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Abstract 
The dynamical approach to cognition is often considered to be 
‘revolutionary’. In contrast to the well-established approaches 
of computationalism and connectionism, dynamicism is 
typically thought to be anti-representational, holistic, 
phenomenological and law-based. In this paper, I will argue 
that this way of thinking about dynamicism is too restrictive: 
it fails to capture the heterogeneous nature of dynamicist 
research. Although all dynamicist research projects share a 
commitment to the mathematical methods, tools, and concepts 
of dynamical systems theory, they frequently disagree with 
respect to the truth or falsity of representationalism, the role 
of holistic phenomenological modeling, and in general, the 
nature of dynamical explanation. 

Keywords: dynamical systems theory; dynamicism; 
explanation; representation. 

The Standard Conception of Dynamicism 
The first comprehensive philosophical treatment of the 
dynamical approach to cognition is due to Tim van Gelder 
(van Gelder 1995; 1998; 1999; van Gelder & Port 1995). 
van Gelder aimed to characterize dynamicism as a unified 
body of research, and to distinguish it from the established 
research programs of computationalism and connectionism. 
To this end, he provided a comprehensive overview of the 
methods, tools, and concepts of dynamical systems theory—
the mathematical framework at the heart of the approach. In 
addition, he promoted a particular set of explanatory 
principles which, he suggested, constitute the theoretical 
framework that unifies all branches of dynamicist research. 
Although sometimes left implicit by van Gelder himself, 
this particular theoretical framework—what I call the 
standard conception of dynamicism—has by now developed 
into a consensus view about the theoretical commitments of 
dynamicist researchers. 

Before discussing the standard conception in detail, it is 
worth briefly considering the principal motivations for the 
dynamical approach. Increasingly, it is becoming clear that 
cognitive phenomena arise from reciprocal nonlinear 
interactions between brain, body, and environment (Beer 
1995; Clark 1997). Such interactions, it has been argued 
(Chemero & Silberstein 2008; van Gelder 1995; Wheeler 
2005), can be difficult to accommodate within 
computationalism and connectionism. Although for the 
purposes of this paper it will not be necessary to determine 
the fate of these traditional approaches, it will be important 
to recognize that dynamicism is frequently considered to be 
a uniquely viable alternative. Why? 

According to the standard conception, dynamicism 
promises to adequately describe reciprocal nonlinear 
interactions between brain, body, and environment by 

adhering to the explanatory principles of anti-
representationalism (Chemero 2000; Thelen & Smith 1994; 
van Gelder 1995) and holism (Chemero & Silberstein 2008; 
Wheeler 2005). Although it has already been shown that the 
mere presence of reciprocal nonlinear interactions does not 
logically entail the absence of representations (Bechtel 
1998; Clark 1998), proponents of the standard conception 
typically find “the notion of representation to be dispensable 
or even a hindrance for their particular purposes” (van 
Gelder 1998:622). To a large extent, this is because the 
presence of such interactions seems to preclude the 
possibility of identifying structurally and functionally 
isolated ‘representation-producers’ and ‘representation-
consumers’ (Wheeler 2005). Instead, dynamicists describe a 
cognitive system’s behavior holistically, in terms of 
differential equations that are defined over a small number 
of collective variables and global control parameters. 

What exactly do such equations describe, and what is the 
nature of the explanations they provide? Because the 
physical structure of nonlinear brain-body-environment 
systems can be heterogeneous and complex, collective 
variables and global control parameters are frequently used 
to capture the observable structure of behavior itself, rather 
than the physical structure of the system that underlies such 
behavior. That is, dynamical models resemble what 
physicists sometimes call phenomenological models—
models that directly relate measurable quantities to one 
another (Beek et al. 1995; Cartwright 1983). Notably, when 
a particular model captures a wide variety of related 
phenomena, and can be used to derive predictions about 
them in factual and counterfactual circumstances, it is said 
to instantiate a general principle or law that explains those 
phenomena. That is, according to the standard conception of 
dynamicism, dynamical explanations of cognitive 
phenomena take the form of covering law explanations 
(Bechtel 1998; van Gelder 1999; Walmsley 2008). 

Thus construed, dynamical models can be contrasted with 
computational and connectionist process models, which 
aspire to be more-or-less abstract descriptions of the 
physical and functional processes from which observable 
behaviors arise (Marr 1982; Luce 1995). Process modeling 
involves making explicit certain assumptions about 
structural and functional organization, including 
assumptions about possible ways to functionally decompose 
the target behavior, and about how individual functional 
components might be localized in the system from which 
the target behavior arises (Bechtel & Richardson 1993; 
Cummins 1982; 2000). In virtue of relying on process 
models rather than phenomenological models, 
computational and connectionist explanations differ from 
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dynamical explanations as the standard conception 
understands them: they resemble mechanistic explanations 
that involve the description of organized collections parts 
and operations that give rise to the phenomena being 
explained (Bechtel 1998; 2007; Machamer, Darden & 
Craver 2000). 

In this paper, I will not question the explanatory power of 
the theoretical framework that embraces the explanatory 
principles of anti-representationalism, holistic 
phenomenological modeling, and covering law explanation. 
Indeed, I acknowledge that this framework is likely to be 
exceedingly powerful when it comes to explaining the 
behavior of complex, nonlinear, cognitive systems that span 
the boundaries between brain, body, and environment. 
Nevertheless, at least as important as the question of 
explanatory power is the question of empirical relevance: to 
what extent does the theoretical framework offered by the 
standard conception actually play a role in contemporary 
dynamicist research? 

To answer this question, I will distinguish three families 
of dynamicist research. Of those, only one—Kelsonian 
dynamicism—adheres to the explanatory principles of anti-
representationalism, holistic phenomenological modeling, 
and covering law explanation. In contrast, the other two 
families of dynamicist research—dynamical field theory and 
dynamical agent modeling—appear to conflict with, or at 
least remain agnostic about, the theoretical framework 
offered by the standard conception. For this reason, I 
suggest that the standard conception of dynamicism 
underestimates the heterogeneous nature of the dynamical 
approach to cognition. Rather than collectively embracing a 
particular set of explanatory principles, the families of 
research that together make up the dynamical approach are 
unified only by their shared commitment to the methods, 
tools, and concepts of dynamical systems theory. 

The Varieties of Dynamicism 

Kelsonian Dynamicism 
I will begin by discussing a family of dynamicist research 
that generally adheres to the theoretical framework offered 
by the standard conception, and that (possibly as a result) is 
often assumed to be representative of dynamicist research in 
general. The Kelsonian family of research is modeled after 
J.A. Scott Kelso’s work on coordination dynamics (Kelso 
1995). Characteristically, Kelsonian research projects 
explain perception/action phenomena by specifying a small 
set of differential equations defined over an equally small 
set of collective variables and global control parameters. For 
example, the well-known Haken-Kelso-Bunz (HKB) model 
of bimanual coordination captures the motion of two 
rhythmically oscillating index fingers with the following 
dynamical model: 

 
In this model, the changing state of the between-fingers 
phase relation, φ, is expressed as a function of the 
oscillation frequencies of two moving fingers, b/a. The 

model accurately predicts a qualitative change in the 
behavior of φ whenever b/a moves from low values to high. 
Whereas at low frequencies φ settles on either one of two 
phase relations (in-phase or anti-phase), at high frequencies 
it reliably settles on the in-phase relation only. In dynamical 
terms, the model describes a one-dimensional dynamical 
system with two point-attractors when the value of 
parameter b/a is low, and undergoes a bifurcation in which 
the two point-attractors coalesce into one when that 
parameter reaches a certain critical value. 

Kelsonian dynamicism reinforces the standard 
conception. Although the phenomenon of bimanual 
coordination arises from the (presumably) nonlinear 
interactions between motor neurons, muscle tissue, and 
environmentally-situated index fingers, φ and b/a each 
correspond to measurable features of the phenomenon itself. 
Moreover, the differential equation at the heart of the HKB 
model is not derived from assumptions about the physical 
and functional organization of the system from which 
bimanual coordination emerges, but is merely the simplest 
equation that adequately accounts for the observed data 
(Kelso 1995). In this sense, the HKB model is a 
paradigmatic phenomenological model. Interestingly, 
although Kelso repeatedly asserts that the HKB model 
avoids the need to hypothesize a neural ‘switching 
mechanism’, it is also perfectly compatible with such a 
hypothesis—the HKB model is a phenomenological model 
that is consistent with any number of process accounts of 
the structure of the underlying system. 

The HKB model is also holistic and non-representational. 
The equation at the heart of the model describes the 
behavior of the bimanual coordination system as a whole, 
without explicitly identifying its individual components: φ 
is a collective variable that captures a relation between two 
moving fingers, and b/a is a global control parameter that 
determines the attractor landscape of the system as a whole. 
Moreover, because φ and b/a each correspond to behavioral 
properties of bimanual coordination rather than to structural 
and functional properties of the system from which that 
behavior arises, neither one describes “internal information-
carrying states of an organism” (Dietrich & Markman 2001: 
332). Although internal information-carrying (i.e. 
potentially representational) states may in fact be involved 
in the mechanism that underlies bimanual coordination, the 
presence of such a mechanism would have to be 
independently posited and confirmed. In Chemero’s (2000) 
words, the HKB model allows us to take a thoroughly anti-
representational “dynamical stance” toward the 
phenomenon of bimanual coordination. 

The HKB model is a holistic, non-representational, and 
phenomenological model of bimanual coordination. But 
how does it explain bimanual coordination? Given a 
particular set of initial conditions (the initial phase relation 
and oscillation frequency), the equation at the heart of the 
HKB model can be used to derive predictions about the 
future state of the system (e.g. to determine the particular 
phase relation at which it will eventually settle, or to 
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calculate how long individual phase-transitions will take). 
Moreover, although the HKB model was originally 
developed to explain the phenomenon of bimanual 
coordination, variations of the same model have been used 
to account for rhythmic stress-patterns in regular speech 
(Port 2003) and ‘informational’ coupling of rhythmic limb 
motion between individuals (Ouiller et al. 2005). In other 
words, since the derivation of predictions is the primary 
purpose of the HKB model, and since the regularity 
captured by that model appears to be a general principle that 
applies to a variety of related phenomena, it is in line with 
the explanatory commitments of the standard conception: 
Kelsonian dynamicism strives to provide covering law 
explanations (see also Walmsley 2008). 

This brief discussion of the HKB model suggests that the 
Kelsonian family of dynamicist research does in fact adhere 
to the explanatory principles promoted by the standard 
conception of dynamicism. Notably, this kind of research is 
often considered paradigmatic (see e.g. Chemero & 
Silberstein 2008). Nevertheless, in what follows, I will 
suggest that the Kelsonian family of research is not in fact 
all that representative of dynamicist research in general. In 
particular, I will argue that unlike Kelsonian dynamicism, at 
least two prominent families of dynamicist research largely 
reject or remain relatively agnostic about explanatory 
principles of anti-representationalism, holistic 
phenomenological modeling, and covering law explanation. 

Dynamical Field Theory 
A second prominent family of dynamicist research is 
dynamical field theory (DFT). A well-known member of 
this family is Thelen et al.’s (2001) model of infant 
perseverative reaching in the A-not-B task: 

 
This model specifies the activation values of a high-
dimensional ‘motor planning field’ (u) that depends on the 
field’s previous activation (-u); a series of inputs (S) that 
correspond to the changing and unchanging features of the 
task environment as well as a memory trace of previous 
reaches; the level of cooperative interaction (g) between 
individual points on the field; and a temporal decay constant 
(τ). Every point in the motor planning field corresponds to a 
particular spatial location in the A-not-B task environment. 
If at any moment the activation value at a single point 
increases beyond a certain threshold value, a reach is 
induced toward the corresponding location. Crucially, the 
likelihood that the field’s activation value surpasses the 
threshold is a function of the ‘cooperativity parameter’ g: at 
high g-values, the activation of every point in the field is 
positively influenced by the activation of its neighbors, thus 
increasing the probability that accurate reaches are induced, 
and allowing the field to maintain stable activation levels 
for a period of time even in the absence of immediate 
sensory input. Psychologically, g corresponds to the 
parameter that determines whether or not accurate goal-
directed reaches can be performed at different stages of an 
infant’s development. 

For current purposes, the most significant fact about 
Thelen et al.’s DFT model is that the value of the input 
vector S is a function of three independent vectors: a ‘task 
input’ which captures the unchanging features of the A-not-
B task environment; a ‘specific input’ which corresponds to 
the changing perceptual scene in each trial; and a ‘memory 
trace’, which corresponds to the effect of remembered 
reaches from earlier trials. It is significant for at least two 
reasons. 

First, Thelen et al.’s motivation for defining S in this 
particular way is independent of infants’ actual performance 
in the A-not-B task—nothing in the data indicates that the 
equation at the heart of their model should reflect the 
distinction between specific, task, and memory inputs. 
Rather, Thelen et al.’s primary motivation for defining S as 
they do is an assumption about the functional structure of 
the infant movement planning system—the assumption that 
the system from which infant perseverative reaching 
involves three functionally separable components. In other 
words, unlike the HKB model, Thelen et al.’s DFT model is 
a process model that incorporates a variety of assumptions 
about the structure of the system from a particular cognitive 
phenomenon arises. 

Second, Thelen et al.’s definition of S in terms of three 
separable input sources is in effect a functional analysis of 
goal-directed reaching. Functional analysis (Cummins 1983; 
2000) involves decomposing a complex function, capacity, 
or behavior P into a set of simpler functions, capacities or 
behaviors p1…pn that work together to produce P. The 
analysis of movement planning into the relative 
contributions of task input, specific input, and memory trace 
is an analysis of exactly this kind. Therefore, although the 
model’s ‘cooperativity parameter’ g is a global control 
parameter that constrains the behavior of the system as a 
whole, there is a clear sense in which Thelen et al. are also 
invoking the explanatory principle of decomposition—a 
principle more commonly associated with computationalism 
and connectionism than with dynamicism (Bechtel 1998; 
Cummins 2000). 

The fact that Thelen et al.’s DFT model conflicts with the 
standard conception’s commitment to holistic 
phenomenological modeling suggests that it might also 
deviate from the commitment to covering law explanation. 
Walmsley (2008) explicitly defends the view that Thelen et 
al.’s DFT model provides a covering law explanation of 
infant perseverative reaching, but this view appears to be 
mistaken. Although the equation at the heart of the model 
can be used to derive predictions about the future state of 
the system (e.g. the direction of reach) from a particular set 
of initial conditions (e.g. initial field activation values and a 
particular set of inputs), and although the model has been 
adapted to account for a wide variety of movement-planning 
phenomena, interpreting it as a widely-applicable predictive 
instrument is to misunderstand the intentions of the authors. 
Rather than seeking to uncover general principles or laws of 
movement planning in general, Thelen et al. are in the 
business of describing the specific processes that underlie 
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movement planning in humans. Accordingly, they even go 
so far as to appeal to a preliminary neural localization: 

 
“At this point, we conceptualize this field only in 
abstract terms as a site where visual input and memory 
are integrated into movement parameters supporting 
movement amplitude, direction, or time. Later in the 
discussion, we will speculate further as to possible 
neuroanatomical areas where such a field might 
evolve.” (Thelen et al. 2001: 16) 
 

In summary, Thelen et al. are committed not only to 
describing (via functional analysis) the process that 
underlies episodes of goal-directed reaching, but are 
additionally committed to eventually localizing that process 
in the human brain. Thus construed, Thelen et al. are quite 
clearly seeking a mechanistic explanation, rather than a 
covering law explanation, of infant perseverative reaching. 

Finally, what about representation? Spencer & Schöner 
(2003), two of the most prominent contributors to 
dynamical field theory research, have explicitly construed 
that family of research as a way of “bridging the 
representational gap” in the dynamical approach to 
cognition. Their suggestion is to think of dynamical fields as 
describing the large-scale neural activation patterns that 
represent the continuous spatial dimensions of our 
immediate environment, even when that environment is 
temporarily occluded or otherwise inaccessible. Of course, it 
remains to be seen whether or not such a representational 
construal “earns its explanatory keep” (Ramsey 1997)—i.e. 
whether it identifies a substantive and explanatorily useful 
notion of representation. Nevertheless, the fact that this 
construal is made explicit by two of the most prominent 
dynamical field theorists suggests that this particular family 
of research is not after all committed to the anti-
representationalism of the standard conception. This 
observation, combined with the observation that Thelen et 
al.’s DFT model is also not committed to the explanatory 
principles of holistic phenomenological modeling and 
covering law explanation, suggests that the standard 
conception of dynamicism misrepresents at least this 
particular family of dynamicist research. 

Dynamical Agent Modeling 
A third well-established family of dynamicist research—
dynamical agent modeling—involves applying the methods, 
tools and concepts of dynamical systems theory to study the 
behavior of simulated and artificially evolved brain-body-
environment systems (Beer 1995; 1996; 2003; Harvey et al. 
2005). A particularly prominent example of this kind of 
research is Randy Beer’s (2003) model of ‘visual’ 
categorization in an artificially evolved brain-body-
environment system:  

 
This 16-dimensional dynamical model describes a simulated 
agent—equipped with a 14-neuron continuous-time neural 
network ‘brain’ (neural parameters w, τ, σ, θ) and seven 
‘visual’ sensors (input vector I)—that was evolved to 
categorize objects according to their shape. Two kinds of 
objects, circles and diamonds, fall towards the agent (at rate 
y), which must make a categorical discrimination by moving 
horizontally (at rate x) to catch circles and avoid diamonds. 
In order to accomplish this task, the agent uses a particularly 
interesting ‘active scanning’ strategy: it repeatedly moves 
from side to side to ‘foveate’ the falling object before 
eventually settling on a position at which it will either catch 
or avoid. Since this ‘active scanning’ behavior emerged 
unexpectedly from the artificial evolutionary process, it 
constitutes an interesting and non-trivial target for 
dynamical explanation. 

How does Beer go about explaining categorization via 
‘active scanning’ in this particular simulated brain-body-
environment system? Unlike the previously discussed 
dynamical explanations of bimanual explanation and infant 
perseverative reaching, here the explanatory burden is not 
carried by the dynamical model alone. Rather, Beer’s 
dynamical explanation centers on an extensive dynamical 
analysis of the simulated brain-body-environment system. 
Crucially, this dynamical analysis relies on an explicitly 
stated decompositional strategy: 

 
“…we will decompose the agent–environment 
dynamics into: (1) the effect that the relative positions 
of the object and the agent have on the agent’s motion; 
(2) the effect that the agent’s motion has on the relative 
positions of the object and the agent.” (Beer 2003: 228) 
 

This decompositional strategy constitutes a significant 
departure from the standard conception’s commitment to 
holistic modeling. Although Beer acknowledges that 
categorization via ‘active scanning’ is a property of the 
whole simulated brain-body-environment system, 
explaining how this phenomenon arises requires an 
understanding of the way in which individual parts of the 
system—the agent on the one hand and the environment on 
the other—interact. Notably, this explanatory task is 
accomplished in a uniquely dynamicist fashion. First, Beer 
characterizes the effects of every possible ‘visual’ input as a 
parametric change to the attractor landscape of the agent’s 
two-dimensional (s13, s14) motor neuron state space. 
Second, he characterizes the continuously changing state of 
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the environment (defined as the relative positioning of agent 
and object) as a continuous trajectory through the two-
dimensional (x, y) state space. Finally, Beer shows how the 
observed ‘active scanning’ behavior arises from the 
interactions between agent and environment by 
superimposing the continuous (x, y) trajectory on the 
attractor landscape of the (s13, s14) plane. In general, 
Beer’s method of decomposing a closed (i.e. autonomous) 
brain-body-environment system into two mutually 
interdependent (i.e. non-autonomous) subsystems, as well as 
his method of describing their reciprocal nonlinear 
interactions in terms of one subsystem’s effects on the 
asymptotic behavior of the other, is a particularly vivid 
demonstration of how the analytic tools of dynamical 
systems theory can be applied to study not just systems as a 
whole, but in terms of the reciprocal interactions between 
multiple simpler components. 

Aside from its decompositional nature, Beer’s approach 
can be contrasted with the theoretical framework of the 
standard conception in virtue of being process-oriented and 
indeed, mechanistic. First, a purely phenomenological 
approach would account for the observed ‘active scanning’ 
behavior solely in terms of directly observable features of 
that behavior itself, by identifying its crucial dimension of 
change (i.e. the agent’s horizontal position), and relating it 
to the directly observable factors on which that change 
depends (i.e. the proximity and shape of the falling object). 
In contrast, the decompositional dynamical analysis outlined 
above explains the observed behavior by showing how it 
arises from the changing attractor landscape of the motor 
neuron state space—the functional structure of the 
underlying system’s ‘physical’ properties. Second, although 
Beer’s dynamical model can (in principle) be used to predict 
the future state of the system from any set of initial 
conditions, it shouldn’t be thought of as identifying one or 
more principles or laws of perceptual categorization in 
general. Indeed, Beer is very explicit about the fact that his 
intention “is not to propose a serious model of categorical 
perception”, but rather to examine “in considerable depth 
each aspect of [the agent’s] behavior, and the mechanisms 
underlying that behavior” (Beer 2003: 210). In short, Beer’s 
dynamical explanation is of the mechanistic, rather than the 
covering law, variety. 

What remains to be discussed is the extent of Beer’s 
commitment to anti-representationalism. The standard 
conception holds that dynamical agent models cannot or 
should not be understood in representational terms (Wheeler 
2005). Beer himself is somewhat agnostic on this issue, 
explicitly adopting a stance of “representational skepticism” 
(Beer 2003). Although he does not in fact invoke 
representational principles in order to explain the observed 
behavior, the fact that his analytic strategy involves 
decomposing a larger system into multiple interacting 
components makes it amenable to what Chemero & 
Silberstein (2008) call “representation-hunting”: the practice 
of identifying distinguishable producers and consumers of 
information. Contrary to the standard conception of 

dynamicism, which assumes an a priori rejection of 
representationalism, here the truth or falsity of 
representationalism is determined a posteriori, according to 
the utility of representational principles for understanding 
and explaining the behavior of individual dynamical agents. 

Conclusion: Methodology or Theory? 
The preceding discussion suggests that the standard 
conception of dynamicism—the conception first outlined by 
van Gelder and later adopted by most theoretical treatments 
of the dynamical approach, positive or negative—
misrepresents the theoretical commitments of at least two 
prominent families of dynamicist research. That is, the 
standard conception underestimates the heterogeneous 
nature of the dynamical approach to cognition. Although 
Kelsonian dynamicism does seem committed to the 
explanatory principles of anti-representationalism, holistic 
phenomenological modeling, and covering law explanation, 
dynamical field theory and dynamical agent modeling do 
not. For this reason, van Gelder’s original goal—to develop 
a conception of dynamicism as a unified body of research 
that distinguishes it from both computationalism and 
connectionism—remains unsatisfied. 

In closing, I briefly outline two alternative ways of 
carving up the logical space of cognitive science research 
programs that might or might not be more successful. On 
the first, we retain the original tripartite distinction between 
computationalism, connectionism, and dynamicism, but 
accept that the differences are methodological at heart: they 
concern the particular mathematical methods, tools and 
concepts that practicing cognitive scientists bring to bear to 
the study of cognition. In particular, each of the three 
families of dynamicist research discussed above relies on 
the methods, tools, and concepts of dynamical systems 
theory. First, they each rely on the practice of dynamical 
modeling: they describe cognitive systems and cognitive 
phenomena in terms of coupled difference or differential 
equations. Second, by characterizing state-space trajectories 
and attractor landscapes, as well as by identifying and 
classifying critical points and bifurcations, they each make 
use of the method of dynamical analysis. Third, by 
emphasizing properties like stability, sudden loss of 
stability, asymptotic behavior and coupled interaction, each 
one of Kelsonian dynamicism, dynamical field theory, and 
dynamical agent modeling allows us to study cognitive 
phenomena from a uniquely dynamical perspective that is 
unlikely to be shared with computationalist and 
connectionist research projects. 

On the second way of individuating cognitive scientific 
research programs, we retain the ability to distinguish 
research programs according to their major theoretical 
commitments, but acknowledge that the traditional 
distinction between computationalism, connectionism, and 
dynamicism cuts across important theoretical distinctions. 
For example, whereas the anti-representational, anti-
mechanistic commitments of Kelsonian dynamicism have 
much in common with classical behaviorism, Gibsonian 
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ecological psychology, and several strands of contemporary 
mathematical psychology, the potentially representational, 
mechanism-oriented research of dynamical field theorists 
and dynamical agent modelers has more in common with 
many—though not all—of the explanatory principles of 
classical cognitivism. On this view, the theoretical 
foundations of ‘mainstream’ cognitive science need not be 
upturned in order to accommodate the ubiquity of reciprocal 
nonlinear interactions between brain, body, and 
environment—although it may be necessary and instructive 
to apply the methods, tools, and concepts of dynamical 
systems theory to articulate a richer and more powerful 
notion of mechanistic explanation. 
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