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Abstract

We describe a theory of decision system adaptation in which yoked
criteria shifts serve as a simple but powerful mechanism for rapidly
minimizing errors without sacrificing speed. To support our
theory, we implemented a connectionist model of lexical decision,
wherein the state of a word perception network was “read” by a
pair of decision units. The response criteria for these decision
units were then subjected to yoked shifts to examine how, in the
face of perceived errors, such a response mechanism might adjust
performance. We also present the results of a lexical decision
experiment that manipulated the truthfulness of the feedback
participants received so as to trigger the error correction
mechanism while keeping other task parameters constant. The
results of the experiment largely parallel those of the simulation,
suggesting that yoked decision shifts make an important
contribution to error minimization in decision system adaptation.

Keywords: decision making, decision system adaptation,
yoked criteria shifts, lexical decision, connectionist modeling.

An individual’s ability to rapidly and correctly decide
between two alternatives is critical to their survival and
wellbeing. For example, a new driver may learn to brake or
accelerate when faced with a yellow light under dry road
conditions. However, if one day it snows their established
decision behavior will need to be adapted to accommodate
this fact. Thus, the driver must be capable both of deriving
an initial calibration of their decision system, and of rapidly
adapting this system in face of change.

The work reported in this paper focuses on how the
updating of a previously well-calibrated decision system is
accomplished. Motivating our work is an interesting pattern
of effects reported by Gomez, Ratcliff, and Perea (2007),
who varied the task participants completed (two-choice
lexical decision vs. go/no go lexical decision) in a within-
subjects design. After fitting their data with a diffusion
model, the authors determined that changes of the decision
criteria were key in accounting for performance differences
across task blocks, with adjustments to most other
parameters only having a modest effect.

Within the context of decision system adaptation, Gomez
et al.’s (2007) findings might also suggest that rather than

re-configure the system de novo when faced with different
task demands, participants may adapt to the new task
primarily by shifting their decision criteria. In many cases,
such a shift may provide a rapid means of accommodating
modest (and perhaps not so modest) changes without
necessitating a potentially costly re-derivation of all of the
parameters in the decision system.

If we assume that decision system adaptation occurs via
shifts of decision criteria, this raises the question of how the
criteria should be shifted. We examined this issue within
the context of an abstract forced choice task wherein
participants must make rapid and accurate A and B
responses indicating the presence of stimuli a and b.
Imagine that after becoming proficient at the task, some
property of the task changes such that participants’ find
themselves incorrectly responding A to b items (e.g., all the
b’s become more a-like). One logical adaptation would be
to shift the A decision criterion so as to require the
additional accumulation of evidence that an a was presented
before making an A decision. However, such an adaptation
would have the result of slowing overall reaction time (RT)
because the average amount of evidence to be collected
before making a particular decision will have increased—an
effect which may not be adaptive if there are benefits
associated with being fast.

The issue of overall increases in RT can be avoided,
however, if both criteria are shifted in unison, such that
when more evidence is required to make an A response, less
evidence is required to make a B response. By keeping the
average response criteria constant, overall accuracy and RT
should remain (approximately) constant. Furthermore, this
yoked shift should lead to 1) an increase in accuracy for B
responses as less evidence must be accumulated to reach the
B criterion, and by corollary that 2) RTs for b stimuli should
decrease as accumulating less evidence should take less
time; the converse—namely decreased accuracy and
increased RT—would be predicted for A responses. It is
worth noting that data compatible with these speed-accuracy
relationships were reported by Wagenmakers, Ratcliff,
Gomez, and McKoon (2008) in a lexical decision

2130



experiment in which the proportion of words and nonwords
was varied across blocks of trials.

To evaluate our proposal, we implemented a
connectionist model of the lexical decision task to examine
the effects of error correction via yoked criteria shifts. We
also carried out a lexical decision experiment in which we
manipulated the truthfulness of external feedback
participants received so as to alter perceived errors and
determine whether participants’ responses adapted in a
similar fashion as in the model.

Simulation

Our simulation builds upon previous connectionist models
of word processing (Plaut, 1997) and decision making
(Usher & McClelland, 2001), and how information from the
former can be fed to a decision system to model lexical
decision in a relatively comprehensive fashion (Joordens,
Piercey, & Azarbehi, 2003). In particular, our simplified
version of lexical decision consists of 1) a visual word
processing network wherein an orthographic input gradually
activates semantic representations’, and 2) a pair of decision
units able to measure the information content of semantics
during the presentation of words and nonwords and use this
to decide what type of stimulus was presented. Holding all
other parameters constant, we implemented yoked shifts of
the decision criteria to determine whether this causes the
predicted decrease in accuracy and increase in RTs for one
type of response, and the converse for the other.

Network Architecture. The network consisted of 48
orthographic input units, 200 hidden units, and 100 semantic
output units. The orthographic units were subdivided into
three slots of 16 units, each of which represented a single
letter in a three-letter word. The hidden and semantic units
integrated their net input over time (dt = 0.1) and their
outputs were a sigmoidal function of their net input.

The orthographic units fed their activation to the hidden
units, and the hidden units fed their activation to the
semantic units. Additionally, the semantic units fed their
activation back to the hidden layer. The hidden and
semantic units also received input from a bias unit. For all
but the bias connections, the initial weights were sampled
randomly from a uniform distribution with a mean of 0.0
and a range of .25. The bias weights were sampled with a
mean of -1.7 and a standard deviation of .25 to reduce the
overall activation in the hidden and output units; these bias
weights were not altered during training.

Training Patterns. The network was trained on 518 pairs
of orthographic and semantic representations corresponding
to all three-letter words in the MRC Psycholinguistics
database (Coltheart, 1981; Wilson, 1987). Artificial
representations for each letter in the alphabet were
generated by randomly activating 4 features in a 16 feature

! For simplicity our simulation does not contain phonological or early
visual representations, although a complete model of lexical decision
would include such factors.

vector, with the constraint that these representations differed
from one another by at least 2 units. This ensured that each
letter was represented somewhat distinctly while also
partially recycling the orthographic units. The complete
orthographic representation for a word consisted of the
activation of each of its letter representations across the
respective slots in the orthographic pool. To approximate
the categorical structure of semantics, unique semantic
representations for each of the words were generated as in
Plaut (1997). First, 37 category prototypes with 15 of 100
semantic units active were generated. Each prototype was
then distorted to generate a total of 14 category members by
regenerating each of the its features with a probability of
.05, and deciding to activate a regenerated feature with a
probability of .15; these representations were further
constrained such that they all differed from one another by
at least three units. Semantic representations were randomly
paired with orthographic representations to reflect the
arbitrariness of orthographic-to-semantic mappings.

Training. The model was trained using recurrent back-
propagation through time with a learning rate of 0.002 and
momentum descent of 0.9 (set to 0.0 for the first 50 sweeps
through the training examples). Before each example, the
activation in all of the units in the network was set to 0.15.
Each example consisted of clamping on an orthographic
representation for 50 unit updates, and allowing this
activation to percolate through the hidden and semantic
units. Cross-entropy error was calculated during the last 10
unit updates, with units considered to be correctly activated
or inactivated when they were within 0.1 of their target
values. Weight changes based on error was applied after the
presentation of the full example set. Training proceeded
until all units in all examples were within 0.1 of their target
values during the last 10 unit updates; this required
approximately 10 000 sweeps through the training corpus.

Simulating Lexical Decision. Lexical decision was based
on the information content of the semantic units, which we
measured using stress S; (Plaut, 1997), defined as:

S; = ajlogy(ay) + (1-aplog,(1-a;) —1ogy(0.5)

Where a; corresponds to a unit’s activation. Stress is a
nonlinear function of the degree to which a unit’s activation
deviates from 0.5. Given that the network was trained such
that word stimuli would correctly activate or inactivate
semantic features within a radius of 0.1, stress should be
high for words. In contrast, nonwords should partially
activate multiple semantic representations; this blended
semantic representation should contain less extreme unit
activations and hence produce lower stress. For clarity, in
the present simulation overlap of the word and nonword
stress distributions was minimized by selecting the 518
three-letter nonwords with the lowest stress after 50 unit
updates.”

% This maximizes the network’s ceiling performance, but the effects of
yoked feedback are not strictly bound to these extreme nonwords.
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Lexical decisions were made by ‘word’ and ‘nonword’
leaky integrator decision units (Usher & McClelland, 2001).
These units approached their respective decision criteria by
accumulating both excitatory external input, and inhibitory
input from the competing unit and a leakage factor.
Formally, a decision unit’s activation a; was defined as:

a; = (1-v)ajs.;) + t(l. — kaj.;) - Baiy.)); max(a; 0).

Where aj,.;) corresponds to the unit’s activation at the
previous unit update, I, corresponds to the unit’s external
input (the ‘word’ unit’s external input was the semantic
stress trajectory in the current example; the ‘nonword’ unit’s
external input was the average, or referent, trajectory across
all experimental words and nonwords), k corresponds to a
decay scaling factor, B corresponds to an inhibition factor,
aj(.1) corresponds to the activation of the competing decision
unit at the previous unit update, and t corresponds to a time
integration constant. The resulting activations are bounded
to not drop below zero, and a decision is defined as
occurring once one of the units crosses pre-specified
decision criteria (discussed below). In our simulations, only
the decision criteria for the yes and no units were varied,
with all other parameters remaining fixed (a; = a; = 0.0 at
the onset of a trial, k = 0.1, B = 0.7, T = 0.1, to match the
time integration in the orthography-to-semantics network).

This unit activation equation corresponds to a simplified
version of the leaky integrator units described by Usher and
McClelland (2001; Equation 4, p. 559) from which the
Gaussian noise term has been dropped for simplicity. Thus,
the only source of trial variability is due to variability in the
stress trajectories of the words and nonwords. In cases
where the word and nonword distributions minimally
overlap, only the stress trajectories of words should be
sufficiently above those of the referent trajectory to drive
the ‘word’ unit above its decision criterion; conversely, only
the stress trajectories for nonwords should be sufficiently
below the referent trajectory for the referent trajectory to
drive the ‘no’ unit above its decision criteria. However, as
participants are pressed to respond more rapidly under
difficult conditions, the increased overlap of the word and
nonword trajectories should lead to increased errors.

We first simulated lexical decision results that roughly
correspond to those of the truthful feedback blocks in the
Experiment we report, in which participants are instructed to
respond as quickly and as accurately as possible to a
difficult lexical decision task and performance has dropped
below ceiling. To do so, we employed a ‘word’ decision
criterion of 0.355 and a ‘nonword’ decision criterion of
0.360, and collected response data for all 518 words and
nonwords. These criteria were selected by decreasing the
decision criteria so that the units were responding when
there was still considerable overlap in the stress
distributions for words and nonwords. In two additional
conditions, yoked criteria shifts theorized to occur when
there is a perceived decrease in relative accuracy for either
words (i.e., increased ‘word’ decision criterion, decreased

‘nonword’ decision criterion) and nonwords (i.e., decreased
‘word’ decision criterion, increased ‘nonword’ criterion)
were simulated by shifting the response criteria by 0.003 in
opposite directions, and responses for all experimental
words and nonwords were again collected.

Results and Discussion

As a manipulation check, before simulating difficult lexical
decision we examined the model’s lexical decision accuracy
if allowed to process information across 50 unit updates
(similar to a non-speeded condition); the network showed
near perfect performance (overall accuracy > 98%). We
then examined the effects of yoked criteria shifts relative to
baseline performance in a difficult speeded lexical decision
task, the results of which are reported in Table 1. The
results show the predicted changes in accuracy and feedback
after yoked criteria shifts. Relative to baseline, word
decisions are slower and less accurate when the word
decision criterion is increased and the nonword criterion is
decreased; the converse is true for the converse
manipulation. Given the low standard errors, we have
forgone reporting detailed statistical analyses of the data.

Table 1. Accuracy and Reaction Time for the Simulation

Condition
Baseline W (+),NW () W (), NW (+)
Lex Acc SE RT SE Acc SE RT SE Acc SE RT SE

W 71 02 1782 .08 .64 .02 17.93 .08 .77 .09 17.24 .02

NW 64 .02 1994 03 .73 .02 19.63 .03 .59 .04 20.36 .01
Lex = lexicality; Acc = accuracy; SE = standard error of the mean
(stimuli); RT = reaction time (unit updates). W = word; NW = nonword.

Experiment

The behavioral experiment was designed to manipulate the
position of the decision criteria while holding all other
aspects of the task constant. To do so, we implemented a
difficult version of lexical decision to drop performance
below ceiling and to be able to observe criteria shifts, while
also encouraging participants to rely on external feedback to
calibrate their decision system. We then manipulated
perceived errors to either words or nonwords via two forms
of false feedback to determine if this produced the criteria
shifts predicted by the simulation.

The experiment was divided into four conditions.’
Conditions Ia and Ib contrasted truthful feedback versus
concordant false feedback to nonwords (Ia) and words (Ib),
respectively, by informing participants that they had
correctly responded when they were in fact incorrect. Based
on our simulations, we predicted that this would lead to a
relative increase of the perceived accuracy for the type of
stimulus receiving congruent false feedback and a relative
decrease in the perceived accuracy for the type of stimulus

* An additional control condition not reported showed that providing
feedback per se has no significant effect on performance.
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receiving truthful feedback. Consequently, participants’
decision criteria should be shifted such that less evidence
was required to make decisions indicating the item was of
the type receiving false feedback (leading to higher
accuracy and faster responses), and more evidence was
required to make responses indicating the item was of the
type receiving truthful feedback (leading to lower accuracy
and slower responses). For condition Ia, relative to truthful
feedback, concordant false feedback for nonwords should
lead to faster and more accurate feedback for words and
slower and less accurate responses for nonwords; the
converse should be true in condition Ib.

Conditions Ila and IIb contrasted the effects of truthful
feedback versus discordant false feedback to nonwords (Ila)
and words (IIb), by indicating that participants had
responded incorrectly to a particular item when they were in
fact correct. Interestingly, although superficially different,
our proposed account treats the effects of discordant
feedback for a given type of item as functionally equivalent
to that of concordant false feedback for that type of item.
To understand why, consider what type of error participants
believe they have made when they receive discordant false
feedback to nonwords (Ila). Essentially, providing feedback
that their nonword response was incorrect is equivalent to
providing feedback that they incorrectly responded
‘nonword’ to a word item. Thus, to minimize this type of
error, we predict that they will decrease their word decision
criteria and increase their nonword decision criteria, exactly
as they did in condition Ia. Our predictions for each
subsection of condition II are therefore identical to the
corresponding subsection of condition 1.

Method
Participants. Undergraduate students in the introductory
psychology course at the University of Toronto

Scarborough participated in the experiment; 52 in condition
Ia, 54 in condition Ib, 53 in condition Ila, and 52 in
condition IIb. All participants had normal or corrected to
normal vision and participated in only one of the conditions.

Aparatus. Computers running E-prime 1.1.4.1 (Schneider,
Eschman, & Zuccolotto, 2002) were used to execute the
experiment. Each machine displayed output on a 15” Dell
CRT monitor at a refresh rate of 85 Hz, and was equipped
with headphones for the presentation of auditory feedback.
Participants responded on a standard keyboard.

Stimuli and Design. The word stimuli were sampled from
the MRC Psycholinguistics Database (MRC, 2005), and
consisted of 160 nouns between four and six characters in
length with a written frequency between 1 and 400 in the
Kucera-Francis norms (mean = 55, SD = 66, skew = 2.9).
The nonwords were generated by sampling a second set of
non-overlapping word stimuli from the database constrained
by the aforementioned criteria, and replacing a single
consonant with another random consonant to make a

nonword not in the database. (e.g., FATHER > NATHER).
This produced nonwords with wordlike orthographic
structure so as to exacerbate task difficulty.

For each participant, the stimuli were randomly divided
into two blocks of 160 items for use in the truthful feedback
and false feedback blocks. The order of stimuli within these
blocks was also randomized.

Procedure. Participants were instructed to decide whether
the characters on the screen formed a word or a nonword by
pressing “z” or “/”, respectively, and were provided with a
demonstration trial. They were instructed to respond to
each trial as quickly and as accurately as possible.

Each trial consisted of six steps: (1) a 250 ms blank field,
(2) a 500 ms fixation cross, (3) a 50 ms presentation of a
lowercase character string, 4) a 50 ms mask consisting of
three lines of 10 random characters filling the line where the
probe string was presented, and the lines above and below
it, (5) a response screen, and (6) 1000 ms of feedback, as
detailed below. At the end of each trial, the next trial began
automatically; the procedure required approximately 40
minutes. Note the very short duration of the probe and the
presentation of the character mask, which were used to
lower performance from ceiling and encourage participants
to rely on external feedback to detect errors.

Feedback consisted of either 1) “CORRECT” and a bell
sound, or “INCORRECT” and a buzzer sound. Feedback
reflected response accuracy during the truthful feedback
block. During false feedback, 50% of eligible items (i.e.,
incorrect responses for a particular type of item during
concordant false feedback; correct responses for a particular
type of item during discordant feedback) resulted in false
external feedback. Only half of the eligible trials received
false feedback to make the manipulation difficult to detect.

Following the experiment, participants completed a
debriefing questionnaire to determine whether they were
aware of the systematic change in feedback accuracy;
according to the debriefing, none were.

Results

Prior to analysis, trials were binned based on lexicality
(word vs. nonword), order of blocks (truthful block first vs.
last), feedback block (truthful vs. false), and decision
accuracy (correct vs. incorrect). Accuracy analyses only
included trials with RTs greater than 200 ms and within 2.5
standard deviations of the bin’s mean RT (92% of trials).
Correct trials meeting these restrictions were included in the
RT analyses. For efficiency, each condition’s descriptive
statistics and the results of a mixed ANOVA with two
within-subjects variables (lexicality, feedback block) and a
between-subjects variable (order of feedback) are presented
in Tables 2 and 3. All significant effects have p <.05.

Within-condition Accuracy. In condition Ia, we observed
a lexicality by feedback interaction consistent with the
predicted effect of a yoked criteria shift. Explored further,
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via t-tests, we confirmed the predicted effects of words
becoming marginally more accurate (#53 = 1.66, p = .1), and
nonwords becoming significantly less accurate during false
feedback (753 = 2.09). Additionally, we observed a main
effect of lexicality (words more accurate than nonwords)
and a feedback by order of feedback interaction. We
explored this latter effect further in separate 2 (lexicality:
word vs. nonword) x 2 (feedback: truthful vs. false) within-
subjects ANOVAs for each order of feedback presentation;
both these analyses showed main effects of feedback such
that participants were more accurate during the second
block of trials (truthful feedback first: Fi,; = 4.62; false
feedback first: 55 =9.74).

In condition Ib, we observed a two-way lexicality by
feedback interaction and a three-way interaction between
lexicality, feedback, and order of feedback. To explore this
latter interaction, we conducted separate 2 (lexicality: word
vs. nonword) x 2 (feedback: truthful vs. false) within-
subject ANOVAs for each order of block presentation.
When truthful feedback was presented first, we observed the
expected lexicality by feedback interaction (Fy5; = 12.51)
with  words becoming less accurate and nonwords
becoming more accurate during the false feedback block
(words: t,; = 2.76; nonwords: t; = 2.95). However, no
lexicality by feedback interaction or other effects were
observed when truthful feedback was presented second.

In condition Ila, we observed a lexicality by feedback
interaction consistent with the predicted effect of yoked
criteria shifts. To explore this interaction, we conducted t-
tests on the words and nonwords in the truthful feedback
and false feedback conditions, which confirmed that under
false feedback responses were significantly more accurate
for words (ts; = 4.10) and significantly less accurate for

= 7.00), and of feedback, such that participants were faster
during the second block which consisted of truthful
feedback (F;,; = 9.89).

Table 2. Accuracy and Reaction Times in the Experiment

Condition
Ta Ib

OF B L Acc SE RT SE Acc SE RT SE

TFF TF w69 .02 811 17 67 .03 790 14

NW 58 .02 935 18 61 02 864 14

FF W 74 02 674 15 58 .04 689 13

NW 59 04 776 15 68 .02 702 13

FFF TF W 73 03 655 14 62 .04 602 11

NW 58 .04 726 15 J1 .03 631 11

FF W 74 03 705 13 62 04 674 10

NW 49 04 864 18 g1 .02 794 14

Ila 1Ib

Acc SE RT SE Acc SE RT SE

TFF TF W 68 .03 714 13 65 03 784 14

NW 59 02 812 12 57 .02 8385 15

FF W 77 .03 588 11 57 .04 738 13

NW 57 .03 693 12 68 .03 733 13

FFF TF W 70 .03 616 9 64 04 725 15

NW 58 .03 739 12 73 .03 715 13

FF W 74 03 723 12 58 03 877 14

NW 45 03 882 12 68 .02 835 13
Note. In condition Ia, 28 participants received truthful feedback first; 26
false feedback first. In condition Ib, 22 participants received truthful
feedback first; 29 false feedback first. In condition Ila, 32 participants
received truthful feedback first; 31 false feedback first. In condition IIb, 28
participants received truthful feedback first; 24 false feedback first. OF =
Order of feedback blocks; TFF = truthful feedback first; FFF = false
feedback first; B = block; TF = truthful feedback; FF = false feedback; L =
lexicality; W = word; NW = nonword; Acc = accuracy; SE = standard

error of the mean; RT = reaction time (ms)

Table 3: F-Statistics for the 2x2x2 ANOVAs in the Experiment

nonwords (¢5, = 3.40). Additionally, we observed a main Condition

effect of lexicality (words being more accurate than Ia Ib Ia 1Ib

nonwords) and a feedback by order of feedback interaction Acc  RT _Acc RT Acc RT Acc  RT
hich furth Ivsi . te 2 (I icality: d lex 42.46* 35.07* 3.00F 17.68* 56.87* 72.32* 5.13* <1

which further analysis via separate exicality: word vs. lextofb 173 <1 131 123 142 188 311% 631%

nonword) x 2 (feedback: truthful vs. false) within-subject feedback <1 <1 <1 <1 <1 <1 427¢ <1

ANOVAs for each order of block presentation showed to be fo*ofb 14.00% 1640% <1 60.48% 16.93* 81.75* 10.62* 33.42*
the result of participants becoming significantly more lex*fb  544% 102 1191* <1 2543% 148 18.03* 14.15*
. h d block . £, f feedback lex*fb*ofb  1.21  3.01f 12.33* 14.02* 1.87 <1 1247* 421*%
accurate 1 the secon ock (main effect of feedback, ofb <1 111 <1 441* 137 140 196 <1
truthful feedback first: Fi3 = 5.44; false feedback first:  Note. Tests have I degree of freedom treatment. Conditions la through IIb
F1,20 =15.20). have 52, 50, 51, and 50 degrees of freedom error. lex = lexicality; ofb= block

In condition IIb, we observed lexicality by feedback
interaction and a three-way interaction between lexicality,
feedback, and order of feedback. We explored this latter
interaction further via separate 2 (lexicality: word vs.
nonword) x 2 (feedback: truthful vs. false) ANOVAs for
each order of block presentation. When truthful was
presented first, the predicted lexicality by feedback
interaction was observed, (¥ ,7 = 26.15) such that responses
were less accurate for words (¢; = 3.33) and more accurate
for nonwords (f,; = 5.71) under false feedback. However,
when false feedback was presented first there was no
significant lexicality by feedback interaction (F,3 < 1), and
there were main effects both of lexicality, such that
nonwords were responded more accurately than words (F 23

order; fb = feedback; Acc = accuracy; RT = reaction time.  p<.l; *p<.05

Within-condition RT. In condition Ia, we observed an
effect of lexicality (words faster), and a feedback by order
of feedback interaction. Separate 2 (lexicality: word vs.
nonword) x 2 (feedback: truthful vs. false) ANOVAs for
each block presentation order showed this latter effect to be
due to faster RTs in the second block (main effect of
feedback, truthful first F'; ,; = 11.02; false first F; 55 = 5.74).

In condition Ib, we observed a main effect of lexicality
(words faster than nonwords), a main effect of order of
feedback (faster for truthful feedback), a feedback by order
of feedback interaction, and a lexicality by feedback by
order of feedback interaction. To explore these interactions
further, separate 2 (lexicality: word vs. nonword) x 2
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(feedback: truthful vs. false) within-subjects ANOVAs for
each order of block presentation were effectuated. All of
the effects in these ANOVAs were significant (truthful first,
lexicality F, = 3.50; feedback Fj,; = 45.65; interaction
Fi,1 = 6.76; false first, lexicality: Fj,s = 19.32; feedback
F1,5 = 25.84; interaction Fj,s = 8.92) and indicated that
responses were on average faster in the second block, and
differentially faster for nonwords.

In condition Ila, we observed a main effect of lexicality
(words faster than nonwords), and a feedback by order of
feedback interaction which separate 2 (lexicality: word vs.
nonword) x 2 (feedback: truthful vs. false) within-subjects
ANOVAs for each order of block presentation revealed to
be the result of faster RTs in the second block of the
experiment (truthful feedback first, feedback F;3 = 51.00;
false first, feedback: F 3y = 34.23).

In condition IIb, only the interaction effects were
significant. To explore these interactions further separate 2
(lexicality: word vs. nonword) x 2 (feedback: truthful vs.
false) within-subjects ANOVAs for each order of block
presentation were effectuated. When truthful feedback was
presented first, all of the effects were significant (lexicality
Fi27 = 11.34; feedback F,,; = 16.18; interaction F),; =
15.10), whereas there was only an effect of feedback when
false feedback was presented first; these effects indicated
that responses were faster in the second block, and in the
case of truthful feedback that responses were on average
significantly faster for words, and grew differently faster
for nonwords during false feedback.

Discussion

Based on the yoked criteria shift theory of decision system
adaptation we proposed and demonstrated via computational
simulation, we derived a series of predicted accuracy and
RT effects for each of the different feedback manipulations.
In the accuracy data, the predicted effects were always
present when both variants of false feedback were provided
for nonwords; for words, the predicted effects of feedback
were also observed, but only when false feedback was
preceded by truthful feedback. In the RT data, none of the
predicted RT shifts occurred. However, no unpredicted RT
shifts running contrary to the yoked criteria shift account
were observed either. This suggests that participants did
shift their decision criteria as predicted, but traded off
variations in speed for greater variations in accuracy.

In addition to this highly (though not perfectly) consistent
adaptation predicted by the yoked criteria shifts, a number
of other effects were observed throughout the different
conditions with varying degrees of reliability. In particular,
there were several similarities in the types of effects
observed when false feedback was provided to nonwords
and words, with the former being a cleaner match to the
simulation data. These additional effects, although in some
cases probably worthy of verification via replication, may
provide an additional set of constraints for the development
of more detailed models of decision system adaption.

General Discussion

Decision system adaptation to perceived changes in
accuracy is critical in changing environments. The
computational and behavioral results we have reported
provide converging evidence that one simple yet powerful
mechanism for effectuating such adaptations in a calibrated
decision system are yoked shifts of decision criteria.

In the present work, we have intentionally kept our
simulation and behavioral analyses relatively simple so as to
facilitate relating them to our theory. We are currently
examining whether some of the phenomena unexplained by
the current simulation (e.g., predicted effects of feedback
not occurring when false feedback is given to words before
truthful feedback) could be accounted for by yoked criteria
shifts if we equate the simulated referent trajectory to the
stimuli classifications participants perceive to be correct,
and by matching the wordlikeness distributions of the
simulated word and nonword stimuli to those used in the
behavioral experiment.
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