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Abstract 
In this paper we investigate a modality transfer in syntactic 
classification of an implicitly acquired grammatical sequence 
structure. Participants either practiced on acoustically 
presented syllable sequences or visually presented consonant 
letter sequences. During classification, statistical frequency-
based and rule-based characteristics of the classification 
stimuli were manipulated in an independent manner. 
Participants performed reliably above chance on the post-
acquisition classification task although more so for the group 
practicing on syllable sequences. These subjects were also the 
only group to keep a significant performance level also in the 
transfer condition. The results points to the importance for 
keeping in mind the ecological validity of the input signal 
when using artificial grammar learning as a laboratory model 
for language acquisition. 
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Introduction 
Humans possess adaptive mechanisms capable of implicitly 
extracting structural information solely from observation 
(Stadler & Frensch, 1998). This extraction typically occurs 
by means of learning processes that are implicit to 
theindividual. Implicit learning has several characteristics 
and are typically compared with and separated from explicit 
learning. Implicit learning is commonly supposed to have 
(1) no or limited conscious awareness/access to the acquired 
knowledge, (2) the acquired knowledge is more complex 
than simple associations or exemplar-specific frequency-
counts, it is (3) an incidental consequence of information 
processing, and it (4) does not rely on declarative memory 
(Forkstam & Petersson, 2005; Seger, 1994). Reber (1967) 
suggested that humans can learn artificial grammars 
implicitly by an abstraction process intrinsic to natural 
language acquisition. Recently, there has been renewed 
interest in using the artificial grammar learning paradigm to 
model aspects of language acquisition (Gomez & Gerken, 
1999) and for exploring differences between human and 
animal learning relevant to the faculty of language (Hauser 
et al., 2002). 

Natural language acquisition is a largely spontaneous, 
non-supervised, and self-organized process, where the 

structural aspects of natural language typically are acquired 
at an early age largely without explicit feedback 
(Jackendoff, 2002). Similarly, implicit learning at play in 
artificial grammar learning is a process whereby a complex, 
rule-governed knowledge base is acquired largely 
independent of awareness of both the process and product of 
acquisition. Other aspects of natural language acquisition, 
such as reading and writing, are on the contrary examples of 
typically explicitly taught cognitive skills which require a 
long period of acquisition. Such a visual/acoustic modality 
transfer has the potential to function in the artificial 
grammar learning model in the same way as the distinction 
over reading/listening in the language function. 

In the current study we investigated modality transfer 
over the visual/acoustic signal in implicit artificial grammar 
learning. In specific we manipulated the order of acquisition 
and transfer modality: Participants practiced for 5 days on 
either acoustically presented syllable sequences or visually 
presented consonant letter sequences after which they 
performed a classification test in the same modality, 
followed by a between modality transfer test. An implicit 
acquisition paradigm without feedback was used in which 
the participants were only exposed to positive examples 
(i.e., well-formed consonant strings) generated by the Reber 
grammar (Figure 1). The classification strings were 
balanced for substring familiarity relative the acquisition 
string-set, independent of grammatical status. We attempted 
to keep the similarity over modality tight by presenting the 
stimuli in a sequential fashion, both the acoustically 
presented syllables and the visually presented consonant 
letter strings. The acquisition sessions were constructed as a 
repeated short-term memory tasks extending over 5 days, as 
prolonged acquisition over several days has shown still 
increasing performance in artificial grammar learning (for 
acoustic, see Faísca, Bramão, Forkstam, Reis, & Petersson, 
2007; for visual, see Forkstam, Elwér, Ingvar, & Petersson, 
2008). The subjects were never informed before or during 
the acquisition about the underlying structure in the 
acquisition strings. This procedure was used in the attempt 
to minimize the influence of explicit knowledge and explicit 
strategies during acquisition. First after the last acquisition 
session on day 5 were the subjects informed about the 
existence of the grammatical structure in the acquisition 
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input. They were then instructed to perform grammaticality 
classifications on new strings similar to the acquisition 
strings. Two grammaticality classification tests then 
followed, first in the same modality as during acquisition 
followed by a transfer test in the transfer modality. 

Our choice of visual and acoustic stimuli was made to 
keep the different modalities within the scope of familiar 
orthographic as well as acoustic stimuli for the Swedish 
subjects included in the study, namely the written 
consonants ({M,S,V,R,X}) and the spoken syllables ({bå, 
fe, lu, pa, ti}). We chose these alphabets not to make the 
transfer between the different modality only a matter of 
written or spoken representation of the same underlying 
linguistic content, but intended instead to force the transfer 
not be completely interpreted as a acoustic representation of 
the written consonants or vice versa. 

Implicit statistical learning and grammar learning 
Reber (1967) defined implicit learning as the process by 
which an individual comes to respond appropriately to the 
statistical structure inherent in the input. Thus, he argued, 
the capacity for generalization that the participants show in 
grammaticality classification is based on the implicit 
acquisition of structural regularities reflected in the input 
sample. 

However, alternative theoretical frameworks have 
questioned the abstract (‘rule’) acquisition interpretation and 
instead suggest that grammaticality classification utilizes 
exemplar-based (Vokey & Brooks, 1992) or, alternatively, 
are based on chunk (n-gram) representations (Perruchet & 
Pacteau, 1991). Thus, grammar learning, whether natural or 
artificial, is commonly conceptualized either in terms of 
structure-based (‘rule’) acquisition mechanisms or statistical 
learning mechanisms. Some aspects of natural language 
(e.g., syntax) are open to an analysis within the classical 
framework of cognitive science, which suggests that 
isomorphic models of cognition can be found within the 
framework of Church-Turing computability (Davis, Sigal, & 
Weyuker, 1994). These language models typically allow for 
unlimited concatenation recursion supposedly characteristic 
for human performance. 

Alternative views on artificial grammar learning, that is 
placed somewhere between the two more common 
conceptualizations in terms of a rule-based acquisition or a 
statistical fragment (surface) based learning mechanism, 
relates the acquisition of simple structured representations 
as akin to lexical learning which might be supported by 
statistical learning mechanisms. These representations are 
then activated, by for example an input string, and actively 
represented and integrated in working memory during 
parsing. The latter process is dependent on general 
integrative mechanisms in the left inferior frontal cortex, 
and is further dependent during automaticity of this 
integration process on the head of the caudate nucleus (for a 
review, see Forkstam & Petersson, 2005). 

Support for the implicit character of artificial grammar 
learning comes for example from lesion studies on amnesic 
patients. Knowlton and Squire (1996) investigated amnesic 
patients and normal controls on a classical and a transfer 

version of the artificial grammar learning task. The patients 
and their normal controls performed similarly on both 
artificial grammar learning tasks while the amnesic patients 
showed no explicit recollection of whole-item or fragment 
information (i.e., bi- or tri-gram, or so called Associative 
Chunk Strength, ACS). Based on the results from the 
transfer version they argued that artificial grammar learning 
depends on the implicit acquisition of both abstract and 
exemplar-specific information. Knowlton and Squire (1996) 
suggested that the latter indicates that distributional 
information of local sequential regularities is acquired, 
while the former suggests that abstract (i.e., ‘rule-based’) 
representations are also acquired. 

It has been argued that sensitivity to the level of ACS is a 
reflection of a statistical fragment-based learning 
mechanism while sensitivity to grammaticality status 
independent of ACS is related to a structure-based 
acquisition mechanism (Knowlton & Squire, 1996; 
Meulemans & Van der Linden, 1997). Consequently, it has 
been argued that sensitivity to ACS reflects an explicit 
declarative learning mechanism while sensitivity to 
grammaticality status independent of ACS reflects an 
implicit procedural learning mechanism (cf. e.g., Petersson, 
Forkstam, & Ingvar, 2004). It is however well possible to 
imagine a parallel grammaticality and substring familiarity 
information acquisition that are in both cases implicit in the 
sense of independent of conscious awareness during 
acquisition as well as retrieval. 

Transfer in artificial grammar learning 
Few studies on transfer artificial grammar learning report 
strong cross-modality transfer effects (for a review, see 
Redington & Chater, 1996). Altmann, Dienes & Goode 
(1995) and Bigand, Perruchet & Boyer (1998) showed 
successful transfer from musical tones to letters sequences, 
and Altmann and colleagues (1995) found also successful 
transfer from acoustical syllables to graphic symbols as well 
as from graphical symbols to written syllables (see also 
Tunney & Altmann, 1999, 2001). Conway & Christiansen 
have shown that there is an advantage learning an artificial 
grammar in the auditory modality as opposed to the visual 
(see e.g. 2005; 2006). In the study of Gomez and Gerken 
(1999) it was demonstrated that infants can show some 
transfer capacity, suggesting abstracting capacities beyond 
the acquisition input. Most studies reporting successful 
transfer using the artificial grammar learning paradigm have 
been working within the visual modality and in specific with 
letter sequences (Gomez & Schvaneveldt, 1994; Reber, 
1969). Transfer over letter alphabet has also successfully 
shown lasting effects of transfer in amnesic patients 
(Knowlton & Squire, 1996). Within transfer investigation in 
the acoustic modality have also shown successful 
performance in 8-month-old infants in the transfer from 
linguistic to non-linguistic input (Malmberg, 2004). 

The Reber grammar 
Formal grammars such as the one used in this study serve as 
an intentional definition of languages. These represent the 
formal specification of mechanism(s) that generate various 
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types of structural regularities. They are relevant as a 
description tool for the processing regularities which are 
ongoing in any cognitive domain which engages processes 
operating on structured representations: action planning, 
language, perception/generation of musical sound patterns, 
etc. (Petersson et al., 2004). A formal grammar represents a 
specification of a finite generating/recognizing mechanism 
for a particular language (e.g., Davis et al., 1994). The 
transition graph representation of the Reber machine 
(Figure 1) is a representation of the generating and 
recognition mechanism for the Reber language used in this 
study. 
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Figure 1: The Reber grammar is an example of a right-

linear phrase structure grammar which can be implemented 
in a finite-state architecture, here represented by its 
transition graph. Grammatical strings are generated by 
traversing the transition graph from state 0 through the 
internal states along the indicated direction until reaching an 
end state. The grammar will e.g. generate/parse 
<MSSVRXSV> as a grammatical string but not the non-
grammatical string <MXSVRXVV>. 

Methods 

Participants 
25 right-handed healthy university students fluent in 
Swedish volunteered to participate in the study (14 females, 
mean age = 26 years, range = 20-36 years). They were all 
pre-screened for medication use, history of drug abuse, head 
trauma, neurological or psychiatric illness, and family 
history of neurological or psychiatric illness. Written 
informed consent was obtained according to the Declaration 
of Helsinki and the local medical ethics committee approved 
the study. Eleven of the participants were included in the 
syllable group while 14 participants were included in the 
consonant letter group due to technical issues. 

Stimulus Material 
Grammatical strings with a string length of 5-12 were 
generated from the Reber grammar. The frequency 
distribution of bi- and trigrams (2 and 3 letter chunks) for 
both terminal and whole string positions were calculated for 
each string in order to derive the associative chunk strength 
(ACS) for each item (cf., Meulemans & Van der Linden, 
1997). An acquisition set was selected as well as 3 sets of 
grammatical and non-grammatical classification test strings. 

The non-grammatical strings were generated by a switch of 
letters in two non terminal positions in a grammatical string. 
The classification set was further divided into high and low 
ACS items relative the acquisition string set. We thus 
manipulated two independent stimulus factors with respect 
to the 3 classification set, grammaticality (grammatical/non-
grammatical) and substring familiarity relative the 
acquisition string set (high/low ACS) in a 2x2 factorial 
experimental design. 

Experimental design 
The strings presented in a sequential fashion for both the 
acoustically presented syllables and the visually presented 
consonant letter strings during acquisition as well as 
classification. The sequences presented in the acoustic 
modality were generated from a set of normally occuring 
syllables in Swedish (i.e., {bå, fe, lu, pa, ti}) while the 
visual presented sequences were generated from a consonant 
letter alphabet (i.e., {M, S, V, R, X}). The sequences were 
presented in a sequential order 300 ms on 300 ms off in both 
modalities using the Presentation software (nbs.neuro-
bs.com). Before the first acquisition session, and in the same 
modality as during acquisition, did the participants perform 
a baseline preference classification where they indicated if 
they liked a string or not based on their immediate intuitive 
impression (i.e., guessing based on “gut feeling”, see e.g. 
Forkstam et al., 2008). 

During each acquisition phase for each of the 5 days were 
the participants engaged in repeated short-term memory task 
without performance feedback. The trials were presented in 
a sequential fashion with pairs of either syllable sequences 
or consonant letter strings. The subjects had to respond 
immediately after presentation indicating whether the 
sequences were the same or different. Each trial followed 
each other in a self-paced manner to assure that the subject 
stayed alert on each trial. 

After the last acquisition session on day 5 were the 
subjects informed that a complex system of rules had been 
used to generate the acquisition strings, but they were not 
informed about the rules themselves. They were then 
instructed to classify novel strings as grammatical or non-
grammatical based on their immediate intuitive impression 
(i.e., guessing based on ‘’gut feeling’’). They were told that 
these new strings were all generated from the same system 
of rules as the acquisition strings. This first grammaticality 
classification test was performed in the same modality as 
during acquisition and was immediately followed by a 
second grammaticality classification performed in the 
transfer modality. All 3 classification tests distributed to the 
subjects were always novel to the given subject, and 
balanced for order over subjects. This means in specific that 
the underlying regularity for a given grammatical (or non-
grammatical) sequence was never reused in another test 
occasion. 

Data analysis 
Mixed-effect repeated measures ANOVAs were used for the 
analysis of the classification performance using the 
statistical analysis software R (www.r-project.org). Two 
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measures were used to analyze the subject response, d-prime 
over grammaticality where hit = grammatical string 
classified as grammatical, and d-prime over ACS where hit 
= high ACS string classified as grammatical. For each 
analysis we modeled the main factors classification session 
[same/different modality] and group [acoustic/visual] as 
fixed-effects, and subjects as random-effect. An overall 
significance level of P < 0.05 was used for statistical 
inference, and explanatory investigations for significant 
effects were restricted to the reduced ANOVA contrasted 
over the appropriate factor levels. 

Results 

Classification Performance 
The syllable group showed significant grammaticality 
sensitivity in the syllable classification (85% performance 
level; F(1, 10) = 137, P < 0.001) and managed to transfer 
into the visual modality (62%; F(1, 10) = 19, P = 0.001; 
Figure 2 & 3). A static substring familiarity sensitivity (i.e., 
ACS) persisted throughout acquisition from the baseline 
preference classification (F(1, 9) = 6.2, P = 0.032) to the last 
day grammaticality classification (F(1, 10) = 15, P < 0.003) 
but then disappeared in the transfer modality classification 
(P > 0.25; Figure 4). 

The consonant letter group showed significant 
grammaticality sensitivity in the consonant classification 
(68% performance level; F(1, 13) = 25, P = 0.001) but failed 
to transfer into the acoustic modality (52%; P > 0.19; 
Figure 2 & 3). A static substring familiarity sensitivity 
(ACS) persisted throughout transfer from the post-
acquisition classification (F(1, 13) = 60, P < 0.001) to the 
acoustic modality transfer classification (F(1, 13) = 23, P < 
0.001; Figure 4). 

Between group effects persisted for grammaticality 
sensitivity where the syllable group performed better on the 
post-acquisition test (F(1, 22) = 20, P < 0.001) and also in 
the transfer modality (F(1, 22) = 10, P = 0.004), indicating a 
persisting transfer effect for the syllable group as opposed to 
the random performance of the consonant group (Figure 3). 
No difference between group in substring familiarity 
sensitivity (ACS) transfer was found (P > 0.08; Figure 4). 

Acquisition Performance 
Both the group that practiced on syllables and the group that 
practiced on consonant letters showed an increase in their 
acquisition performance over the 5 days of the experiment 
(Day 1 vs. Day 5: F(1, 22) = 11, P < 0.003; Figure 5). 

The group that practiced on consonant strings showed 
significant correlations between their acquisition 
performance on day 2, 3 and 4 with their transfer 
performance (d-prime over grammaticality); Spearman’s 
correlation coefficient: Day 2-4 > 0.69, P < 0.01). No other 
correlation between acquisition and classification 
performance was significant in any of the groups. 
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Figure 2: Percent correct data for the syllable and 

consonant string group. Error bars correspond to the 
standard error of the mean. 
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Figure 3: D-prime as a function of grammaticality 

status for the syllable and consonant string group. Hit = 
grammatical string classified as grammatical. 
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Figure 4: D-prime as a function of substring familiarity 

(ACS) status for the syllable and consonant string group. 
Hit = high ACS string classified as grammatical. 
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Figure 5: Acquisition performance data (percent 

correct) for the syllable and consonant string group. 

Discussion 
In the present study we employed the implicit artificial 
grammar learning paradigm to investigate the difference in 
the lasting effects of a modality transfer in artificial 
grammar learning over the acoustic/visual signal. Results 
showed that learning was higher overall for sound/syllable 
sequences, and that transfer only occurred from syllables to 
strings, and not vice-versa. In grammaticality classification, 
after 5 days of implicit acquisition, did both subjects who 
had practiced on acoustically presented syllables and 
subjects which had practiced on visually presented 
consonant letter strings classify with high accuracy (Figure 
2). However, when tested in cross-modality did only those 
participants which had acquired the acoustical syllable 
sequences (somewhat equivalent to the listening signal in 
the language function) show any transfer performance when 
tested on orthographical letter sequences (equivalent to the 
reading signal) derived from the same grammar, and not 
vice versa. This finding is in line with some other studies 
that also have shown an advantage learning an artificial 
grammar in the auditory modality as opposed to the visual 
(see e.g. Conway & Christiansen, 2005, 2006). 

In relation to the substring familiarity manipulation in the 
classification material, did both groups show an effect at the 
time of the grammaticality classification that was performed 
in the same modality. In the transfer modality however, the 
group that had practiced on visually presented letter strings 
transferred this sensitivity to the acoustic domain, while the 
other group, which had practiced on acoustic stimuli, did 
not. This might indicate that when the initial input signal is 
in the visual domain, the subject is promoted to use 
substring information, and that this will then be used as cue 
information  when going to the transfer modality, while the 
opposite route is less affected by such frequency based 
transfer. Thus, even though no significant difference in 
substring familiarity reliance in the transfer test was found 
between groups, a second finding in this study is that even 
though learning was higher overall for the sound/syllable 
learning than for the visual/consonant string learning, 
transfer of substring familiarity only occurred from strings 
to syllables, and not vice-versa. A general concern in the 

interpretation of these results is the issue of unit size. 
Subjects in the auditory modality were always trained on 
whole syllables, whereas subjects in the visual modality 
were always trained on consonants. If it is the case 
individual letters carry with them less information than do 
syllables, unit size might be confounded in the experimental 
setup. Auditory to visual might then be easier, just as going 
from a larger to smaller unit might be easier. 

The group that practiced on consonant strings showed a 
correlation between the acquisition tests on day 2-4 and the 
transfer test. This finding, that only the group working on 
sequential input in the visual domain and not the group 
working on acoustic sequential input, might just be a 
reflection of a difference in working memory load between 
the different acquisition tasks. We are more used to 
sequence information in the acoustic than in the visual 
domain. Furthermore, because the task is being performed 
on linguistic stimuli (phonemes presented acoustically and 
letters presented visually) it might be natural to recode the 
visual sequence into an auditory code (saying or thinking 
about the sound of the letter after they see it). 

This finding and that only the syllable-to-string group 
showed transfer performance greater than chance suggests 
an importance of an ecological validity in the input signal in 
the use of artificial grammar learning as a laboratory model 
for language acquisition. The current results point to that in 
certain situation acoustic stimuli might be preferable over 
visual stimuli in artificial grammar learning experiments. 
The idea of an ecological importance in the input signal is in 
line with the thought that humans are evolved and 
developed to process auditory/acoustic sequential 
information more efficiently than visual/orthographic 
sequential information (see e.g., Conway & Christiansen, 
2008, for a similar reasoning). This might merely be due to 
differences in exposure to different domains (speech vs. 
writing), and/or that spoken language is likely an evolved 
human cognitive function while writing is a human 
invention. 

In summary, this paper tries to address important issues 
about learning, knowledge representation, and language 
acquisition. It gives some directions to what information 
that is transferred across the acoustic and visual domain, and 
leaves a flavor for future investigations in how this finding 
relates to other kinds of skilled behaviour such as aspects of 
language learning (speech vs. writing). 

Conclusion 
Subjects practicing on acoustical syllables as well as 
subjects practicing on visual consonant letter strings showed 
high performance levels after 5 days of implicit acquisition. 
In cross-modality tests did however only participants that 
previously were working on syllables show successful 
transfer performance, while participants that had been 
working on letter sequences did not. We also found 
indication of the opposite behaviour for substring familiarity 
information. The results points to the relevance of an 
ecological validity of the input signal in the artificial 
grammar learning model as well as in language learning 
paradigms at large. 
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