all word frequencies. This is an essential piece
of data in constraining the implementation of this
environmental constraint in an architectural mechanism.
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Figure 4: Odds by word frequency in Britannica

Arithmetic

Just as the original analysis by Anderson and Schooler had
demonstrated the long-term statistical patterns over a range
of domains, it is essential for us to show that the short-term
inhibition trends found in the language corpuses are also
present in other environments. As a second domain, we
have chosen arithmetic facts for a number of reasons: it is a
regular domain that like language is shaped by both the
everyday world and formal schooling; it is a semi-formal
domain that is relatively well-understood; and it is a
domain that we have studied and modeled ourselves
(Lebiere, 1998). Arithmetic knowledge, for example, is
decomposed in a hierarchy of types, starting with counting
facts and on to addition and multiplication.  Each
subsequent level of the hierarchy is taught sequentially
(i.e., children first learn to count, then add, then
multiply...) and depends upon the previous ones for
reconstructing the current ones (i.e., addition by repeated
counting, multiplication by repeated addition, etc).
Unfortunately, knowledge of the actual statistical
distributions of access to arithmetic knowledge is not
directly available in the same form as the language
corpuses. Textbooks provide one source of knowledge, but
this source is relatively incomplete. Instead, we decided to

' This reflects, as discussed previously, the special syntactic
role of the most common words that makes them highly likely to
appear regularly and can be ignored for our purposes.
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rely upon our validated cognitive model of the lifetime
learning of arithmetic facts, and in particular its
assumptions about the distribution and frequency of
arithmetic facts. To avoid being overly dependent upon
those assumptions, however, we studied in particular the
statistical requests generated for one type of fact (counting)
by another type (addition). This allowed us to reflect both
the statistics (in terms of the distribution of addition
problems) and the structure of the domain in terms of the
requests for counting facts generated in solving addition
problems by backup computation. Figure 5 displays the
odds of a counting fact being accessed as a function of the
lag since the previous access:
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Figure 5: Odds of access to counting fact as a function of
lag in addition by repeated counting problems

All the same patterns evident in Figure 1 are present: an
initial inhibition for short lags, maximum odds slightly
short of a lag of about 8-10, then the typical power law
decay beyond that. As for the language corpuses, we
decided to break down these aggregate odds into
subcategories depending upon the frequencies of the facts
accessed. Figure 6 presents the odds for five quintiles of
decreasing frequencies.
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Figure 6: Odds of counting facts by quintiles

Again, the same patterns as in Figure 3 and 4 are present
here as well: the curves for each quintile have the same
characteristics as the aggregate curves, the maximum odds
are reached at the same lags, and the curves are roughly
parallel except for one. In the language corpuses, the most
frequent quintile was the one exhibiting a different pattern



(a more steeply diving tail) because of the difficulty to
produce text at long lags without mentioning very common
words (e.g., articles). In the arithmetic corpus, the curve
for the least frequent counting facts is the one exhibiting a
different pattern (a flattening tail) because a few rare, large
counting facts repeat at significantly longer lags since they
only occur in a few, infrequent addition facts. For
instance, in the 10x10 addition table, the counting fact
stating that 18 follows 17 will only be needed for the most
rare addition fact, 9+9, since the main statistical effect on
fact distribution is that frequency decreases with size.

Computational Implementation

We now turn to implementing those findings in a cognitive
architecture and combine the resulting mechanism with
other, existing mechanisms to determine their interaction.
We selected the ACT-R cognitive architecture for this
implementation, although the resulting mechanism should
be applicable to other architectures. As mentioned
previously, ACT-R currently uses a number of techniques
to prevent out-of-control retrieval loops resulting from
short-term boosts in activation. A full discussion of those
techniques is beyond the scope of this paper, but regardless
it seemed that the solution to the problem should lay in the
same location as its source, namely in the equation derived
by Anderson & Schooler (1991) that describes the learning
of the activation value of memory chunks as a function of
history, specifically:
n

B, =log E 1}
=1

The summation over all past n references to a chunk i,
implement the power law of practice while the decay of
each reference j as a function of time since reference ¢ and
decay rate d implements power law decay. However, as
our analysis shows, those effects are only valid over longer
time intervals, as exemplified by the linear trend in the log-
scale graph of odds of appearance as a function of lag since
the last appearance (e.g., see Figure 1 and 5). In the short
run, within a lag of 5 to 10 appearances, there is a
substantial decrease in odds of appearance that could be
captured by a short-term inhibition mechanism. This effect
is precisely what we are looking for to prevent out-of-
control reinforcement where retrieval leads to a large short-
term activation boost, which in turn leads to more retrieval,
and so on until the system ends up completely deadlocked.
A short-term inhibition component in the base-level
activation learning equation would actually result in lower
activation for the next retrieval(s), which would prevent
the same chunk from being retrieved again and give other
chunks a chance of being retrieved instead. This is exactly
the functionality needed to implement many key patterns
of behavior (e.g. Jones, Lebiere & Crossman, 2007) such
as the ability of evaluating a set of alternatives.

We experimented with a number of different possible
variations of the base-level learning equation, including
power-law and exponential decay for the short-term

Base-Level Learning Equation
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inhibition component as well as different ways of
combining the traditional reinforcement and the new
inhibition factors. We have found the following form to be
the most suitable in terms of both its functional properties
and its ability to reproduce the data:

n —-d,
B, = logE t;d - log(l + Ly ) New BLL Equation
Jj=1 ts

The “1+” component of the new term is necessary to make
sure that it has a strictly inhibitory effect, i.e. the sum is
also greater than 1 meaning that the log is always positive.
One can see that the new inhibitory term added is similar
to the reinforcement term in being a power-law decaying
term. However, this term only takes into account the most
recent reference. Two new parameters have been added: a
short-term decay rate d; and a time scaling parameter .
Figure 7 displays the effect of this new term on the base-
level activation and the effect of the new parameters. The
first curve (BLL) displays the standard base-level curve,
linear in log-log space. The second curve (PL(0.75;10))
displays the new base-level learning with a short-term
decay rate of 0.75 (compared to the standard decay rate of
0.5) and a time-scaling parameter of 10. The proper effect
seems to be generated but too weakly. The third curve
(PL(1.0;10)) shows the effect of increased decay on the
short-term inhibition, with a probability of retrieval at lag 1
roughly equal to that at lag 100, and a peak around lag 10,
as generally observed in the data of Figure 1. The third
curve (PL(1.0;5)) shows that decreasing the time scaling
parameter from 10 to 5 effectively moves that peak from
around lag 10 to around lag 5. It seems that the parameters
of the second curve (short-term decay of 1.0 and time
scaling constant of 10) are about right. The final two
curves (PL(3;1.0;10) and PL(2;1.0;10)) show the effect of
assuming multiple past references (3 and 2 times as many,
respectively) as the original curve. One can see that the
power law of practice is maintained at long lags
(significantly above 10) while the difference is
significantly reduced at short lags. The peak lag also
seems to increase slightly with practice. All of these
effects reproduce the data quite well (see previous figures).
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Figure 7: Inhibition effect of new base-level learning



This new equation allows for multiple interpretations. The
main issue is identifying a neural construct this term can be
associated with. The most direct interpretation would be to
associate it with short-term depotentiation known to inhibit
a neuron for a short period of time after its firing. Under
that view, the short-term decay rate is simply another
instance on a very small time scale of past proposals to
introduce multiple decay rates in long-term memory
corresponding to different time scales (Anderson, Fincham
& Douglass, 1999), albeit here of an inhibitory nature. But
another interpretation would be to associate this short-term
inhibition of recently accessed information with its
presence in short-term memory rather than its access in
long-term memory. Under that interpretation, what is
preventing the chunk from being retrieved from long-term
memory is not that it couldn’t be accessed there, but
instead that it is still active in short-term memory, where
access is much quicker and can therefore preempt the
process of retrieval from long-term memory. The short-
term decay rate is therefore the rate of decay in short-term
memory, which is usually assumed to be much faster than
that of long-term memory (e.g., Ridderinkhof et al., 2004).

Behavior

The next question is to determine the effectiveness of this
mechanism in generating appropriate behavior as a part of
the overall architecture. In a simple model of free recall
where a number of chunks compete for retrieval without
any constraint, this new equation has been effective at
preventing out-of-control looping and implementing a
functional, if probabilistic, version of round-robin access.
This capability for declarative retrieval is similar to that
exhibited by a model of procedural selection that learned
production rule utilities to implement a flexible and
probabilistic monitoring loop (Lebiere et al, 2008).
Gradual, seamless transition from declarative to procedural
control is a hallmark of human cognition. An important
benefit of this new form of the base-level learning equation
is to provide the activation calculus in declarative retrieval
with the same sort of inhibition available to procedural
selection through error-correction feedback in production
rule utilities. However, it is relatively easy to show
robustness (or at least non-pathological behavior) under
careful control conditions as implemented by a
combination of the task model and its environment. What
we are looking for is greater robustness that prevents
degenerate behavior even when very little or no control is
exerted upon the model behavior by the control structure
provided by the modeler or by the environment itself
(including other agents). That is, we want an emergent
robustness that does not originate from the model control
structure authored by the modeler or that depends on
triggers present in the environment (e.g. in experimental
design) but instead that results directly from the cognitive
architecture and its mechanisms. Having this kind of
safeguard in the architecture would greatly relieve the
burden of the cognitive modelers and allow the
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development of larger, smarter and more complex models
capable of unanticipated (reasonable) behavior.

We therefore put the new base-level learning mechanism
to a stringent test of robustness. Since the problem is out-
of-control retrieval loops, and the traditional solution is a
combination of chunk tagging (or finsts) with
corresponding constraints on retrieval, we focused on a
model of free recall (unconstrained by the environment).
The model is given a fixed set of chunks and asked to
retrieve any chunk without any constraints repeatedly (for
a large number of times). Each chunk starts with the same
initial history, and hence the same activation. The current
base-level learning mechanism would immediately lead to
a loop in which the same chunk would be retrieved over
and over again while all the other ones would be forgotten.
With our new base-level mechanism, however, we
observed that a robust and flexible process of round-robin
retrieval emerged. Figure 8 displays the frequencies of
free recall of each chunk as a function of each chunk’s
rank order of retrieval frequency and the total number of
recall iterations (varying from 100 to 1000 for 10 chunks).
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Figure 8: Frequencies of recall as function of item rank

The results are quite intriguing. The free recall behavior
is neither the traditional degenerate winner-take-all nor its
opposite, which would be an even distribution of recall
frequencies over all chunks. This second extreme, a kind
of perfect round-robin, would be cognitively implausible,
as subjects in free recall experiments do forget some items
and retrieve some multiple times. It might also be less than
perfectly functional, since some items might deserve more
frequent retrieval as a function of their characteristics such
as urgency or rate of change (e.g. Lebiere et al, 2008).
Instead, what emerges is a distribution of frequencies that
slowly grows more uneven as the number of free recall
iterations gets larger. Stronger items slowly emerge as
some are gradually forgotten. What is more remarkable is
that the frequency distribution seems to follow the power
law observed in many natural environments, which is at the
core of the base-level learning equation itself. While this
may seem natural, it was not at all a given since, for
example, the previous base-level learning equation that
also reflected those distributions did not give rise to them



but instead led to degenerate, extreme distributions.
Instead, finding one possible origin of this phenomenon in
the cognitive system itself might provide one important
piece of puzzle that has fascinated cognitive scientists for
decades (e.g. Simon, 1955) and is increasingly viewed as
resulting from an interaction of the environment and
human cognition itself (e.g., Manin, 2008).

Conclusion

It is important to note the limitations of these results.
First and foremost, full validation of this new mechanism
requires showing that it can account directly for precise
behavioral data, which we intend to do by taking existing
models of memory phenomena and removing the
safeguards handcrafted into them by modelers to prevent
degenerate behaviors, and showing that previous results are
preserved. Also, our rational analysis approach does not
claim that this inhibition mechanism created these
environmental effects, rather that our cognitive
mechanisms have adapted to them. However, while other
mechanisms (e.g. application of grammatical and
arithmetic rules) might also be responsible for our overall
cognitive performance in these tasks, the new inhibition
mechanism definitely facilitates that performance. Finally,
one can wonder whether those external task characteristics
(e.g. grammatical rules against repetition, choice of base
10 arithmetic) might not have themselves evolved to reflect
pre-existing cognitive characteristics. Such a determination
would require modeling alternative task variants as well as
performing the same analysis in more naturalistic domains.

We have presented data that demonstrate the reduced
short-term likelihood of recent items appearing again in the
environment and an extension to the ACT-R architecture
that reflects this likelihood and produces more robust
behavior than it did previously. We are currently exploring
a number of additional lines of study. Empirically, we aim
to replicate our findings in other human environments such
as computer navigation, web environments and spatial
navigation.  Neurally, we aim to find correlates of
inhibition in mechanisms such as  short-term
depotentiation. Behaviorally, we want to understand better
how this new mechanism interacts with the rest of the
architecture and which other emergent effects it might give
rise to, such as the spacing effect. This approach underlies
our belief that applying multiple constraints to architectural
mechanisms is the best way to satisfy both scientific goals
such understanding human behavior and practical goals
such as developing more robust cognitive models.
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