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Abstract

A postcompletion error is a type of procedural error that
occurs after the main goal of a task has been accomplished.
There is a strong theoretical foundation accounting for
postcompletion errors (Altmann & Trafton, 2002; Byrne &
Bovair, 1997). This theoretical foundation has been leveraged
to develop a logistic regression model of postcompletion
errors based on reaction time and eye movement measures
(Ratwani, McCurry, & Trafton, 2008). The work presented
here further develops and extends this predictive model by (1)
validating the model and the general set of predictors on a
new task to test the robustness of the model, and (2)
determining which specific theoretical components are most
important to postcompletion error prediction.
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Introduction

Even while performing a routine procedural task that has
been performed hundreds of times in the past, occasional
errors still occur (i.e. a slip or lapse) (Reason, 1990). These
procedural errors have been termed skill-based errors
(Rasmussen & Jensen, 1974) and occur despite having the
correct knowledge of how to perform a particular task. A
common type of procedural error is the postcompletion
error; this error is associated with forgetting a final step
which occurs after the main goal of a task has been
completed (Byrne & Bovair, 1997). There are several
examples of postcompletion errors, such as leaving an
original document on the glass of a copy machine after
making a copy or failing to attach a document to an email
message.

The holy grail of error research is to be able to predict
when an error is going to occur before the error actually
occurs (Reason, 1990). In order to be able to make advances
toward error prediction, strong theoretical accounts of the
cognitive mechanisms underlying procedural errors are
required. In the case of postcompletion errors, these
theoretical accounts do exist; Byrne and Bovair (1997) have
put forward a theory specific to postcompletion errors, and
Altmann and Trafton (2002) explain postcompletion errors
using a general theory of goal memory, called memory for
goals. Both theories are activation-based memory accounts
and there is substantial overlap between the theories.

Byrne and Bovair (1997) suggest that postcompletion
errors are due to goal forgetting and inattention to the
postcompletion step. Specifically, postcompletion errors
occur because the postcompletion step of a task is not
maintained in working memory and, thus, is not executed as
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part of the task. The main goal of a task and the subsequent
subgoals are stored in working memory and must remain
active to be executed. The main goal provides activation to
the subgoals. When the main goal of a task is satisfied, the
goal no longer provides activation to the subgoals;
consequently, the remaining subgoals may fall below
threshold and may not be executed.

The memory for goals theory (Altmann & Trafton, 2002)
accounts for goal-directed behavior with the constructs of
activation and associative priming. The theory suggests that
behavior is directed by the current most active goal and that
the activation level of goals decay over time. In order for a
goal to direct behavior, the goal must have enough
activation to overcome interference from previous goals;
thus, the goal must reach a certain threshold to actually
direct behavior.

Goal activation is determined by two main constraints.
The strengthening constraint suggests that the history of a
goal (i.e. how frequently and recently the goal was
retrieved) will impact goal activation. The priming
constraint suggests that a pending goal will be retrieved and
will direct behavior if the goal is primed from an associated
cue. These cues can either be in the mental or environmental
context.

Leveraging these theoretical accounts, Ratwani, McCurry
and Trafton (2008) developed a logistic regression model
predicting when a postcompletion error will occur on a
computer-based procedural task. A logistic regression
analysis was used because the outcome variable (occurrence
of an error) was a dichotomous variable, which violates
many of the assumptions of standard linear regression
(Tabachnick & Fidell, 2001). A simple description of
logistic regression is that it is a multiple linear regression
model with a dichotomous variable as an outcome variable;
a more detailed description can be found in Peng, Lee, &
Ingersoll (2002).

To build their logistic regression model, Ratwani et. al.
(2008) recorded and developed eye movement and reaction
time measures as the behavioral indicators of the cognitive
constructs outlined by the Byrne and Bovair (1997) and
Altmann and Trafton (2002) theories. Specifically, three
predictors were used in the logistic regression model: time
between actions, total number of fixations between actions,
and fixation on the postcompletion action button. The
logistic regression model was as follows:

Predicted logit of Error = .12 + (time x -.001) + (total
fixations x .63) + (postcompletion fixation x -5.7)
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The motivation for these predictors followed directly
from cognitive theory. The time predictor represents goal
decay. The total number of fixations represents decay, but
may also capture individual differences in decay rates and
differences in visual and cognitive processing demands (Just
& Carpenter, 1976; Rayner, 1998). Finally, the fixation on
the postcompletion action represents inattention/attention to
this action and associative priming provided by the
postcompletion action button on the task interface.

Using this model, over 90% of the postcompletion error
and correct actions were correctly classified on the dataset
from which the model was based. The successful
classification rate with this model provides some confidence
that the predictors, and, more importantly, the underlying
theoretical constructs which the predictors represent, are
able to account for the cognitive mechanisms that contribute
to postcompletion errors.

Despite the successful classification rate of this model,
several important issues remain. First, the model was
developed and tested on a single task. Consequently, it is
difficult to determine how robust the specific model and the
general set of predictors are. Second, the relative importance
of each of the predictors, and the underlying cognitive
constructs is unknown. For example, is decay a more
important theoretical and predictive component than
associative activation? How do we differentiate between
the predictors?

We sought to address these issues in two ways. To
determine the robustness of the logistic regression model
and the set of predictors, the logistic regression model from
Ratwani, et al. (2008) was applied to a new task to see how
well the model could account for postcompletion errors on
that task. Performance of the model was compared to a task
specific logistic regression model using receiver-operating
characteristic curves and by examining classification
success rates. To differentiate between predictors,
discriminant function analysis was utilized to linearly
separate the predictors. This analysis provides insight into

which specific predictors, and underlying cognitive
constructs, are contributing the most in regard to
predictability.

Experiment

Reaction time and eye movement data were collected on a
computer-based procedural task, called the financial
management task. This task has a postcompletion step and is
different from the sea vessel task used by Ratwani et al.
(2008). While performing the task, participants were
interrupted to increase the rate of postcompletion errors (Li,
Blandford, Cairns, & Young, 2008). This technique of
increasing the postcompletion error rate was used by
Ratwani et al. as well.

To determine the robustness of the original logistic
regression model (called the sea vessel model), this model
was used to predict the occurrence of a postcompletion error
on the financial management task. A task specific logistic
regression model (called the financial model) was also

created, and the models were compared. We examined
which predictors loaded significantly and the weights of the
predictors. Although some differences are expected between
the two models because they are based on different tasks, if
the wunderlying theoretical constructs account for the
cognitive mechanisms contributing to postcompletion errors
the models should share the same general set of predictors
and these models should have strong predictive power.
Similarities in regression weights between the two models
would suggest particularly pervasive cognitive components.
To determine the relative contribution of the predictors in
the logistic regression models, discriminant function
analysis was used. This statistical technique was used
because logistic regression (unlike multiple regression) does
not provide an indication of the importance of predictor
variables (i.e. there is no indication of unique variance
accounted for) (Tabachnick & Fidell, 2001). Discriminant
function analysis is a linear technique that will provide an
indicator of the importance of each predictor. Discriminant
function analysis was used on the dataset from Ratwani et
al. (2008) and on the data from this experiment to compare
the relative importance of each the predictors across tasks.

Method

Particpants. Thirty-six George Mason University
undergraduate students participated for course credit.

Materials. The primary task was a complex financial
management task. The goal of the task was to successfully
fill client’s orders for different types of stocks. The orders
were to either buy or sell and were presented four at a time
at the top of the screen (see Figure 1). The current prices of
the stocks associated with the orders were presented in the
center of the screen in the Stock Information column. The
actual stock price fluctuated every 45 seconds.

To complete an order, participants first had to determine
which of the client orders was valid by comparing the
client’s requested price to the actual market price of the
stock from the Stock Information column. Once an order
was determined to be valid, the participant clicked the Start
Order button for the respective stock. To actually fill the
order, the participant had to enter details from the order
itself and the Stock Information column in to eight different
modules on the screen. Participants had to follow a specific
procedure to complete the order; the specific sequence was:
Quantity, Cost, Order Info, Margin, Stock Exchanges,
Transaction, Stock Info, and Review. The spatial layout of
the interface is quite intuitive (working down the left
column and then the right column of Figure 1), unlike the
sea vessel task used by Ratwani et. al (2008).

After entering information in each module the participant
clicked the Confirm button and could then move on to the
next module. After clicking confirm on the final module
(the Review module), a pop-up window appeared
confirming the details of the order. The participant then had
to acknowledge the window by clicking Ok. Finally, to
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complete the order the participant clicked the Complete
Order button (upper right corner). This final action was the
postcompletion step and the pop-up window is a false
completion signal that is generally associated with
postcompletion errors (Reason, 1990).

All of the information required to complete the task is
directly available on the task interface. After completing a
particular module and clicking the Confirm button, the
information disappears from the module. If a participant
attempts to work on a module or clicks a button that
deviates from the strict procedure, the computer emits a
beep signifying that an error has been made. The participant
must then continue working on the task until the correct
action is completed.

The interrupting task consisted of multiple choice
addition problems. Each problem contained five single digit
addends and five possible solutions (4 incorrect, 1 correct).
A single addition problem and solution set was presented at
one time; participants completed as many problems as
possible during the interruption.
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Figure 1. Screenshot of the financial management task.

Design. Control and interruption trials were manipulated
in a within-participants design. The completion of one order
on the financial management task constituted a trial.
Participants completed twelve trials; six were control and
six were interruption trials. The order of control and
interruption trials was randomized. Each interruption trial
contained two interruptions. There were eight possible
interruption points. These points occurred after clicking the
Confirm button following the first seven modules and after
acknowledging the false completion signal, just prior to the
postcompletion action. The location of the interruptions was
randomized with the constraint that exactly two
interruptions occurred just prior to the postcompletion step
and at least one interruption occurred at each of the other
seven possible locations. The interruption itself lasted for
fifteen seconds.

Procedure. Participants were seated approximately 47cm
from the computer monitor. After the experimenter
explained the financial management and interrupting tasks
to the participant, the participant completed two training
trials (one with and one without interruptions). In order to
begin the experiment, participants had to complete two
consecutive error free trials to ensure the task was well
learned.

Each participant was instructed to work at his/her own
pace. When performing the interrupting task, participants
were instructed to answer the addition problems as soon as
the solution was known. Upon resumption of the financial
management task there was no information on the primary
task screen to indicate where the participant should resume.
Removing this information prevented global place keeping
(Gray, 2000).

Measures. Keystroke and mouse data were collected for
every participant. Eye track data were collected using a
Tobii 1750 operating at 60hz. A fixation was defined as a
minimum of five eye samples within 10 pixels (approx 2° of
visual angle) of each other, calculated in Euclidian distance.
The Complete Contract button was defined as an area of
interest and subtended an area greater than 1.5°. This button
was separated from its nearest neighbor by at least 2°.

A postcompletion error was defined as skipping the step
of clicking the Complete Contract button and making an
action that is related to a new order on the financial
management task (e.g. erroneously attempting to click the
Start Order button or attempting to work on the first
module). The percent of postcompletion errors in the
interruption trials was compared to the percent of
postcompletion errors in control trials. The percent of errors
was a ratio of the actual number of postcompletion errors to
the opportunity for a postcompletion error.

The three predictors of interest (time, number of fixations,
and fixation on postcompletion step) were calculated for
every postcompletion action. In the cases where there was
no interruption prior to the postcompletion step, the period
of measurement was from the completion of acknowledging
the pop-window to the next action (i.e. correctly making the
postcompletion action or making an error). In the cases
where an interruption occurred just prior to the
postcompletion action, the period of measurement was from
the onset of the financial management task immediately
following the interruption to the next action. The time
predictor was measured in milliseconds. The total number
of fixations predictor was a count of the number of
fixations. Fixation on the postcompletion action button was
a binary variable that was coded 0 if the participant did not
fixate on the postcompletion button and 1 if the participant
fixated on the postcompletion button.

Results and Discussion

Error Rates. Participants made a total of 27 postcompletion
errors; 19 participants made at least one postcompletion
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error. Participants made significantly more postcompletion
errors during interruption trials (M = 11.1%) than control
trials (M = 1.4%), F(1, 25) = 18.8, MSE = 90.3, p<.001. The
low error rate in the control trials shows that participants
knew the task well.

Logistic Regression Models. The data from the financial
management task (all postcompletion error and non-error
actions, regardless of trial type) were formulated into the
three predictors of interest, as described in the measures
section of the method. These predictors were used to create
a task specific logistic regression model (the financial
model). The task specific equation was as follows:

Predicted logit of error = -2.6 + (.0003 x time) + (.11 x total
fixations) — (5.5 x postcompletion fixation)

Table 1 shows the logistic regression results for this
model; the beta weights are under the column labeled “(
Financial.” To the right of this column are the associated
standard error, Walds test and degrees of freedom values.
As indicated in the table, all three predictors loaded
significantly in the financial model.

Table 1: Logistic regression results.

Predictor B B SEB | Walds df
Sea Vessel | Financial v

Intercept 12 -2.6 4 -6.5 3
(n.s.) (p<.001)

Postcompletion -5.7 -5.5 1.6 -3.4 3
Fixation (p<.001) (p<.001)

Total Fixations .63 12 .05 2.2 3
(p<.001) (p<.05)

Time -.001 .0003 .0001 2.3 3
(n.s5) (p<.05)

Table 1 also displays the beta weights from the original
Sea Vessel model. Comparing the weights between the
models illustrates several interesting things about the
predictors. First, the postcompletion fixation predictor
loaded significantly in both models and the values of the
weights are nearly identical. As participants fixate on the
postcompletion action button the probability of a
postcompletion error decreases by nearly the same amount
in each model. This comparison suggests the inattention and
associative activation constructs represented by the
predictor are prevalent across tasks and are important in
accounting for errors.

The total number of fixations predictor is significant in
both models, suggesting that this is a fairly robust predictor
as well; however, the weights of the predictors are quite
different. While the likelihood of a postcompletion error
increases with each additional fixation in both models, the
increase in probability is not as drastic for the financial task
model. The difference in the value of the weights may
reflect differences in the perceptual processing required in
each of the tasks.

The time predictor is different in the two models; the
predictor is not significant in the Sea Vessel model, but it is
significant in the Financial model. In the Financial model,
as time increases, the probability of making a
postcompletion error increases; this behavior is in
agreement with the Altmann and Trafton (2002) decay
predictions.

Although there are some differences in the beta weights,
there is clear overlap in two of the three predictors when
examining the significance of the weights. However, simply
comparing the value of the weights and the significance of
the weights does not provide insight as to how well the
models can actually predict when a postcompletion error
will occur. Specifically, can the sea vessel logistic
regression model account for the occurrence of
postcompletion errors on the financial management task?

Receiver-operating characteristic analysis. To begin to
examine how well each model predicts the occurrence of a
postcompletion error on the data from the financial
management task, a receiver-operating characteristic (ROC)
analysis was conducted. For each participant on the
financial management task, his or her data from each
postcompletion step was entered in to each of the logistic
regression models. Each model produced a predicted
probability of postcompletion error. These predicted
probabilities were then compared to the actual occurrence of
an error to determine how accurate each model was.

Because the logistic regression models results in predicted
probabilities, a threshold value must be established to
categorize cases as errors and non-errors. For example,
Ratwani et al. (2008) suggested a threshold value of 75%
for their model on the task on which it was developed. This
value means when the logistic regression model is applied
to a particular postcompletion case, if the predicted
probability is greater than or equal to 75%, the case should
be classified as an error. If the predicted probability is under
75%, the case should be classified as a non-error.

A ROC analysis provides a method for visualizing the
performance of the logistic regression models at different
threshold values (Fawcett, 2006). In order to develop the
ROC curves, these threshold values were systematically
varied from 0 to 100 percent in each model. The predicted
errors and non-errors at each threshold value were compared
to the actual data to generate the true positive and false
positive rates. Each of these pairs of values was then used to
generate the ROC curves seen in Figure 2.

The ROC curves in Figure 2 are plotted in ROC space.
Points that fall in the upper left hand corner represent
perfect prediction; the points result in a high true positive
rate and a low false positive rate. By visually examining
Figure 2, one can see that the ROC curves for the two
models are nearly identical, suggesting that the sea vessel
equation is robust enough to account for the data on the
financial management task.
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Figure 2. ROC curves for the logistic models.

In order to quantitatively determine how robust the
logistic regression models are at predicting postcompletion
errors on this dataset, the area under the ROC curve can be
examined. The area under the curve represents the
probability that the logistic regression model will rank a
randomly chosen positive instance (i.e. an error) higher than
a randomly chosen negative instance (i.e. non-error)
(Fawcett, 2006; Macmillan & Creelman, 2005). The area
under the ROC curve for the sea vessel model is .96. The
area under the curve for the financial model is .97. These
values are considered excellent and suggest that the logistic
regression models are correctly ranking nearly every case.

To illustrate the robustness of the sea vessel model, a
confusion matrix was created by applying the model to the
financial dataset. A 75% threshold was used to classify non-
errors and error. This threshold was determined to maximize
true positives and minimize false positives for this particular
logistic regression model on the sea vessel task (Ratwani &
Trafton, under review). As can be seen in Table 2, the sea
vessel model predicts more than 90% of the postcompletion
errors. This result is based on taking the equation “out of the
box”; improved performance can be achieved by
determining the optimal threshold on the financial
management task.

A confusion matrix was also generated using the financial
logistic regression model. This model was applied to the
financial management dataset using a threshold value of
30%. Based on the ROC analysis, this threshold value
maximizes true positives and minimizes false positives.
Table 3 shows the results. Comparing the tables, it is
obvious that both models are very accurate. The financial
model has a 4% higher true positive rate.

The ROC analysis and the confusion matrix provide
strong evidence for the robustness of the sea vessel model
and for the set of predictors in the model. The sea vessel
predicted over 90% of the errors on the new financial task
with the 75% threshold, suggesting that the underlying

theoretical constructs are accounting for the cognitive
mechanisms  contributing to postcompletion errors,
regardless of task.

From an applied aspect, note that both models accurately
identify over 90% of actual errors and have results in less
than 10% false positives, despite the differences in threshold
values. The robustness and accuracy of the model strongly
suggests that these models could be used in an applied
context to prevent errors before they occur. The fact that
the model does not make many false alarms in either
direction suggests that any system that relies on this
information would be usable as well as accurate.

Table 2. Confusion matrix based on the sea vessel model.

= Actual Value

% ° True Positive False Positive

3 2 25 (92.6%) 37 (10%)

> False Negative True Negative
2 (7.4%) 328 (90%)

Table 3. Confusion matrix based on financial model.

Predicted
Value

Actual Value

True Positive
26 (96.3%)

False Positive
34 (9.3%)

False Negative
1(3.7%)

True Negative
328 (90.7%)

Discriminant function analysis. Logistic regression is an
excellent statistical technique for maximizing predictive
value, but it is difficult to draw conclusions about the
relationships between predictors and the outcome variable.
Specifically, our interest was in determining which predictor
has the strongest relationship to the occurrence of an error
and to examine whether these relationships hold true across
models and tasks. To answer these questions, discriminant
function analysis (DFA) was used. DFA is a linear analysis
technique to predict group membership from a set of
predictors. Critically, DFA provides information on the
strength of the relationship between each predictor and the
outcome variable and the importance of these predictors. It
is this aspect of DFA that we are most interested in.

Ratwani et al. (2008) did not perform a discriminant
function analysis (DFA) on the sea vessel dataset.
Therefore, we have taken that dataset, as well as the data
from the financial management task, and conducted a DFA
on each set of data. As expected, there was a strong
association between the set of predictors and the occurrence
of an error in Ratwani et al.’s (2008) dataset, ¥* (3) = 350.9,
p<.001. There was also a strong association between the set
of predictors and the occurrence of an error, ¥ (3) = 126.9,
p<.001, in the financial management dataset. These findings
confirm the findings from logistic regression analyses.

To determine the relationship of each predictor to the
classification function, we examined the canonical
coefficients for each model. These coefficients indicate the
unique contribution of each predictor to the classification
function (outcome variables). This value is analogous to
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determining the unique variance accounted for by each
predictor in multiple regression. Table 4 shows the
canonical coefficients for each of the models on their
respective datasets. Whether the coefficient is positive or
negative is irrelevant for determining the strength of
association to the classification function.

Table 4. Canonical coefficients for each model.

Standardized Canonical Discriminant
Function Coefficients

Predictor Sea Vessel Model Financial Model
Postcompletion Fixation .88 73
Total Fixations -74 -27
Time 35 -43

In both models, the postcompletion fixation predictor has
the strongest relationship to the classification function. This
finding suggests that cue association and inattention to the
postcompletion action are the most important theoretical
components accounting for postcompletion errors.

In the sea vessel model, the total fixations predictor has a
stronger relationship to the classification function than time.
However, in the financial model, time has a stronger
relationship to the classification function than total
fixations. It is also interesting to note that there is a bigger
difference in the total fixations predictor between the two
models as compared to the time predictor. While both of
these predictors represent decay, total fixations may also
represent differences in visual processing and this may
account for the differences observed here. The weights from
the logistic regression models and the discriminant function
coefficients suggest that the total number of fixations
predictor and the time predictor are more variable across
tasks than the postcompletion fixation predictor.

General Discussion

The logistic regression and DFA analyses suggest that the
postcompletion action fixation was the most important
predictor. Most striking was the nearly similar beta weight
for the postcompletion fixation in both models. While one
might argue that a fixation on a to be completed action
button is generally necessary before the physical clicking of
the button in computer-based tasks, there were several
instances where participants fixated on the postcompletion
action button and failed to complete the step. Additionally,
this measure is not the only measure nor is it the only
measure for other error types (Ratwani & Trafton, under
reivew). We argue that these analyses provide strong
evidence that inattention and cue association are critical
theoretical components accounting for postcompletion
errors, regardless of the task.

The time and total number of fixations predictors are also
important components of the logistic regression model.
However, several questions remain about the differences in
the weights of the predictors and the differences in the DFA
correlations between the predictors and the classification

function. Total number of fixations may be accounting for
individual differences in visual processing and possibly
individual differences in decay rates. The variability in the
total number of fixations predictor may be due to the
different visual processing demands of the two tasks. It is
unclear why time, a clear measure of goal decay, was not a
consistent predictor in both logistic models. It is clear that
neither the Byrne and Bovair (1997) nor the Altmann and
Trafton (2002) can adequately account for these subtleties in
their current form. The relationship between these two
predictors needs to be examined further.

Regardless of these differences, these results show the
robustness of the predictive power of the original logistic
regression model and the general set of predictors. This
model accounted for over 90% of the postcompletion errors
on a new task. The overall predictive power of this logistic
regression model on two different tasks is encouraging and
suggests that an understanding of the cognitive mechanisms
underlying procedural errors can lead to prediction.
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