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Abstract

In this paper we present an eye-tracking experiment investi-
gating the control of visual attention during spatial decision
making. Participants were presented with screenshots taken at
different choice points in a large complex virtual indoor en-
vironment. Each screenshot depicted two movement options.
Participants had to decide between them in order to search for
an object that was hidden in the environment. We demonstrate
(1.) that participants reliably chose the movement option that
featured the longest line of sight, (2.) a robust gaze bias to-
wards the eventually chosen movement option, and (3.) using
a bottom-up description that captures aspects of the geometry
of the sceneries depicted, we were able to predict participants’
fixation behavior. Taken together, results from this study shed
light onto the control of visual attention during navigation and
wayfinding.
Keywords: visual attention; wayfinding; navigation; gaze be-
havior; spatial cognition; spatial perception.

Introduction
What controls visual attention when navigating through
space? In the context of navigation, eye-tracking studies so
far primarily investigated the role of gaze for the control of
locomotory or steering behavior (Grasso, Prevost, Ivanenko,
& Berthoz, 1998; Hollands, Patla, & Vickers, 2002; Wilkie
& Wann, 2003). Wayfinding, however, also includes pro-
cesses such as encoding and retrieving information from spa-
tial memory, path planning, and spatial decision making at
choice points (c.f. Montello, 2001). So far, very few, if
any, studies made use of eye-tracking techniques to investi-
gate such higher level cognitive processes involved in navi-
gation and wayfinding. For example, which information do
navigators attend to and process when deciding between path
alternatives? And, how does gaze behavior relate to spatial
decision making at all? To approach these questions we pre-
sented participants with images of choice points and asked
them to decide between two movement options while record-
ing their eye-movements.

In non-spatial contexts, gaze behavior has been shown to
reflect preferences in visual decision tasks (Glaholt & Rein-
gold, in press). In two alternative forced choice paradigms
in which participants have to judge attractiveness of faces,
for example, gaze probability is initially distributed equally
between alternatives. Only briefly before the decision, gaze
gradually shifts towards the eventually chosen stimulus (Shi-
mojo, Simion, Shimojo, & Scheier, 2003; Simion & Shimojo,
2007). It is an open question whether similar effects can also
be observed in spatial decision making such as path choice
behavior.

The features people attend to when inspecting images of
scenes have been investigated in numerous studies revealing
both, bottom-up (stimulus derived) as well as of top-down
(e.g., task) influences (for an overview see Henderson, 2003).
Already in the 60s, Yarbus (1967) demonstrated influences
of the task on the control of visual attention: participants’
gaze patterns when inspecting the same drawing systemati-
cally differed when asked to judge the ages of people depicted
or when asked to estimate their material circumstances. The
most widely used bottom-up approach is that of saliency maps
(Itti & Koch, 2000, 2001). A saliency map is a representa-
tion of the stimulus in which the strength of different fea-
tures (color, intensity, orientation) are coded. Several studies
demonstrated that saliency maps are useful predictors of early
fixations, particularly when viewing natural complex scenes
(e.g., Foulsham & Underwood, 2008).

It is important to stress that bottom-up approaches usu-
ally do not explicitly account for the fact that images or pic-
tures are two-dimensional projections of three-dimensional
scenes. In other words, the geometrical properties of the
scenes depicted in the images are not necessarily captured
or highlighted by, for example, saliency maps. For naviga-
tion and wayfinding, however, the interpretation and under-
standing of the depicted three dimensional structure may be
inevitable. This opens up intriguing questions: Is it possible
to predict gaze behavior by analyzing geometrical properties
of the sceneries depicted if the viewer is solving a navigation
task? If so, can the analysis of gaze behavior be used to infer
the strategies and heuristics underlying different navigation
or wayfinding tasks? And, which kind of description systems
of spatial form and structure captures properties of space that
are relevant for the control of visual attention?

Promising candidates are isovists or viewshed polygons
(Benedikt, 1979), which both describe the visible area from
the perspective of the observer. Isovists are essentially depth
profiles and several quantitative descriptors such as the visi-
ble area, the length of the perimeter, the number of vertices,
etc., can be derived that reflect local physical properties of the
corresponding space. Moreover, isovists have been shown
to capture properties of the geometry of environments that
are relevant for experience of the corresponding space and
locomotion within the space (Wiener et al., 2007; Franz &
Wiener, 2008).

The specific research questions for this study were as fol-
lows:
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Figure 1: Two examples of decision points presented to par-
ticipants (in high contrast).

1. How does gaze behavior relate to spatial decision making?
Is it possible to predict participants’ movement choices
during navigation and wayfinding by analyzing their fix-
ation patterns?

2. Where do navigators look when exploring unfamiliar en-
vironments? Is it possible to predict gaze behavior by an-
alyzing geometrical properties of the spatial situations en-
countered?

Method
Participants
Twenty subjects (14 women, mean age: 22.45 ± 2.83 years)
participated in the experiment. They were mostly university
students and were paid 8 Euro per hour for participation in
that study.

Stimuli
The stimuli were 30 screenshots from within large virtual ar-
chitectural environments (for examples, see Figure 1). Each
screenshot was taken at a decision point, depicting two path
alternatives that differed with respect to their spatial form.
Pilot experiments suggested that high contrast images as de-
picted in Figure 1, could be well comprehended parafoveally
without gaze shifts. We therefore reduced the contrast of the
stimuli by adjusting the colors of floor and ceiling to that of
the walls. By this mean participants were forced to overtly
attend to the relevant information.

Two versions of each stimulus were generated by mirror-
ing the original stimulus along the vertical axis. Presentation
of the original and the mirrored version of the stimuli were
balanced between participants.

The spatial structure of the scenes were analyzed using a
variant of isovist analysis (Wiener et al., 2007): for each stim-
ulus a depth profile was calculated by contouring the edge
between the ground and the walls (see Figure 2 right). The
resulting contour essentially describes the distance from the
observer to the walls in the stimulus. Although such depth
profiles were measured in the 2d pictorial projection of the
scenes and are thus compressed around the horizon, they are
functionally equivalent to isovists. The angular declination of
the lower border of distant walls is smaller than the declina-
tion of the lower border or walls close-by (see Figure 2). In

Figure 2: Left: Position in the maze from which one of the
snapshots was taken. The Grey area represents the isovist
(depth profile) at this position; right: corresponding view in
the ego-perspective. The depth profile that is approximated
by the dashed line is equivalent to the isovist displayed on the
right. Note, however, that large distances are compressed in
the depth profile obtained from the image as compared to the
actual spatial situation captured by the isovist.

fact, the visual system has been shown to be able to use angu-
lar declination below the horizon for distance judgments (e.g.
Ooi, Wu, & He, 2001).

The depth profiles were used to compare spatial properties
of the left and right path alternative (left and right half of the
stimulus). In particular, we calculated the proportion of the
length of the longest line of sight, and compared the number
of vertical and horizontal edges. The latter two measures are
thought to capture aspects of the spatial complexity of the
path alternatives.

Procedure
Participants first read a description of the experiment along
with a set of instructions stating that their task was to search
for an object (a gold bar) that was placed somewhere in the
environment. They would be presented with a series of single
choice points at which they had to decide whether to go left or
right in order to search for the object. Note that participants
had no clue about where to find the target object; in other
words, they either had to apply decision strategies that were
independent of the stimulus (always turn right, choose ran-
domly, etc) or they had to decide according to other stimulus-
related criteria. In the latter case any such criterion would
require visual attention and should be reflected in gaze pat-
terns. Instead of actually walking through the environment
they would then be presented with the next choice point they
would have encountered in the environment. In order to illus-
trate this procedure, participants were presented with a series
of snapshots taken between two choice points.

Before a novel stimulus was presented, participants were
required to fixate a small cross in the center of the screen and
press the ’Space’ bar. Participants pressed the left or right cur-
sor key to report their decision. Each stimulus was presented
for 5 seconds, irrespective of when participants responded.

Participants movement decisions (left or right) at individ-
ual choice points did not influence which image was pre-
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Figure 3: Left: the three interest areas superimposed on one
of the stimuli.

sented next, images were presented in random order. The
experiment was divided into 5 trials containing 4, 5, 6, 7, or
8 decisions. After the last decision of each trial, participants
were presented with an image of a gold bar hovering in a
small room.

Apparatus
The stimuli were displayed at a resolution of 1024 x 768 pix-
els on a 20” CRT monitor. The screen refresh rate was 100
Hz. Eye movements were recorded using a SR Research Ltd.
EyeLink II eye tracker, sampling pupil position at 500 Hz.
The eye tracker was calibrated using a 9-point grid. A second
9-point grid was used to calculate the accuracy of the cali-
bration. Fixations were defined using the detection algorithm
supplied by SR Research.

Analysis
Behavioral data For each stimulus presented participants’
decisions (left/right) as well as the corresponding response
time was recorded.

Eye movement data For each stimulus we defined three
interest areas vertically dividing the image in a left part, a
central part, and a right part (see Figure 3). The width of the
central interest area was adjusted such as to cover the central
wall. Fixations were assigned to the different interest areas.
For most of the analyses conducted (unless stated otherwise),
we removed the initial fixations directed towards the central
interest area, because these initial fixations most likely re-
sulted from the requirement to look at the fixation cross be-
fore the stimulus was presented.

Results
Behavioral Data
Response times for the different images ranged between 1793
ms and 2654 ms (mean: 2277 ms). Participants displayed a
small yet significant tendency to choose the right over the left
movement option (54.07%: T-test against chance level (50%):
t(19)=2.28, p=.03) which might be related to the majority
of them being right-handed (80%). An analysis of single
participants’ tendencies to produce stereotypical responses
(i.e. to repeatedly choose left movement option or the right

Figure 4: The likelihood that the observer’s gaze was di-
rected towards the chosen part of the image (left/right) plotted
against time (synchronized at time of decision). The data rep-
resent the average across observers (n=20) and trials (n=30).

movement option) revealed that in 54.78% of the trials, they
switched from left to right or from right to left (T-test against
chance level [50%]: t(19)=1.30, p=.21). These analyses sug-
gest that participants in fact reacted to the stimuli rather than
using other search or navigation strategies such as making
right or left turns only.

The absolute difference in the length of the longest line of
sight between the left and the right part of the stimuli strongly
correlated with participants relative frequency to select the
left or the right movement option (r=.64, p<.001). Specif-
ically, participants reliably chose the movement option that
featured the longer line of sight.

Eye Movement Data
Fixation Duration. The mean fixation duration towards the
left or right interest area before participants reported their de-
cision was 313ms. Fixation durations significantly differed
depending on whether or not the eventually chosen interest
area was inspected. Fixations directed towards the chosen
interest area were longer, lasting 339ms, while fixations to-
wards the non-chosen interest area lasted 280ms (t(19)=-5.58,
p<.001).

Time-Course Analyses. The likelihood that observer’s
gaze was directed towards the (eventually) chosen part of the
stimulus changed over the time course of the trials (see Figure
4 left). Approximately 700 msec before participants pressed
the button to report their decisions, the likelihood that they
inspected the chosen part of the image significantly increased
above chance level, reaching a maximum of 82.18% around
the time of decision.

Fixation Patterns. Where did participants look when in-
specting the stimuli until drawing their decisions? Figure 5
summarizes fixation patterns for the horizontal and vertical
stimulus location separately. Most noticeably the distribu-
tion of fixation density along the vertical image position was
sharply tuned around the horizontal center line of the images.
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Figure 5: Left: Exemplary fixation pattern for one of the stim-
uli in the experiment. Single fixations are depicted as black
crosses; right: fixation densities for all stimuli for the hori-
zontal (top) and vertical (bottom) image location. Grey lines
depict fixation densities for the single stimuli (areas under
curve sum up to 1); the black lines reflect the average over all
30 stimuli.

Furthermore, there was very little variance in the fixation po-
sitions along the vertical position between stimuli. The distri-
bution of fixation density along the horizontal image position,
in contrast, was rather broad and there were considerable dif-
ferences between the different stimuli (see Figure 5). In other
words, participants scanned all spatial scenes approximately
at the horizon. Differences in fixation patterns between the
different scenes were primarily due to differences in the hor-
izontal dimension. The further analysis will therefore focus
on the horizontal axis.

The averaged fixation density along the horizontal image
location reveals two maxima, left and right of the vertical cen-
terline of the images. These peaks relate to the two movement
options that participants had to inspect and compare in order
to decide between them. Figure 6 illustrates typical fixation
densities along the horizontal position for three single stim-
uli. A qualitative analysis of fixation behavior for these stim-
uli suggests that participants paid close attention to the parts
of the image in which the lines of sight were particularly long
(see left and right example in Figure 6). Furthermore, fix-
ations densities for the middle image in Figure 6, in which
the longest lines of sight are equivalent for both choice alter-
natives, suggests that fixation density was also modulated by
aspects of the local complexity of spatial scene. Note that the
fixation density for the left choice alternative, in which sev-
eral columns are depicted, is higher than for the right choice
alternative.

Taking these qualitative observations into account we will
now present a tentative model of the control of visual atten-
tion in spatial decision making. The model derives its predic-
tion for gaze behavior by analyzing geometrical features of
the depicted scene.

Towards a minimalistic model of visual
attention in spatial decision making

Does the three-dimensional form of a spatial situation al-
low predicting gaze behavior when inspecting its two-

Figure 6: Exemplary fixation densities superimposed on three
of the stimuli: Fixations densities (black lines) are plotted as
a function of the horizontal position in the image.

dimensional projection in an image?

The predictors. In order to derive quantitative measures of
the geometry of the spatial scenes depicted in the 30 stimuli,
we chose to apply a spatial analysis inspired by isovists. This
was done for two reasons, (1) because isovists describe the
geometry of space from the perspective of the beholder and
(2), because earlier studies already demonstrated that isovist
analysis captures psychologically and behaviorally relevant
properties of space (Wiener et al., 2007). For each stimulus
we extracted a depth profile directly from the image. This
depth profile relates to the distances of the walls from the
camera’s (i.e. from the observer’s) position (see Section Stim-
uli and Figure 2). Next, this depth profile was downsampled
from 1024 bins (the images were 1024x768 pixel) to 30 bins
(see Figure 7 A) and normalized such that the area under the
curve summed up to 1.0. The resulting depth profile, describ-
ing the local geometry, was used as the first predictor for the
model.

The depth profile was also used to generate the second
predictor, the depth-edge detector. Starting from the verti-
cal centerline, it progresses both to the left and to the right
and detects all positions along the depth profile at which its
orientation changed and exceeded 45 degrees. From these po-
sitions only those were taken into account that related to an
increase in depth. In other words, starting from the center of
the image the depth-edge detector highlights all positions at
which the length of the line of sight increases sharply. We
then applied a Gaussian kernel to the single edges to obtain
a smoothed depth-edge profile (see Figure 7 B). Again, the
resulting curve was normalized such that the total area under
curve was 1.0.

To obtain a model prediction, the two predictors (depth
profile and depth-edge detector) were simply added (see Fig-
ure 7).

Model evaluation. For each of the 30 stimuli we calculated
the prediction of the model and correlated it with the fixation
densities for each stimulus obtained in the experiment. The
correlations ranged between r=.30 and r=.83. Average cor-
relation between, the model’s predictions and the empirical
data was r=.67 (correlation coefficients were Fisher’s Z trans-
formed for averaging). The predictive power of the model
increased when we smoothed the experimental data with a
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Figure 7: A tentative model of how the geometry of space in-
fluences control of visual attention in spatial decision making.
(A) depth profile of the original stimulus; (B) Depth-edge de-
tector and smoothed depth-edge profile; (C) The model’s pre-
diction and the experimental data. For this particular stimulus
the correlation between the model’s prediction and the exper-
imental data was r=.74.

Gaussian kernel (mean correlation between model predic-
tions and smoothed experimental data: r=.78; see Figure 8
for an example).

It should be noted at this point, that the model described
above is of tentative nature for a number of reasons: (1) In
its current form, the two predictors are not weighted, as if
equally contributing to the control of visual attention. Possi-
bly, better fits are obtained if the weights of the two predictors
were optimized; (2) The fact that smoothing of the experi-
mental data resulted in a noticeable increase of the predictive
power of the model suggests that we might currently suffer
from a sparse data problem; (3) In order to extract the pre-
dictors, we used depth profiles that were distorted: the depth
profiles were extracted from the stimuli directly rather than
from the corresponding floorplans. While it has been shown
that the visual system can use angular declination below the
horizon for distance judgments (e.g. Ooi et al., 2001), better
fits may be obtained using non-distorted depth profiles.

Future versions of the model will address the points raised
above.

Discussion
In this study, we investigated gaze behavior in the context
of navigation and spatial decision making. Participants were
presented with images of choice points displaying two dif-
ferent movement options and were asked to decide between
them in order to search for an object that was hidden in the
environment. We demonstrated that both, participants’ move-
ment decisions, as well as their gaze behavior could be pre-
dicted by certain geometrical features of the spatial scenes de-
picted. With respect to movement decisions, participants re-
liably chose the option that featured the longest line of sight.
While related strategies have been demonstrated in other nav-

Figure 8: Model prediction, experimental data, and experi-
mental data smoothed by a Gaussian kernel for an exemplary
stimulus.

igation studies (e.g., Conroy Dalton, 2003), it remains un-
clear why participants chose the option with the longest line
of sight. A possible explanation is that the movement option
with the longest line of sight promises greater information
gain when traveling along than the alternative. However, fur-
ther research is needed to investigate this behavior.

The analysis of gaze behavior revealed a number of interst-
ing results. First, gaze behavior reflected the spatial decision
making process: approximately 700msec before observers re-
ported their decisions, the likelihood that they inspected the
eventually chosen movement option significantly increased
above chance level. These results are in line with earlier re-
sults on visual decision tasks in non-spatial domains (e.g.,
Shimojo et al., 2003; Simion & Shimojo, 2007; Glaholt &
Reingold, in press). Moreover, the duration of fixations was
longer when inspecting the eventually chosen movement op-
tion than when inspecting the alternative.

Which parts of the scenery did participants attend to while
deciding between path alternatives? Most noticeably, partic-
ipants’ gaze behavior was narrowly tuned along the vertical
axis of the stimuli: irrespective of the specific stimulus in-
spected, viewers focused their fixations around the horizon.
This appears to be a sensible viewing strategy in a spatial con-
text, because (1.) information about the geometry of space is
most dense around the horizon, and (2.) because by scan-
ning a scenery along the horizon one makes sure that all be-
haviorally relevant geometrical information is perceived (at
least in architectural spaces as used in this study). This sug-
gests that participants were not merely responding to areas
with high visual complexity, but were actually analyzing the
spatial structure. Fixation densities along the horizontal axis
systematically differed between stimuli, demonstrating that
participants directed their attention to specific features in the
environment.

To account for these differences in gaze behavior between
different scenes we developed a tentative, minimalistic model
of the control of visual attention during spatial decision mak-
ing. Inspired by isovist analysis, the model extracts a depth
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profile describing the visible geometry of the scene and cal-
culates salient geometrical features from that profile. Specif-
ically, starting from the center line and progressing to the
edges, the model detects spatial situations in which the line
of sight suddenly increases in length. We refer to this as
the depth-edge detector. By a simply (unweighted) additive
model using the depth profile the depth-edge detector, we ob-
tained quite strong correlations between the model’s predic-
tions and the experimental data (r=.67; this correlation even
increased when smoothing the experimental data). In other
words, by analyzing certain features of the geometry of the
depicted scenes – the depth profile, and local changes in the
depth profile – we are able to predict where viewers look
when deciding which of two movement options to select.

Conclusion
Taken together, results from this study provide evidence that
participants did interpret the presented stimuli as three dimen-
sional scenes rather than as flat pictures. While this appears
trivial at first glance, it strongly suggests that the geometry
of scenes is a relevant factor contributing to the control of vi-
sual attention when inspecting corresponding images (at least
when faced with spatial tasks such as navigation or wayfind-
ing). Earlier bottom up approaches such as the widely used
saliency maps (e.g., Itti & Koch, 2001) as well as recent
models combining bottom-up saliency, scene context, and top
down influences (Torralba, Oliva, Castelhano, & Henderson,
2006), do not explicitly analyze the spatial structure of the
inspected scenes but concentrate on features in the two di-
mensional projection of the scene. Here we presented a novel
bottom-up model that could contribute to a more comprehen-
sive understanding of the control of visual attention. The
model specifically analyzes the spatial structure of the scene
presented and highlights situations in which the line of sight
or the depth profile, respectively, suddenly changes. Appar-
ently these spatial features attract visual attention when visu-
ally exploring unfamiliar environments.

Overall, the results suggest that the integrated analysis of
navigation behavior and gaze behavior can play a key role in
the investigation of the information processing mechanisms
and the cognitive strategies underlying human wayfinding be-
havior.
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