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Abstract

Estimates of numerical magnitude in young children and
Amazon indigene have been observed to follow Fechner’s
Law, with estimates increasing logarithmically with actual
value. Two models have been proposed to account for this
data. The logarithmic model depicts numeric magnitudes as
scaled logarithmically with constant Gaussian variability,
whereas the accumulator model depicts them as scaled
linearly with increasing variability. This paper tests these
models by examining number-line estimation with novel
magnitudes and ranges (0-100, 0-1000, 900-1000, 900-1900).
Results suggest that although both models provide good fits
for estimates on 0-1000 number lines, only the fit of the
logarithmic model generalizes to estimates for smaller
intervals (900-1000) and larger numbers (900-1900).
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Introduction

Whether tracking the size of a sheep flock or traveling to
the moon, humans must code their experiences numerically.
Even simple tasks—Ilike matching cardinality of sets,
discriminating between sets that differ only in numerosity,
or performing approximate arithmetic operations—require
that subjects represent numeric value. In this paper, we test
two prominent models that have been proposed to
characterize early mental representations of numeric value.

Among preschoolers, human infants, and non-human
animals, numeric representations typically follow Fechner’s
Law, with discrimination between numerosities depending
on the ratio of quantities and not absolute difference
(Dehaene, Dehaene-Lambertz & Cohen, 1998; Gallistel &
Gelman, 2000). Among older children and adults,
comparisons of Arabic numbers also follow Fechner’s Law
(Moyer & Landauer, 1967; Sekuler & Mierkewicz, 1977),
with subjects being slower and less accurate when
comparing numbers that differ in distance (e.g., 9 and 7 vs 9
and 5) or size (e.g., 9 and 7 vs 5 and 3).

Two models of numeric representations are consistent
with these size and distance effects: the logarithmic model
(Dehaene & Changeaux, 1993) and the accumulator model
(Gibbon & Church, 1981). The logarithmic model explains
size and distance effects by proposing that numerical
magnitudes are represented in a logarithmically-compressed
scale with constant Gaussian variability. The accumulator
model proposes that numbers are represented in a linear

scale with variability increasing with numeric value (i.e.,
with scalar variability). Both models can account for size
and distance effects because in each model the amount of
signal overlap between representations of any two numbers
is a function of the size and distance between them.

Development of Number-line Estimation

To provide a novel test of the logarithmic and
accumulator models, Siegler and Opfer (2003) asked
children (2", 4™ and 6™ graders) and adults to estimate the
position of numbers on a blank line flanked by two numbers
(0-100 or 0-1000). Assuming a one-to-one mapping
between position estimates and internal representations, the
number-line task provides a straightforward test of the two
models. Consistent with the logarithmic model (and
Fechner’s Law), estimates for the 0-1000 line of nearly all
2" graders and roughly half of 4™ graders increased
logarithmically with actual number. In contrast, estimates of
almost all adults and 6™ graders increased linearly with
actual value (and without scalar variability).

This logarithmic-to-linear shift in number-line estimation
has since been replicated with children of different ages
(Booth & Siegler, 2006; Opfer & Thompson, 2008),
cultures (Dehaene et al., 2008; Siegler & Mu, 2008) and
experimental tasks (Opfer & DeVries, 2008; Thompson &
Opfer, 2008). Booth and Siegler (2006), for example, found
that nearly all kindergartners’ estimates increased
logarithmically in the 0-100 task, whereas roughly half of 1%
graders and nearly all 2" graders’ estimates increase
linearly. Recently, Dehaene et al. (2008) also gave the
number-line task to Mundurucu participants— an Amazonian
tribe that had little contact with formal education and a
limited numeric vocabulary (Dehaene et al., 2006; Pica et
al., 2004). Consistent with the logarithmic-to-linear shift
hypothesis, Dehaene et al. found that adult Mundurucu
participants—like kindergartners and 1* graders in Booth
and Siegler’s (2006) study—mapped numbers to space
logarithmically, whereas Portuguese-schooled members of
the Mundurucu—Iike adults in Siegler and Opfer’s (2003)
study—mapped numbers to space linearly. Further
suggesting that experience, not maturation, accounted for
the logarithmic-to-linear shift, studies have shown that
children will switch from the logarithmic to linear
estimation patterns when given feedback on a single
estimate that has a large discrepancy from the linear pattern
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(Opfer & Siegler, 2007; Opfer & Thompson, 2008;
Thompson & Opfer, 2008).

A straightforward account of how representations of
symbolic number develop is implied by previous studies of
number-line estimation. In this view, early representations
of symbolic number are initially logarithmically
compressed, much like  non-symbolic = numeric
representations in pigeons (Roberts, 1995), rats (Gallistel,
1990), and chimpanzees (Boysen & Bernston, 1989). With
age, children in many societies experience feedback on the
unreliability of logarithmic representations. Because these
experiences will largely entail feedback on smaller numbers
(due to their disproportionate frequency in text and speech;
Dehaene & Changeux, 1993), linear representations will
develop sooner for small numeric ranges than for large ones.
Thus, while children eventually develop linear
representations, these representations do not fully supplant
logarithmic ones.

Why Do Children’s Number-line Estimates Follow
Fechner’s Law?

The developmental account offered above has been
recently challenged by two proposals defending the
accumulator model. First, Cantlon et al. (2009) have
recently defended the accumulator model by claiming that a
linearly-scaled representation of number actually predicts
logarithmic—not linear—performance on the number-line
task. Within this account, participants do not report the
psychological distance between the probes and anchors
(which would be linear in their model), but instead report
the similarity ratio between the probes and anchors (Cantlon
et al., 2009). Thus, because the signal overlap between 150
and 1000 is greater than the signal overlap between 1 and
150, 150 should seem more similar to 1000 than to 1, just as
on a logarithmic scale.

The second defense of the accumulator model has come
from Ebersbach et al. (2008), who proposed that logarithmic
performance on the number-line task can be explained by a
segmented linear model, with the two linear segments
having different slopes and appearing logarithmic. From
their perspective, the difference in slopes is explained by
children being more familiar with small numbers than large
ones. In this way, children’s performance on the 0-100 and
the 0-1000 would differ because children can count in the
range from 0 to 100 but are unfamiliar with numbers from
101 to 1000 and thus see them as having approximately
equal value.

Present Studies

To test the models proposed by Siegler & Opfer (2003),
Cantlon et al. (2009), and Ebersbach et al. (2008), we asked
second graders to estimate the position of numbers on four
different number lines (0-100, 0-1000, 900-1000, and 900-
1900). Although each model predicts approximately a
logarithmic pattern of estimates on 0-1000 number lines, the
models make competing predictions for remaining number
lines. An interesting aspect of our design was that it allowed

us to examine estimates for the same numbers appearing in
different contexts, thereby allowing us to test the effect of
numeric magnitude on estimates (Table 1). On 0-1000
number lines, 900-1000 are at the end of the interval, and all
models predict compression for these estimates. On the
other hand, in the 900-1900 line, the same numbers are at
the beginning of the interval and only the logarithmic model
predicts less compression for this context. Finally, in the
900-1000 line, the large numbers are distributed in the
whole range, leading the logarithmic model to predict nearly
linear estimates.

What do these three models predict for each interval?
Predictions of logarithmic-to-linear shift model were
derived by assuming logarithmic scaling that would pass
through the two endpoints of the scale. For the 0-100 task
the predictions follow the function y = x. For the 0-1000
task the predictions follow the function y = 144.76 * In(x).
For the 900-1000 task predictions follow the function y =
929.12 * In(x). Finally, for the 900-1900 task predictions
follow the function y = 1338.3 * In(x).

To derive predictions of Cantlon et al. (2009) model, we
modeled scalar wvariability by assuming numerical
magnitude was equal to Gaussian noise in representations.
(Scalar variability allows for any noise-to-magnitude ratio,
but different ratios affect only the intercepts, not overall
shape. Further, our assumption is generous in that it mimics
logarithmic scaling.) After defining the Gaussian noise for
each number, children’s estimates were predicted first by
calculating overlap between the Gaussian distribution of
linearly-scaled probe values and each of the two anchors
(Equation 1 and Equation 2), and then by calculating the
ratio of those two similarity values (Equation 3).
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Where c¢; is the cumulative density function for the
distribution of the lower number, ¢, is the cumulative
density function for the larger number, x; the first
intersection between the two distributions, and x, the second
intersection between the distributions. Children’s actual
estimates were predicted by y.

Similarity,

Y = (3)

Similarity,

Similarityz

Where Similarity, is the degree of overlap between the
distribution of the probe and the lower anchor and
Similarity, is the degree of overlap between the probe and
the higher anchor.

To derive predictions of Ebersbach’s model, we used
ordinary least squares to find the best-fitting segmental
linear function for a data series (0, 1000) defined by y =
144.76 * In (x). Then, using the four parameter-values from
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this function, we calculated predicted estimates for
remaining tasks. The theoretical justification for this
strategy is that the inflection point, X, is thought to reflect
children’s prior experience with numbers, rather than task-
specific factors. Additionally, our best-fitting segmental
linear function obtained parameter values that were very
close to those observed by Ebersbach et al (2008).

The key test for the models was how accurately they
predicted estimates for large numbers with small intervals
(900-1000) and large intervals (900-1900) (for predictions,
see Figs. 1 — 4). Specifically, both the linear model with
scalar variability (Cantlon et al., 2008) and the segmented-
linear model (Ebersbach et al., 2008) predict compression
among large numeric values, regardless of context. Within
the Cantlon et al. (2009) account, compression stems from
the large overlap in noise among large numbers. Thus,
Cantlon et al.’s (2009) model predicts that estimates will
increase logarithmically on 0-100 and 0-1000 number lines,
whereas it predicts estimates will cluster around 950 on 900-
1000 number lines and will cluster between 1300 to 1500 on
900-1900 number lines. Within Ebersbach et al.’s (2008)
account, compression stems from unfamiliarity of numbers
beyond a certain range. For numbers that fall outside of
children’s familiarity (X,), the model predicts estimates will
cluster between 990-1030 on 900-1000 number lines and
cluster between 990-1400 on 900-1900 number lines. In
contrast, logarithmic scaling depicts the magnitude of
compression as a function of interval size.

Method

Participants

Participants included 17 American 2" graders (N = 17; M =
8.28, SD = 0.31; 9 females, 8 males). One child was
excluded for inattention and 5 children excluded for
providing adult-like estimates on 0-100 and 0-1000 line. In
this way, we could focus exclusively on the fit of non-linear
models (i.e., segmental linear, logarithmic, and
accumulator).

Design and Procedure

Each child was presented with all four types of number-lines
(0-100, 0-1000, 900-1000, and 900-1900), with type of
number line counterbalanced using a Latin-square design.
Problems were presented on a computer screen; each line
had a width of 255 pixels.

At the beginning of each trial a fixation was presented
192 pixels over the line (half point between the top of the
screen and the number line) for one second. Afterwards, the
number probe appeared at fixation, and children had to
mouse click to indicate the position of the number. Children
were instructed to answer with both speed and accuracy in
mind. For each task, participants estimated positions of 20
numbers, one per line (see Table 1). Numbers were chosen
to sample over the whole range, to minimize effects of
specific knowledge (e.g., that 50 is half of 100), and to over-

sample at the low end of the range (where models most
strongly diverge in predictions).

Table 1: Numbers estimated on number lines (0-100, 0-
1000, 900-1000, 900-1900)

0-100 0-1000 900-1000  900-1900

1 901 901
2 5 902 905
4 10 904 910
5 26 905 926
8 47 908 947
10 68 910 968
12 90 912 990
13 130 913 1030
15 150 915 1050
17 260 917 1160
26 470 926 1370
32 680 932 1580
37 700 937 1600
47 830 947 1730
58 905 958 1805
68 910 968 1810
70 926 970 1826
&3 947 983 1847
90 968 990 1868
94 990 994 1890

Results and Discussion

Model Comparison

To assess the general function of children’s numerical
estimates, we first examined median estimates of
participants for each of the four number lines, and we
compared the fits of the linear and logarithmic regression
models to these estimates. Consistent with the linear-to-
logarithmic shift hypothesis, estimates on 0-100 number
lines were better fit by the linear regression function than by
the logarithmic (lin R* = .98; log R* = .80), whereas the
logarithmic function provided the better fitting function on
0-1000 number lines (lin R* = .83; log R* = .91), 900-1000
number lines (lin R* = .92; log R* = .93), and 900-1900
number lines (lin R* = .87; log R* = .90).

The observed pattern of estimates is not consistent with
the two models inspired by the accumulator model.
According to Cantlon et al.’s (2009) version, a logarithmic
model would provide the best fit across all four tasks, yet
estimates on the 0-100 task were best fit by the linear
function. Additionally, Ebersbach et al.’s (2008) version
predicts that a linear function would provide the best fit for
estimates on 900-1000 and 900-1900 lines, but the
logarithmic model provided a better fit for the 900-1000 and
900 — 1900 number lines.
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Figure 1: Predictions and median estimates for the 0-1000
task

We next examined how well each model predicted the
specific values of children’s estimates. To measure this, we
first calculated the predicted estimate for each numeric
value, and we then measured the mean absolute error (MAE)
of the predicted estimate to children’s median estimate.

We first evaluated performance on the 0-1000 number
line (Fig 1), where we expected the three models to yield
very similar predictions. For the Siegler & Opfer (2003)
model, we used the ideal logarithmic function,,Y = 144.6 *
Ln(x), to predict children’s median estimates. For Cantlon et
al.’s (2009) model, we used Equations 1 -3. For Ebersbach’s
model, parameters for the segmented-linear model were
obtained by finding the least squares best fitting function to
the logarithmic series with the additional constraint that the
first intercept should be equal to 0 (a; = 0; by = 20.89; b, =
4; x0=30.87).

As illustrated in Figure 1, the three models predicted
children’s estimates on the 0-1000 line equally well, though
all three models tend to over-estimate children’s estimates.
Specifically, we found a MAE = 257.13 (SD = 113.72) for
the segmented-linear model; a MAE = 222.17 (SD = 125.14)
for the accumulator model; and a MAE =262.29 (SD =
86.46) for the logarithmic model (See Figure 2). A one-way
(model: logarithmic, accumulator, segmented-linear)
ANOVA revealed that the main effect of model was not
statistically significant (F(2, 56) =0.77, p = .468).

One of the most important criteria for model selection,
however, is the ability to generalize to novel tasks (Pitt &
Myung, 2002): good models achieve a good fit because they
fit signal, not because they overfit noise. Thus, the strongest
test for model selection is looking at how well the models
generalize to the 0-100, 900-1000 and 900-1900 tasks.

For the 0-100 task (Fig. 2), a one-way (model) ANOVA
showed a significant effect of model on MAE, F(2, 56)
=18.85, p <.001. A multiple comparisons post-hoc analysis
revealed that the linear model (MAE = 4.9, SD = 3.3)
predicted children’s estimates significantly better than the
accumulator model (MAE = 18.37, SD = 12.33), which in
turn outperformed the segmented-linear model (MAE =

Predicted Estimates for Each Model (0-100)
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Figure 2: Predictions and median estimates for the 0-100
task

383.44, SD = 234.39). The superior fit of the linear model y
= X) to the accumulator model is not surprising given
previous results, an observations also made by Dehaene et
al. (2009). The poor fit of the segmented linear model to the
0-100 task is more interesting: clearly the segmented linear
model achieves a good fit on the 0-1000 task by overfitting
the data.

Children’s estimates on 900-1000 and 900-1900 number
lines had not been observed previously, and they provided
an excellent opportunity to test the generalizability of the
three models to new data. Additionally, they provided an
opportunity to examine estimation on number lines with the
same interval size as in previous studies but with greater
magnitude. We predicted that the logarithmic model would
perform better in these ranges because it proposes that
numbers are represented in a logarithmic scale, regardless of
the magnitude. In contrast, both versions of the accumulator
model predict that when numbers are large enough there is
so much noise in the representation that numbers become
virtually indistinguishable.

For the 900-1000 task (Fig. 3), there was again a
significant effect of model on MAE scores (F(2, 56) =
182.09 p < .001). Post-hocs revealed that the logarithmic
model (MAE = 8.21, SD = 8.96) predicted children’s
estimates significantly better than the accumulator model
(MAE = 233, SD = 14.31), and in turn the accumulator
model predicted children’s estimates significantly better
than the segmented-linear model (MAE = 75.08, SD =
11.08.

For the 900-1900 task (Fig. 4), models also differed in
how well they predicted children’s estimates, F(2, 56) =
9434 p < .001. Post-hoc analysis revealed that the
logarithmic model (MAE =150.7, SD = 72.17) and the
accumulator model (MAE =172.7, SD = 84.5) predicted
significantly better the performance in the task than the
segmented-linear model (MAE = 232.75, SD = 119.23),
though there was a nominal superiority for the logarithmic
model.
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Figure 3: Predictions and median estimates for the 900-1000
task

Overall, the results of the model comparisons favor the
developmental account offered by the linear-to-logarithmic
shift hypothesis, and results undermine the two recent
defenses of the accumulator model offered by Canton et al.
(2009) and Ebersbach et al. (2008). In the 0-100 task, this is
the only model that clearly predicts a linear performance
and the results showed that children do perform linearly in
this range of numbers. As noted before, the segmented-
linear model could predict this performance by estimating
the four free parameters of the model for the range.
However, this would cost them in the performance in the 0-
1000 line. We argue that because the rationale behind this
model is that the second slope corresponds to the degree of
familiarity with each number, the parameter values found in
one task should be used for the others, and thus, is not
possible for this model to avoid the tradeoffs presented by
this combination of tasks. This means that, in general the
segmented-linear model would be the best performer for the
particular range used to estimate the parameters, but would
be the worse in the other three intervals. Finally, the
accumulator model commits to a logarithmic performance in
the number-line task and that immediately disqualifies it for
the 0-100 range.

The linear-to-logarithmic model also provided more
accurate predictions of children’s estimates in the 900-1000
and 900-1900 ranges. It is worth highlighting that the model
predicted the performance in the 900-1000 line remarkably
well. In general, although the overall mean absolute errors
are similar between the logarithmic model and the
accumulator model, for these two tasks, a visual inspection
of the performance shows that the logarithmic model
captures the pattern of the data much better. In the case of
the accumulator model, for large numbers, the amount of
noise is so large that makes the number probes virtually
indistinguishable, and although their proposed process of
estimation takes the anchors into account, it is not enough to
fit the data well. In these ranges, the performance of the
segmented-linear model misses completely because the
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Figure 4: Predictions and median estimates for the 900-
1900 task

model’s assumptions relating the compression with lack of
familiarity and proposing a linear slope ad infinitum leaves
this model without the ability to generalize to novel
intervals with larger numbers.

Finally, we found no significant differences between the
three models in the 0-1000 range. Our findings confirm the
claims made by the three models and replicate previous
results in estimation tasks in this range, for this particular
age. This finding is also important, because it shows that the
methods used in this paper to calculate the predictions of the
three models find results that are consistent with the claims
of the three camps and with the general understanding
regarding the difficulty to disentangle the predictions of the
models with behavioral data.

Effect of Interval Size and Magnitude on
Numerical Representations

Our experimental design also allowed us to address a
novel empirical question: What is the effect of interval size
and numeric magnitude on children’s estimates? To address
this question, we next examined estimates for seven
numbers between 900 and 1000 that were presented across
three different tasks. This analysis provides an opportunity
to test a central prediction of the linear-to-logarithmic
hypothesis, which scales logarithmic representations to
specific tasks. Specifically, the model predicts that the slope
of estimates for numbers between 900 and 1000 should be
steeper for the 900-1900 task than for the 0-1000 task.

Consistent with this prediction, a paired-sample r-test
showed a significance difference between the slope of the 0-
1000 line (M = .9, SD = 1.6) and the 900-1900 line (M =
3.27,8D =1.47) t((10) = 3.18, p < .001. As noted before, the
segmented-linear model does not predict a change in the
slope after x yet results show that slopes differ by task. In
this sense, both the Siegler and Opfer (2003) and Cantlon et
al. (2008) models predicted this overall pattern. Further, the
Siegler & Opfer (2003) model more accurately predicted the
magnitude of this SlOpC (b(o,]ooo) =15 vs. b(goo,]goo) = ]42)
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than did the Cantlon et al. (2008) model (b(-1000) = .03 vs.
boo-1900) = -32).

Our fine-grained analysis of estimates complements
previous findings of context effects by Siegler and Opfer
(2003). Specifically, Siegler and Opfer (2003) demonstrated
that estimates of 0 to 100 on 0-100 number lines increased
linearly, whereas estimates of the same values on 0-1000
number lines increased logarithmically, suggesting that the
magnitude of the interval affects whether children access
linear or logarithmic representations. The current
experiment replicated the interval effect, but it also
discovered that estimates for large numbers on number lines
of small intervals (e.g., 900-1000 number lines) do increase
logarithmically. This finding is important because it
suggests that children’s representations of large numbers
improve over time, not just their knowledge about the
demands of small versus large numeric intervals.

In summary, the best explanation for why children’s
number-line estimates follow Fechner’s Law is not because
variability in their representations increases proportionally
with numbers, nor because children can only discriminate a
small set of numbers for which they are familiar. Rather,
children’s early representations of numeric value increase
logarithmically with actual value.
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