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Abstract

The dynamical approach to cognition is often considered to be
‘revolutionary’. In contrast to the well-established approaches
of computationalism and connectionism, dynamicism is
typically thought to be anti-representational, holistic,
phenomenological and law-based. In this paper, | will argue
that this way of thinking about dynamicism is too restrictive:
it fails to capture the heterogeneous nature of dynamicist
research. Although all dynamicist research projects share a
commitment to the mathematical methods, tools, and concepts
of dynamical systems theory, they frequently disagree with
respect to the truth or falsity of representationalism, the role
of holistic phenomenological modeling, and in general, the
nature of dynamical explanation.
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The Standard Conception of Dynamicism

The first comprehensive philosophical treatment of the
dynamical approach to cognition is due to Tim van Gelder
(van Gelder 1995; 1998; 1999; van Gelder & Port 1995).
van Gelder aimed to characterize dynamicism as a unified
body of research, and to distinguish it from the established
research programs of computationalism and connectionism.
To this end, he provided a comprehensive overview of the
methods, tools, and concepts of dynamical systems theory—
the mathematical framework at the heart of the approach. In
addition, he promoted a particular set of explanatory
principles which, he suggested, constitute the theoretical
framework that unifies all branches of dynamicist research.
Although sometimes left implicit by van Gelder himself,
this particular theoretical framework—what | call the
standard conception of dynamicism—nhas by now developed
into a consensus view about the theoretical commitments of
dynamicist researchers.

Before discussing the standard conception in detail, it is
worth briefly considering the principal motivations for the
dynamical approach. Increasingly, it is becoming clear that
cognitive phenomena arise from reciprocal nonlinear
interactions between brain, body, and environment (Beer
1995; Clark 1997). Such interactions, it has been argued
(Chemero & Silberstein 2008; van Gelder 1995; Wheeler
2005), can be difficult to accommodate within
computationalism and connectionism. Although for the
purposes of this paper it will not be necessary to determine
the fate of these traditional approaches, it will be important
to recognize that dynamicism is frequently considered to be
a uniquely viable alternative. Why?

According to the standard conception, dynamicism
promises to adequately describe reciprocal nonlinear
interactions between brain, body, and environment by

adhering to the explanatory principles of anti-
representationalism (Chemero 2000; Thelen & Smith 1994;
van Gelder 1995) and holism (Chemero & Silberstein 2008;
Wheeler 2005). Although it has already been shown that the
mere presence of reciprocal nonlinear interactions does not
logically entail the absence of representations (Bechtel
1998; Clark 1998), proponents of the standard conception
typically find “the notion of representation to be dispensable
or even a hindrance for their particular purposes” (van
Gelder 1998:622). To a large extent, this is because the
presence of such interactions seems to preclude the
possibility of identifying structurally and functionally
isolated ‘representation-producers’ and ‘representation-
consumers’ (Wheeler 2005). Instead, dynamicists describe a
cognitive system’s behavior holistically, in terms of
differential equations that are defined over a small number
of collective variables and global control parameters.

What exactly do such equations describe, and what is the
nature of the explanations they provide? Because the
physical structure of nonlinear brain-body-environment
systems can be heterogeneous and complex, collective
variables and global control parameters are frequently used
to capture the observable structure of behavior itself, rather
than the physical structure of the system that underlies such
behavior. That is, dynamical models resemble what
physicists sometimes call phenomenological models—
models that directly relate measurable quantities to one
another (Beek et al. 1995; Cartwright 1983). Notably, when
a particular model captures a wide variety of related
phenomena, and can be used to derive predictions about
them in factual and counterfactual circumstances, it is said
to instantiate a general principle or law that explains those
phenomena. That is, according to the standard conception of
dynamicism, dynamical explanations of cognitive
phenomena take the form of covering law explanations
(Bechtel 1998; van Gelder 1999; Walmsley 2008).

Thus construed, dynamical models can be contrasted with
computational and connectionist process models, which
aspire to be more-or-less abstract descriptions of the
physical and functional processes from which observable
behaviors arise (Marr 1982; Luce 1995). Process modeling
involves making explicit certain assumptions about
structural and  functional  organization, including
assumptions about possible ways to functionally decompose
the target behavior, and about how individual functional
components might be localized in the system from which
the target behavior arises (Bechtel & Richardson 1993;
Cummins 1982; 2000). In virtue of relying on process
models  rather  than  phenomenological ~ models,
computational and connectionist explanations differ from
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dynamical explanations as the standard conception
understands them: they resemble mechanistic explanations
that involve the description of organized collections parts
and operations that give rise to the phenomena being
explained (Bechtel 1998; 2007; Machamer, Darden &
Craver 2000).

In this paper, | will not question the explanatory power of
the theoretical framework that embraces the explanatory
principles of anti-representationalism, holistic
phenomenological modeling, and covering law explanation.
Indeed, | acknowledge that this framework is likely to be
exceedingly powerful when it comes to explaining the
behavior of complex, nonlinear, cognitive systems that span
the boundaries between brain, body, and environment.
Nevertheless, at least as important as the question of
explanatory power is the question of empirical relevance: to
what extent does the theoretical framework offered by the
standard conception actually play a role in contemporary
dynamicist research?

To answer this question, | will distinguish three families
of dynamicist research. Of those, only one—Kelsonian
dynamicism—adheres to the explanatory principles of anti-
representationalism, holistic phenomenological modeling,
and covering law explanation. In contrast, the other two
families of dynamicist research—dynamical field theory and
dynamical agent modeling—appear to conflict with, or at
least remain agnostic about, the theoretical framework
offered by the standard conception. For this reason, |
suggest that the standard conception of dynamicism
underestimates the heterogeneous nature of the dynamical
approach to cognition. Rather than collectively embracing a
particular set of explanatory principles, the families of
research that together make up the dynamical approach are
unified only by their shared commitment to the methods,
tools, and concepts of dynamical systems theory.

The Varieties of Dynamicism

Kelsonian Dynamicism

I will begin by discussing a family of dynamicist research
that generally adheres to the theoretical framework offered
by the standard conception, and that (possibly as a result) is
often assumed to be representative of dynamicist research in
general. The Kelsonian family of research is modeled after
J.A. Scott Kelso’s work on coordination dynamics (Kelso
1995). Characteristically, Kelsonian research projects
explain perception/action phenomena by specifying a small
set of differential equations defined over an equally small
set of collective variables and global control parameters. For
example, the well-known Haken-Kelso-Bunz (HKB) model
of bimanual coordination captures the motion of two
rhythmically oscillating index fingers with the following
dynamical modell:
¢ = —asing — 2bsin 2g

In this model, the changing state of the between-fingers
phase relation, ¢, is expressed as a function of the
oscillation frequencies of two moving fingers, b/a. The

model accurately predicts a qualitative change in the
behavior of ¢ whenever b/a moves from low values to high.
Whereas at low frequencies ¢ settles on either one of two
phase relations (in-phase or anti-phase), at high frequencies
it reliably settles on the in-phase relation only. In dynamical
terms, the model describes a one-dimensional dynamical
system with two point-attractors when the value of
parameter b/a is low, and undergoes a bifurcation in which
the two point-attractors coalesce into one when that
parameter reaches a certain critical value.

Kelsonian  dynamicism  reinforces the standard
conception. Although the phenomenon of bimanual
coordination arises from the (presumably) nonlinear
interactions between motor neurons, muscle tissue, and
environmentally-situated index fingers, ¢ and b/a each
correspond to measurable features of the phenomenon itself.
Moreover, the differential equation at the heart of the HKB
model is not derived from assumptions about the physical
and functional organization of the system from which
bimanual coordination emerges, but is merely the simplest
equation that adequately accounts for the observed data
(Kelso 1995). In this sense, the HKB model is a
paradigmatic  phenomenological model. Interestingly,
although Kelso repeatedly asserts that the HKB model
avoids the need to hypothesize a neural ‘switching
mechanism’, it is also perfectly compatible with such a
hypothesis—the HKB model is a phenomenological model
that is consistent with any number of process accounts of
the structure of the underlying system.

The HKB model is also holistic and non-representational.
The equation at the heart of the model describes the
behavior of the bimanual coordination system as a whole,
without explicitly identifying its individual components: ¢
is a collective variable that captures a relation between two
moving fingers, and b/a is a global control parameter that
determines the attractor landscape of the system as a whole.
Moreover, because ¢ and b/a each correspond to behavioral
properties of bimanual coordination rather than to structural
and functional properties of the system from which that
behavior arises, neither one describes “internal information-
carrying states of an organism” (Dietrich & Markman 2001:
332). Although internal information-carrying  (i.e.
potentially representational) states may in fact be involved
in the mechanism that underlies bimanual coordination, the
presence of such a mechanism would have to be
independently posited and confirmed. In Chemero’s (2000)
words, the HKB model allows us to take a thoroughly anti-
representational ~ “dynamical  stance” toward the
phenomenon of bimanual coordination.

The HKB model is a holistic, non-representational, and
phenomenological model of bimanual coordination. But
how does it explain bimanual coordination? Given a
particular set of initial conditions (the initial phase relation
and oscillation frequency), the equation at the heart of the
HKB model can be used to derive predictions about the
future state of the system (e.g. to determine the particular
phase relation at which it will eventually settle, or to

2299



calculate how long individual phase-transitions will take).
Moreover, although the HKB model was originally
developed to explain the phenomenon of bimanual
coordination, variations of the same model have been used
to account for rhythmic stress-patterns in regular speech
(Port 2003) and ‘informational’ coupling of rhythmic limb
motion between individuals (Ouiller et al. 2005). In other
words, since the derivation of predictions is the primary
purpose of the HKB model, and since the regularity
captured by that model appears to be a general principle that
applies to a variety of related phenomena, it is in line with
the explanatory commitments of the standard conception:
Kelsonian dynamicism strives to provide covering law
explanations (see also Walmsley 2008).

This brief discussion of the HKB model suggests that the
Kelsonian family of dynamicist research does in fact adhere
to the explanatory principles promoted by the standard
conception of dynamicism. Notably, this kind of research is
often considered paradigmatic (see e.g. Chemero &
Silberstein 2008). Nevertheless, in what follows, 1 will
suggest that the Kelsonian family of research is not in fact
all that representative of dynamicist research in general. In
particular, I will argue that unlike Kelsonian dynamicism, at
least two prominent families of dynamicist research largely
reject or remain relatively agnostic about explanatory
principles of anti-representationalism, holistic
phenomenological modeling, and covering law explanation.

Dynamical Field Theory

A second prominent family of dynamicist research is
dynamical field theory (DFT). A well-known member of
this family is Thelen et al.’s (2001) model of infant
perseverative reaching in the A-not-B task:
tu(xt) = -ulxt) + S(xt) + glu(x)ix]

This model specifies the activation values of a high-
dimensional ‘motor planning field” (u) that depends on the
field’s previous activation (-u); a series of inputs (S) that
correspond to the changing and unchanging features of the
task environment as well as a memory trace of previous
reaches; the level of cooperative interaction (g) between
individual points on the field; and a temporal decay constant
(). Every point in the motor planning field corresponds to a
particular spatial location in the A-not-B task environment.
If at any moment the activation value at a single point
increases beyond a certain threshold value, a reach is
induced toward the corresponding location. Crucially, the
likelihood that the field’s activation value surpasses the
threshold is a function of the ‘cooperativity parameter’ g: at
high g-values, the activation of every point in the field is
positively influenced by the activation of its neighbors, thus
increasing the probability that accurate reaches are induced,
and allowing the field to maintain stable activation levels
for a period of time even in the absence of immediate
sensory input. Psychologically, g corresponds to the
parameter that determines whether or not accurate goal-
directed reaches can be performed at different stages of an
infant’s development.

For current purposes, the most significant fact about
Thelen et al.’s DFT model is that the value of the input
vector S is a function of three independent vectors: a ‘task
input’ which captures the unchanging features of the A-not-
B task environment; a ‘specific input’ which corresponds to
the changing perceptual scene in each trial; and a ‘memory
trace’, which corresponds to the effect of remembered
reaches from earlier trials. It is significant for at least two
reasons.

First, Thelen et al.’s motivation for defining S in this
particular way is independent of infants’ actual performance
in the A-not-B task—nothing in the data indicates that the
equation at the heart of their model should reflect the
distinction between specific, task, and memory inputs.
Rather, Thelen et al.’s primary motivation for defining S as
they do is an assumption about the functional structure of
the infant movement planning system—the assumption that
the system from which infant perseverative reaching
involves three functionally separable components. In other
words, unlike the HKB model, Thelen et al.’s DFT model is
a process model that incorporates a variety of assumptions
about the structure of the system from a particular cognitive
phenomenon arises.

Second, Thelen et al.’s definition of S in terms of three
separable input sources is in effect a functional analysis of
goal-directed reaching. Functional analysis (Cummins 1983;
2000) involves decomposing a complex function, capacity,
or behavior P into a set of simpler functions, capacities or
behaviors p;...p, that work together to produce P. The
analysis of movement planning into the relative
contributions of task input, specific input, and memory trace
is an analysis of exactly this kind. Therefore, although the
model’s ‘cooperativity parameter’ g is a global control
parameter that constrains the behavior of the system as a
whole, there is a clear sense in which Thelen et al. are also
invoking the explanatory principle of decomposition—a
principle more commonly associated with computationalism
and connectionism than with dynamicism (Bechtel 1998;
Cummins 2000).

The fact that Thelen et al.’s DFT model conflicts with the
standard  conception’s  commitment to  holistic
phenomenological modeling suggests that it might also
deviate from the commitment to covering law explanation.
Walmsley (2008) explicitly defends the view that Thelen et
al.’s DFT model provides a covering law explanation of
infant perseverative reaching, but this view appears to be
mistaken. Although the equation at the heart of the model
can be used to derive predictions about the future state of
the system (e.g. the direction of reach) from a particular set
of initial conditions (e.g. initial field activation values and a
particular set of inputs), and although the model has been
adapted to account for a wide variety of movement-planning
phenomena, interpreting it as a widely-applicable predictive
instrument is to misunderstand the intentions of the authors.
Rather than seeking to uncover general principles or laws of
movement planning in general, Thelen et al. are in the
business of describing the specific processes that underlie
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movement planning in humans. Accordingly, they even go
so far as to appeal to a preliminary neural localization:

“At this point, we conceptualize this field only in
abstract terms as a site where visual input and memory
are integrated into movement parameters supporting
movement amplitude, direction, or time. Later in the
discussion, we will speculate further as to possible
neuroanatomical areas where such a field might
evolve.” (Thelen et al. 2001: 16)

In summary, Thelen et al. are committed not only to
describing (via functional analysis) the process that
underlies episodes of goal-directed reaching, but are
additionally committed to eventually localizing that process
in the human brain. Thus construed, Thelen et al. are quite
clearly seeking a mechanistic explanation, rather than a
covering law explanation, of infant perseverative reaching.

Finally, what about representation? Spencer & Schoner
(2003), two of the most prominent contributors to
dynamical field theory research, have explicitly construed
that family of research as a way of “bridging the
representational gap” in the dynamical approach to
cognition. Their suggestion is to think of dynamical fields as
describing the large-scale neural activation patterns that
represent the continuous spatial dimensions of our
immediate environment, even when that environment is
temporarily occluded or otherwise inaccessible. Of course, it
remains to be seen whether or not such a representational
construal “earns its explanatory keep” (Ramsey 1997)—i.e.
whether it identifies a substantive and explanatorily useful
notion of representation. Nevertheless, the fact that this
construal is made explicit by two of the most prominent
dynamical field theorists suggests that this particular family
of research is not after all committed to the anti-
representationalism of the standard conception. This
observation, combined with the observation that Thelen et
al.’s DFT model is also not committed to the explanatory
principles of holistic phenomenological modeling and
covering law explanation, suggests that the standard
conception of dynamicism misrepresents at least this
particular family of dynamicist research.

Dynamical Agent Modeling

A third well-established family of dynamicist research—
dynamical agent modeling—involves applying the methods,
tools and concepts of dynamical systems theory to study the
behavior of simulated and artificially evolved brain-body-
environment systems (Beer 1995; 1996; 2003; Harvey et al.
2005). A particularly prominent example of this kind of
research is Randy Beer’s (2003) model of ‘visual’
categorization in an artificially evolved brain-body-
environment system:

Z wiG(s;+0;) 1=8,....12

-
]

Po= —

This 16-dimensional dynamical model describes a simulated
agent—equipped with a 14-neuron continuous-time neural
network ‘brain’ (neural parameters w, z, ¢, §) and seven
‘visual’ sensors (input vector I)—that was evolved to
categorize objects according to their shape. Two kinds of
objects, circles and diamonds, fall towards the agent (at rate
y), which must make a categorical discrimination by moving
horizontally (at rate x) to catch circles and avoid diamonds.
In order to accomplish this task, the agent uses a particularly
interesting ‘active scanning’ strategy: it repeatedly moves
from side to side to ‘foveate’ the falling object before
eventually settling on a position at which it will either catch
or avoid. Since this ‘active scanning’ behavior emerged
unexpectedly from the artificial evolutionary process, it
constitutes an interesting and non-trivial target for
dynamical explanation.

How does Beer go about explaining categorization via
‘active scanning’ in this particular simulated brain-body-
environment system? Unlike the previously discussed
dynamical explanations of bimanual explanation and infant
perseverative reaching, here the explanatory burden is not
carried by the dynamical model alone. Rather, Beer’s
dynamical explanation centers on an extensive dynamical
analysis of the simulated brain-body-environment system.
Crucially, this dynamical analysis relies on an explicitly
stated decompositional strategy:

“...we will decompose the agent—environment
dynamics into: (1) the effect that the relative positions
of the object and the agent have on the agent’s motion;
(2) the effect that the agent’s motion has on the relative
positions of the object and the agent.” (Beer 2003: 228)

This decompositional strategy constitutes a significant
departure from the standard conception’s commitment to
holistic modeling. Although Beer acknowledges that
categorization via ‘active scanning’ is a property of the
whole  simulated  brain-body-environment  system,
explaining how this phenomenon arises requires an
understanding of the way in which individual parts of the
system—the agent on the one hand and the environment on
the other—interact. Notably, this explanatory task is
accomplished in a uniquely dynamicist fashion. First, Beer
characterizes the effects of every possible “visual’ input as a
parametric change to the attractor landscape of the agent’s
two-dimensional (s13, s14) motor neuron state space.
Second, he characterizes the continuously changing state of
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the environment (defined as the relative positioning of agent
and object) as a continuous trajectory through the two-
dimensional (x, y) state space. Finally, Beer shows how the
observed ‘active scanning’ behavior arises from the
interactions  between agent and environment by
superimposing the continuous (x, y) trajectory on the
attractor landscape of the (s13, sl14) plane. In general,
Beer’s method of decomposing a closed (i.e. autonomous)
brain-body-environment  system into two mutually
interdependent (i.e. non-autonomous) subsystems, as well as
his method of describing their reciprocal nonlinear
interactions in terms of one subsystem’s effects on the
asymptotic behavior of the other, is a particularly vivid
demonstration of how the analytic tools of dynamical
systems theory can be applied to study not just systems as a
whole, but in terms of the reciprocal interactions between
multiple simpler components.

Aside from its decompositional nature, Beer’s approach
can be contrasted with the theoretical framework of the
standard conception in virtue of being process-oriented and
indeed, mechanistic. First, a purely phenomenological
approach would account for the observed ‘active scanning’
behavior solely in terms of directly observable features of
that behavior itself, by identifying its crucial dimension of
change (i.e. the agent’s horizontal position), and relating it
to the directly observable factors on which that change
depends (i.e. the proximity and shape of the falling object).
In contrast, the decompositional dynamical analysis outlined
above explains the observed behavior by showing how it
arises from the changing attractor landscape of the motor
neuron state space—the functional structure of the
underlying system’s ‘physical’ properties. Second, although
Beer’s dynamical model can (in principle) be used to predict
the future state of the system from any set of initial
conditions, it shouldn’t be thought of as identifying one or
more principles or laws of perceptual categorization in
general. Indeed, Beer is very explicit about the fact that his
intention “is not to propose a serious model of categorical
perception”, but rather to examine “in considerable depth
each aspect of [the agent’s] behavior, and the mechanisms
underlying that behavior” (Beer 2003: 210). In short, Beer’s
dynamical explanation is of the mechanistic, rather than the
covering law, variety.

What remains to be discussed is the extent of Beer’s
commitment to anti-representationalism. The standard
conception holds that dynamical agent models cannot or
should not be understood in representational terms (Wheeler
2005). Beer himself is somewhat agnostic on this issue,
explicitly adopting a stance of “representational skepticism”
(Beer 2003). Although he does not in fact invoke
representational principles in order to explain the observed
behavior, the fact that his analytic strategy involves
decomposing a larger system into multiple interacting
components makes it amenable to what Chemero &
Silberstein (2008) call “representation-hunting”: the practice
of identifying distinguishable producers and consumers of
information. Contrary to the standard conception of

dynamicism, which assumes an a priori rejection of
representationalism, here the truth or falsity of
representationalism is determined a posteriori, according to
the utility of representational principles for understanding
and explaining the behavior of individual dynamical agents.

Conclusion: Methodology or Theory?

The preceding discussion suggests that the standard
conception of dynamicism—the conception first outlined by
van Gelder and later adopted by most theoretical treatments
of the dynamical approach, positive or negative—
misrepresents the theoretical commitments of at least two
prominent families of dynamicist research. That is, the
standard conception underestimates the heterogeneous
nature of the dynamical approach to cognition. Although
Kelsonian dynamicism does seem committed to the
explanatory principles of anti-representationalism, holistic
phenomenological modeling, and covering law explanation,
dynamical field theory and dynamical agent modeling do
not. For this reason, van Gelder’s original goal—to develop
a conception of dynamicism as a unified body of research
that distinguishes it from both computationalism and
connectionism—remains unsatisfied.

In closing, | briefly outline two alternative ways of
carving up the logical space of cognitive science research
programs that might or might not be more successful. On
the first, we retain the original tripartite distinction between
computationalism, connectionism, and dynamicism, but
accept that the differences are methodological at heart: they
concern the particular mathematical methods, tools and
concepts that practicing cognitive scientists bring to bear to
the study of cognition. In particular, each of the three
families of dynamicist research discussed above relies on
the methods, tools, and concepts of dynamical systems
theory. First, they each rely on the practice of dynamical
modeling: they describe cognitive systems and cognitive
phenomena in terms of coupled difference or differential
equations. Second, by characterizing state-space trajectories
and attractor landscapes, as well as by identifying and
classifying critical points and bifurcations, they each make
use of the method of dynamical analysis. Third, by
emphasizing properties like stability, sudden loss of
stability, asymptotic behavior and coupled interaction, each
one of Kelsonian dynamicism, dynamical field theory, and
dynamical agent modeling allows us to study cognitive
phenomena from a uniquely dynamical perspective that is
unlikely to be shared with computationalist and
connectionist research projects.

On the second way of individuating cognitive scientific
research programs, we retain the ability to distinguish
research programs according to their major theoretical
commitments, but acknowledge that the traditional
distinction between computationalism, connectionism, and
dynamicism cuts across important theoretical distinctions.
For example, whereas the anti-representational, anti-
mechanistic commitments of Kelsonian dynamicism have
much in common with classical behaviorism, Gibsonian
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ecological psychology, and several strands of contemporary
mathematical psychology, the potentially representational,
mechanism-oriented research of dynamical field theorists
and dynamical agent modelers has more in common with
many—though not all—of the explanatory principles of
classical cognitivism. On this view, the theoretical
foundations of ‘mainstream’ cognitive science need not be
upturned in order to accommodate the ubiquity of reciprocal
nonlinear interactions between brain, body, and
environment—although it may be necessary and instructive
to apply the methods, tools, and concepts of dynamical
systems theory to articulate a richer and more powerful
notion of mechanistic explanation.
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