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Abstract

Previous group foraging research has shown that human
groups sub-optimally distribute themselves to resources and
display undermatching, with a smaller-than-expected
proportion of individuals at the more abundant resource pool.
In order to further explore these sub-optimalities, we extended
a group foraging paradigm to test three variables: the effects
of three resource pools, travel cost between pools, and the
size of the pools.  Although each condition led to
undermatching, the conditions showed significant differences
in the extent of undermatching, the frequency of switching
between resource pools, the wealth inequality among
foragers, and the comparative wealth inequality at different
resource pools. The results for the three pool conditions
suggest that human groups have difficulty in discriminating
the relative value of resource pools. The results for the travel
cost conditions indicate that human groups distribute
themselves to resources more optimally when individuals can
easily switch between pools, which is the opposite of the
result found with foraging pigeons. Finally, the results for the
pool size conditions indicate that larger pool sizes promote
greater undermatching, apparently because individuals
inefficiently compete over large areas rather than effectively
parceling the pools into smaller, distinct regions.
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Introduction

Goldstone and Ashpole (2004) used a networked computer
experiment to test how human groups distribute themselves
to resources. Participants each sat at their respective
computers and saw an 80 x 80 gridworld where resources
were steadily dropped in two resource pools. In the visible
food/visible agents condition, participants could see both the
food and the locations of the other competitors in the world
as each person moved their avatar using arrow keys to
collect as many resources as possible. In the invisible
food/invisible agents condition, participants could not see
the food or the other participants, but a piece of food briefly
appeared on a participant’s screen if he or she happened to
step on it. Thus, participants could gradually determine the
pool locations and the productivity of each resource pool.
Groups participated in six experimental conditions: the two
visibility conditions crossed with three distribution
conditions (80/20, 65/35, and 50/50 distribution of the
resources to the two pools). Both visibility conditions led to
significant undermatching for the 80/20 and 65/35

distributions, with significantly fewer
foragers at the more plentiful pool.

Goldstone, Ashpole, and Roberts (2005) extended this
paradigm to test the alternative visibility conditions:
invisible food/visible agents and visible food/invisible
agents. Interestingly, the former condition once again
produced undermatching, but the latter condition led to
overmatching, perhaps because individuals could see food
rapidly appear in the more productive pool, and the
individuals were not dissuaded by the presence of other,
invisible competitors. Roberts and Ashpole (2006)
developed an agent-based model, EPICURE, to explain why
undermatching and overmatching occur in the respective
conditions. Essentially, at each timestep, each agent in the
model weights the food density of an area (visible food), the
agent density of an area (visible agents), the Euclidean
distance to each piece of food (visible food), the value of
previous rewards obtained in an area, and whether the area
is along the agent’s current directional heading. Using these
calculations, each agent probabilistically decides where to
move. The model accurately fit the human data from
Goldstone and Ashpole (2004) and Goldstone et al. (2005),
and the further model simulations provided an explanation
for undermatching. Undermatching emerges from the
interaction between foragers’ patrolling behavior and the
rate and spatial distribution of incoming food. When the
resource pools are Gaussian distributions, some foragers can
become disproportionately successful by patrolling the high-
density center of a resource pool.

Goldstone and Ashpole (2004) and Goldstone et al.
(2005) examined the effects of food and agent visibility on
human group distribution, but the foraging literature
suggests that several other variables may have significant
effects.  Sokolowski and Tonneau’s (2004) three pool
human study extended their previous two pool
undermatching results (Sokolowski, Tonneau, and Freixa
Baque, 1999) with simple tokens, and a three pool extension
of the Goldstone et al. paradigm could test perceptual
effects on group discrimination of resources. The Baum and
Kraft (1998) pigeon foraging studies found decreased
undermatching with increased travel distance between
pools, and they also found decreased undermatching by
increasing the resource accessibility with troughs rather than
bowls. These results led us to test six new experimental
conditions using the Goldstone et al. paradigm: three pools
with invisible food/invisible agents, three pools with visible

than expected
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food/visible agents, two pools with low travel distance, two
pools with high travel distance, two pools with low variance
of food placement within a pool, and two pools with high
variance of food placement within a pool. Furthermore,
unlike the previous foraging experiments, we also analyze
the distribution of wealth among participants in order to
determine the factors that lead to “haves” and “have-nots.”

Experiments

Methods

A total of 142 subjects participated in 9 groups of size 10,
15, 16, 16, 16, 16, 17, 18, and 18. Each group was intended
to participate in every condition, but data was only collected
from 7 groups in the low travel condition and 8 groups in
the high variance condition due to networking errors. As in
the Goldstone and Ashpole (2004) and Goldstone et al.
(2005) experiments, each experiment lasted five minutes,
and the order of conditions was randomized. Foragers’
locations, foragers’ earnings, and food locations were
recorded every two seconds. Movement (up, down, left,
right) remained the same, and participants obtained a piece
of food by stepping on its gridcell. Food was delivered
every 4/N seconds, where N is the number of participants.
The instructions emphasized that food appeared in patches,
but they did not reveal the number of patches.

Unlike the Goldstone et. al. experiments, the size of the
gridworld was enlarged to 90 x 90 in order to accommodate
the three pool conditions and still maintain space between
the pools. However, in keeping with the prior experiments,
pool locations were essentially rotations and reflections for
the various conditions, which prevented participants from
guessing the pool locations or comparative pool
distributions at the beginning of an experiment. For the
three pool conditions, all pools were approximately 54 steps
apart, each pool had a Gaussian distribution with a variance
of 5 cells, and pool distributions were 60/30/10. The travel
distance and variance conditions all used 75/25 pool
distributions. For the travel distance conditions, each pool
had a Gaussian distribution with a variance of 4, but the low
travel distance condition had pools at approximately 21
steps apart, while the high travel distance condition had
pools at approximately 67 steps apart. For the variance
conditions, each pool was approximately 56 steps apart, but
the low variance condition had Gaussian pools with a
variance of 3, while the high variance condition had
Gaussian pools with a variance of 9. Thus, the travel
conditions and variance conditions were scaled by factors of
3. Populations in the three pool and variance conditions
were analyzed by labeling anyone within a 20-step radius of
a pool as currently in that pool, while the travel conditions
used a 10-step radius for the pool definition because of the
mere 21 steps separating the pools. The pool definition may
be a bit restricted with respect to the high variance
condition; however, the 20-step radius still accounts for
more than two standard deviations of the Gaussian-
distributed food.
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Figure 1: Non-normalized matching results for the six
empirical conditions

Results and Discussion, Three Pools

Figures 1 and 2 present the non-normalized and normalized
matching results for the respective conditions. The non-
normalized results include the number of foragers who are
outside of both pools on a given time step, while the
normalized results only compare the proportion of foragers
in each pool. Figure 1 shows the familiar undermatching
relationship, with fewer than 60% of the foragers in the 60%
pool. Tables 1 and 2 present the more detailed statistical
analyses. First, AveragePooll measures the average
proportion of participants in the 60% pool for the last four
minutes of the experiment. AveragePooll serves as an
average measure of how well groups match to the more
abundant pool, and it presents a useful comparison across
perceptual conditions. We have excluded the first minute of
the experiments due to the large population fluctuations as
foragers first explore the environment and discover pools.
In parentheses, we have provided the normalized
proportions, which exclude foragers outside of the pools.
An independent samples t-test found that AveragePooll was
significantly higher in the visible food/visible agents three
pools condition than the invisible food/invisible agents
condition, t(16) = -2.59, p < .05, and this result replicates
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Figure 2: Normalized matching results for the six empirical
conditions

the behavior described in the two pool conditions from
Goldstone and Ashpole (2004).

A major advantage of the moment-to-moment data
collection in the Goldstone et al. paradigm is the ability to
track each individual’s performance in addition to the
coarser measures of number of people in each pool. The
second column in Table 1 gives the average probability of a
forager switching pools per second and per experimental
condition. For this measure, we label a switch as anytime
that a forager moved out of the radius of one pool and into
the radius of the other pool, although the forager could
spend intervening time outside of both pools. However, in
contrast with the two pool results, the three pool conditions
showed no significant differences in pool switching
behavior. In fact, the means of both conditions had much
larger magnitudes than the corresponding two pool
conditions from the Goldstone and Ashpole (2004) data (for
the invisible food/invisible agents two pool condition, mean
= .0183; for the visible food/visible agents two pool
condition, mean = .0276), but it is impossible to conclude
whether this reflects greater exploration and adjustment due
to the presence of a third pool, or whether the interleaved
experimental conditions (such as low travel distance and

high pool variance) affected switching behavior in all
conditions. In either case, it is worth noting that the large
difference between the non-normalized and normalized
AveragePooll values is due to the large number of people
outside the pools, presumably as they intentionally switch
pools or explore the environment. By examining the data in
a software viewer that replays the experiments, we have
observed that both conditions have a substantial number of
foragers who seem to treat the entire world as a relatively
undifferentiated patch, and they scan back and forth over the
world in hopes of collecting food. Moreover, that strategy
is not particularly unreasonable if the foragers have little
information to distinguish pools, because the presence of
three pools means that almost every location in the world
has a non-zero probability of getting food.

The last columns of Table 1 provide the mean earnings
for a forager in the time step before instances where the
forager decided not to switch (column 4), versus the time
step before instances where the forager decided to switch
(column 5). This measure uses a stricter definition of
switching and attempts to test whether individuals’
switching behavior is influenced by their recent success,
rather than solely being influenced by current perceptual
information. For this calculation, we examine whether a
forager switched between timestep-1 (the previous time
step) and the current time step. Then we assign the
forager’s earnings between timestep-2 and timestep-1 to the
appropriate column’s total, and subsequently average these
totals for each forager, across foragers in a group, and
across groups in an experimental condition. It is worth
noting that this calculation uses a conservative definition of
switching, in which a forager must directly switch between
pools (without spending an intervening timestep outside the
pools), and it is only calculated over the last four minutes of
an experiment in order to assume that foragers know the
pool locations and intentionally choose to switch. Although
foragers may explore a great deal early in the experiment,
the last columns of Table 1 indicate that switching is clearly
influenced by a forager’s recent success in a pool, rather
than a random or time-limited switching rule (p < .001 for
both conditions). This is consistent with a win-stay/lose-
shift strategy, but simply applying that strategy does not
directly predict the observed differences in undermatching
between the three pool conditions.

The moment-to-moment data collection also provides a
more detailed examination of the wealth distribution among
foragers and between the two respective resource pools.
Table 2 shows the Gini coefficients for the six experimental
conditions. Gini coefficients range from 0 to 1, and a higher
coefficient indicates greater wealth disparities, i.e. some
foragers are disproportionately more successful than others.
The GiniAll measure calculates a Gini coefficient using the
amount of food that each forager collected over the course
of a five minute experiment, and the coefficient is averaged
over groups for each perceptual condition. The two
conditions are not significantly different in terms of the
overall Gini coefficient. Table 2 also provides separate Gini
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Table 1:

... |Average |Switches Earnings Earnings
Condition Non- n
= Pooll |Per Sec. . Switch

— |7/ |switch _
Invis, 358 | .045 .635 369
3 pools (.512)
Vis, 442 | .043 .617 330
3 pools (.588)
High .609 | .0057 .499 NA
Travel (.694)
Low .619 | .046 .564 392
Travel (.727)
High .620 | .018 496 392
Variance | (.704)
Low 705 | .0062 468 337
Variance | (.717)

coefficient results for the 80% and 20% pools in each
perceptual condition. In order to  calculate  these
coefficients, we calculated a rate of food collection for each
forager in each pool. For example, an agent might collect
18 pieces of food in a total of 60 seconds in the 60% pool
(i.e. .3 pieces of food per second) and 4 pieces of food in a
total of 20 seconds in the 30% pool (i.e. .2 pieces of food
per second), and 1 piece of food in a total of 20 seconds in
the 10% pool (i.e. .05 pieces of food per second). For each
time step, a forager was labeled as belonging to the 60%
pool, 30% pool, 10% pool, or neither pool. If the forager
remained in the same pool on the next time step, then the
newly collected food was assigned to that pool. If the
forager changed pools across time steps, then half of the
food earnings were assigned to each pool. Finally, if the
agent moved from a pool to neither pool (or vice versa),
then all earnings were assigned to the pool, because no food
was present outside of pools. Thus, a food collection rate
was calculated for each forager in each pool, and the Gini
coefficient compared the collection rates among foragers in
each pool.

The visible three pools condition shows a significant
difference in inequality between the 60% and 30% pools in
a paired samples t-test, t(8) = -6.51, p < .001, while the
invisible condition only shows a marginally significant
difference, t(8) = -2.18, p = .061. These differences in
inequality between pools may be partially explained as a
statistical artifact caused by fewer foragers in the 30% pool,
but it is not a necessary outcome. The Gini coefficient
scales with the number of people, but the Gaussian food
distributions may mean that one or two foragers in the
middle of the 30% pool can patrol the pool’s Gaussian
center and be much more successful than a few foragers on
the perimeter. In the 60% pool, food arrives more
frequently so a larger number of participants may share the
food in the center and the perimeter. More generally, pools
with the worst matching generally have one or two foragers
who are doing disproportionately well by patrolling the
Gaussian center of the pool, especially when you compare

their performance to foragers who occasionally switch to the
pool from outside pools. This story resembles the
controversial Kuznets curve hypothesis (Jha, 1996) in which
undeveloped countries have relatively low inequality
because everyone is a part of the same economy (e.g.
agrarian), developing countries have high inequality because
some members have access to improved technology, and
developed countries have low inequality because everyone
has the same technology and general opportunities. At any
rate, the matching results and pool inequality results suggest
that foragers in the invisible condition appear to have
difficulty distinguishing between the 60% and 30% pools,
while foragers in the visible condition appear to have
difficulty distinguishing between the 30% and 10% pools.

Finally, the last column in Table 2, GiniTime reports
regression analyses for the Gini coefficients across time in
each condition. This analysis calculates the Gini coefficient
for each minute of a five minute experiment (i.e. what is the
wealth distribution of food collected by foragers during a
given minute, disregarding foragers’ total food collected
during previous minutes), then applies a regression analysis
to see how the degree of inequality changes over the course
of the experiment. Both of the three pool conditions exhibit
decreases in wealth inequality over time, and the
observations of frequent pool switching may be the key to
this result. If the presence of three pools induces more
exploration early in the experiment, then there will also be
more wealth inequality as a few foragers patrol the Gaussian
pool centers and other foragers switch pools. As foragers
increasingly exploit their knowledge, then wealth inequality
should decrease over time.

Results and Discussion, Travel Distance

An independent samples t-test comparing AveragePooll for
the high and low travel conditions revealed marginally
significantly better matching for the low travel condition,
t(14) = -2.073, p = .057. This result strikingly disagrees
with the Baum and Kraft (1998) pigeon foraging study,
which found significantly better matching in the high travel
condition and hypothesized that increased movement costs
led pigeons to switch only when individual success would
be substantially improved. Nonetheless, our matching
results may cohere with participants’ pool switching
behavior, where participants switched significantly more
frequently in the low travel condition, t(14) = -7.17, p <
.001. Whereas Baum and Kraft contend that each switch
must be more meaningful in the high travel distance
condition, it is also possible that frequent switching in the
low travel condition allows more dynamic — and therefore
more optimal — matching to the resources. After all, the
high travel conditions lead to inefficient instances in which
foragers begin to switch pools, but “ground conditions” at
one pool or the other suddenly change, causing the forager
to return to his or her original pool. For a similar reason, we
were unable to analyze the causation between recent
earnings and pool switching for the high travel conditions
because group members did not switch quickly enough to

2374



Table 2: Gini wealth inequality analyses

Condition GiniAll GiniPooll GiniPool2 GiniPool3 GiniTime
Invis, 3 pools 261 318 387 565 =-.405, p=.006
Vis, 3 pools 248 281 478 .539 3 =-.456, p=.002
High Travel .240 .246 388 3=.086, p=.574
Low Travel 224 204 262 B=.174, p=.316
High Variance 214 232 313 3=.079, p=.627
Low Variance .239 257 331 B=.112, p=.466

meet our conservative switching definition (foragers must
switch from one pool to the other pool in consecutive time
steps, without any time outside of the pools). We suspect
that Baum and Kraft’s food rate was sufficiently low — even
the fast presentation conditions only delivered a pellet when
the previous pellet was eaten, so no food accumulated — that
the results may not be directly comparable. In fact, the food
rate in our experiment (4/N) may still be too slow for
humans to accurately estimate the pool differences, or, as
discussed in the undermatching explanation provided by
Roberts and Ashpole (2006), humans may too heavily
weight others’ presence as a deterrent.

It seems surprising that the wealth inequality is not
significantly different for the high and low travel conditions.
Admittedly, our notion of beneficial switching in the low
travel condition would be better supported if the low travel
condition led to less inequality. Perhaps it is still
noteworthy that the high travel condition leads to higher
inequality for the 25% pool than the low travel condition,
though both conditions indicate higher inequality for the
25% pool compared to the 75% pool (significant for high
travel, t(8) = -4.34, p < .01; marginal for low travel, perhaps
due to less group data, t(6) = -2.22, p = .069). Given that
the pool variance is equivalent for the high and low travel
conditions, the greater inequality for the high travel
condition suggests that some foragers disproportionately
benefited from the lack of competitive switching. However,
it could be that some individuals are being penalized for
indecision as they waste time in between the pools. Finally,
neither condition showed a change in wealth inequality over
time, which suggests that group members are not changing
their strategies over time. Unlike the three pool conditions,
the travel condition data do not show separate stages of
exploration and exploitation.

Results and Discussion, Variance

An independent samples t-test comparing AveragePooll for
the high and low variance conditions showed significantly
better matching for the low variance condition, t(15) = -
5.38, p < .001. This appears to contradict another result
from the Baum and Kraft (1998) pigeon foraging study,
which found significantly better matching in an elongated
trough feeding condition compared to a bowl feeding
condition. Baum and Kraft concluded that the trough

condition exhibited less competition, allowing multiple
pigeons to feed without fighting for space. Importantly, the
current variance experiment may not be a direct analog to
the Baum and Kraft study. In the present study, the worse
matching in the high variance condition can be largely
attributed to the significantly higher frequency of pool
switching, t(15) = 6.46, p < .001. Matching to the 75% pool
is greatly reduced by the proportion of foragers outside the
pools as they switch, and in fact, the normalized matching
values in Column 2 of Table 2 are nearly indistinguishable
for the two conditions. Therefore, the crucial difference
between these variance conditions may be that high variance
entices foragers to switch. For example, if you are a forager
near the perimeter of the 75% pool, you may be easily
seduced by a piece of food that appears nearby on the
perimeter of the 25% pool. It seems possible that an
experimental condition with pools of uniform variance
would yield similar results to Baum and Kraft, but simply
increasing the Gaussian variance may have confounded
factors by increasing the pool size while maintaining a
relatively easily patrolled center. Some foragers may
specialize in patrolling the center while others collect food
on the periphery and frequently switch pools.

The high and low variance conditions do not show a
significant difference in overall wealth disparity, which is
somewhat surprising given that foragers are apparently
using very different strategies. Both conditions show the
familiar result of greater inequality at the less abundant,
25% pool (marginal for high variance, t(7) = -2.31, p = .057;
significant for low variance, t(8) = -2.42, p = .042), and
neither pool shows a decrease in wealth inequality over
time. Furthermore, neither condition exhibits a causal
connection between earnings and switching, although both
conditions trend in the same direction, with more earnings
preceding the decision not to switch. Thus, the high
variance appears to entice foragers to switch pools, but
foragers still consider their success in the current pool.
Interestingly, the high variance condition has approximately
twice as much food available on a given time step (mean of
5.93 for the 75% pool, 2.26 for the 25% pool, compared to
3.11 and 1.28 for the low variance condition). In other
words, the high variance condition makes the group
relatively inefficient despite foragers’ frequent switching
and attempts to maximize personal gain. Obviously,
foragers must travel more distance, on average, to collect
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food in the high variance condition, but one could imagine
that a highly efficient group that weighted pre-emption even
more strongly (i.e. they avoid competitive areas with high
densities of other foragers) would still be equally efficient in
the two conditions by dividing the pools into territorial
regions.

Agent-based Model

EPICURE’s non-normalized matching predictions for the
three pool, travel cost, and variance conditions are strikingly
different than the observed empirical results, although it is
important to note that these simulations used the same
parameter values as the previous model fits from Roberts
and Goldstone (2006), so better results might be obtained
with the same model. For instance, the three pool
conditions look very similar for both visibility conditions in
the model, and the results lack the observed similarities
between the 60% and 30% pools for the invisible food
condition, and between the 30% and 10% pools for the
visible food condition. For the travel condition results, the
model overestimates the proportion of foragers in the 25%
pool in the low travel condition and underestimates the
proportion outside of pools in that condition. The model
gives the best matching results for the variance conditions,
and although it greatly overestimates the proportion of
people outside the pools in the low variance condition, at
least the qualitative relationship between the high variance
and low variance condition seems correct.

EPICURE performs better in its switching predictions for
these conditions. Foragers in the high variance condition
switch pools significantly more frequently than foragers in
the low variance condition (p < .001), and foragers in the
high travel cost condition switch pools significantly less
frequently than foragers in the low travel cost condition (p <
.001). In the high variance condition, foragers appear to
switch pools after being lured from the other pool’s
periphery. The high travel cost condition makes it difficult
for foragers to sustain their switching choice long enough to
reach the other pool, because each time step brings the
possibility of new distractions. Thus, EPICURE is actually
more supportive of the Baum and Kraft (1998) pigeon
foraging results insofar as a pool must be consistently
superior in order to lead a forager to fully switch, so
EPICURE predicts improved matching when travel distance
increases.

Conclusions

Our three pool results show resource undermatching, just as
Sokolowski and Tonneau (2004) found undermatching
using tokens in a non-spatial three pool experiment.
Sokolowski and Tonneau discuss a difference-equalization
rule and suggest that undermatching arises as foragers
distribute themselves so that each pool has the same number
of losers. For our three pool conditions, this appears to
roughly be the case. However, we also noted that the high
variance food condition has nearly twice as much available
food in the 75% pool as in the 25% pool. Other conditions

have shown comparable differences between pools, so an
available-food hypothesis does not seem to be a robust
explanation of the matching results. An intriguing detail of
the three pool conditions is that groups in the invisible food
condition apparently treated the 60% and 30% pools very
similarly, while groups in the visible food condition treated
the 30% and 10% pools very similarly. These findings

suggest  additional experiments to test groups’
discrimination capabilities under different perceptual
conditions.

The travel distance conditions and variance conditions
both led to the opposite of the results obtained by Baum and
Kraft (1998) with pigeons, but as noted, our variance
conditions may not be directly comparable to their
bowl/trough manipulation. Despite the conflicting results,
each of our findings appears to be internally consistent
across statistical analyses. Therefore, it seems plausible that
humans simply weight factors (e.g. local density of other
foragers, local food density, etc.) differently than Baum and
Kraft’s pigeons, and a more general EPICURE model will
be necessary in order to explain the different foraging
results in detail.
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