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Abstract 

Estimates of numerical magnitude in young children and 
Amazon indigene have been observed to follow Fechner’s 
Law, with estimates increasing logarithmically with actual 
value. Two models have been proposed to account for this 
data. The logarithmic model depicts numeric magnitudes as 
scaled logarithmically with constant Gaussian variability, 
whereas the accumulator model depicts them as scaled 
linearly with increasing variability. This paper tests these 
models by examining number-line estimation with novel 
magnitudes and ranges (0-100, 0-1000, 900-1000, 900-1900). 
Results suggest that although both models provide good fits 
for estimates on 0-1000 number lines, only the fit of the 
logarithmic model generalizes to estimates for smaller 
intervals (900-1000) and larger numbers (900-1900). 

Keywords: Numerical cognition; representation; 
mathematical modeling; conceptual development. 

Introduction 
Whether tracking the size of a sheep flock or traveling to 

the moon, humans must code their experiences numerically. 
Even simple tasks—like matching cardinality of sets, 
discriminating between sets that differ only in numerosity, 
or performing approximate arithmetic operations—require 
that subjects represent numeric value. In this paper, we test 
two prominent models that have been proposed to 
characterize early mental representations of numeric value. 

 Among preschoolers, human infants, and non-human 
animals, numeric representations typically follow Fechner’s 
Law, with discrimination between numerosities depending 
on the ratio of quantities and not absolute difference 
(Dehaene, Dehaene-Lambertz & Cohen, 1998; Gallistel & 
Gelman, 2000). Among older children and adults, 
comparisons of Arabic numbers also follow Fechner’s Law 
(Moyer & Landauer, 1967; Sekuler & Mierkewicz, 1977), 
with subjects being slower and less accurate when 
comparing numbers that differ in distance (e.g., 9 and 7 vs 9 
and 5) or size (e.g., 9 and 7 vs 5 and 3).  

Two models of numeric representations are consistent 
with these size and distance effects: the logarithmic model 
(Dehaene & Changeaux, 1993) and the accumulator model 
(Gibbon & Church, 1981). The logarithmic model explains 
size and distance effects by proposing that numerical 
magnitudes are represented in a logarithmically-compressed 
scale with constant Gaussian variability. The accumulator 
model proposes that numbers are represented in a linear 

scale with variability increasing with numeric value (i.e., 
with scalar variability). Both models can account for size 
and distance effects because in each model the amount of 
signal overlap between representations of any two numbers 
is a function of the size and distance between them.  

Development of Number-line Estimation 
To provide a novel test of the logarithmic and 

accumulator models, Siegler and Opfer (2003) asked 
children (2nd, 4th and 6th graders) and adults to estimate the 
position of numbers on a blank line flanked by two numbers 
(0-100 or 0-1000). Assuming a one-to-one mapping 
between position estimates and internal representations, the 
number-line task provides a straightforward test of the two 
models. Consistent with the logarithmic model (and 
Fechner’s Law), estimates for the 0-1000 line of nearly all 
2nd graders and roughly half of 4th graders increased 
logarithmically with actual number. In contrast, estimates of 
almost all adults and 6th graders increased linearly with 
actual value (and without scalar variability). 

 This logarithmic-to-linear shift in number-line estimation 
has since been replicated with children of different ages 
(Booth & Siegler, 2006; Opfer & Thompson, 2008), 
cultures (Dehaene et al., 2008; Siegler & Mu, 2008) and 
experimental tasks (Opfer & DeVries, 2008; Thompson & 
Opfer, 2008). Booth and Siegler (2006), for example, found 
that nearly all kindergartners’ estimates increased 
logarithmically in the 0-100 task, whereas roughly half of 1st 
graders and nearly all 2nd graders’ estimates increase 
linearly. Recently, Dehaene et al. (2008) also gave the 
number-line task to Mundurucu participants– an Amazonian 
tribe that had little contact with formal education and a 
limited numeric vocabulary (Dehaene et al., 2006; Pica et 
al., 2004). Consistent with the logarithmic-to-linear shift 
hypothesis, Dehaene et al. found that adult Mundurucu 
participants—like kindergartners and 1st graders in Booth 
and Siegler’s (2006) study—mapped numbers to space 
logarithmically, whereas Portuguese-schooled members of 
the Mundurucu—like adults in Siegler and Opfer’s (2003) 
study—mapped numbers to space linearly. Further 
suggesting that experience, not maturation, accounted for 
the logarithmic-to-linear shift, studies have shown that 
children will switch from the logarithmic to linear 
estimation patterns when given feedback on a single 
estimate that has a large discrepancy from the linear pattern 
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(Opfer & Siegler, 2007; Opfer & Thompson, 2008; 
Thompson & Opfer, 2008). 

A straightforward account of how representations of 
symbolic number develop is implied by previous studies of 
number-line estimation. In this view, early representations 
of symbolic number are initially logarithmically 
compressed, much like non-symbolic numeric 
representations in pigeons (Roberts, 1995), rats (Gallistel, 
1990), and chimpanzees (Boysen & Bernston, 1989). With 
age, children in many societies experience feedback on the 
unreliability of logarithmic representations. Because these 
experiences will largely entail feedback on smaller numbers 
(due to their disproportionate frequency in text and speech; 
Dehaene & Changeux, 1993), linear representations will 
develop sooner for small numeric ranges than for large ones. 
Thus, while children eventually develop linear 
representations, these representations do not fully supplant 
logarithmic ones.  

Why Do Children’s Number-line Estimates Follow 
Fechner’s Law? 

 The developmental account offered above has been 
recently challenged by two proposals defending the 
accumulator model. First, Cantlon et al. (2009) have 
recently defended the accumulator model by claiming that a 
linearly-scaled representation of number actually predicts 
logarithmic—not linear—performance on the number-line 
task. Within this account, participants do not report the 
psychological distance between the probes and anchors 
(which would be linear in their model), but instead report 
the similarity ratio between the probes and anchors (Cantlon 
et al., 2009). Thus, because the signal overlap between 150 
and 1000 is greater than the signal overlap between 1 and 
150, 150 should seem more similar to 1000 than to 1, just as 
on a logarithmic scale. 

The second defense of the accumulator model has come 
from Ebersbach et al. (2008), who proposed that logarithmic 
performance on the number-line task can be explained by a 
segmented linear model, with the two linear segments 
having different slopes and appearing logarithmic. From 
their perspective, the difference in slopes is explained by 
children being more familiar with small numbers than large 
ones. In this way, children’s performance on the 0-100 and 
the 0-1000 would differ because children can count in the 
range from 0 to 100 but are unfamiliar with numbers from 
101 to 1000 and thus see them as having approximately 
equal value.  

Present Studies 
To test the models proposed by Siegler & Opfer (2003), 

Cantlon et al. (2009), and Ebersbach et al. (2008), we asked 
second graders to estimate the position of numbers on four 
different number lines (0-100, 0-1000, 900-1000, and 900-
1900). Although each model predicts approximately a 
logarithmic pattern of estimates on 0-1000 number lines, the 
models make competing predictions for remaining number 
lines. An interesting aspect of our design was that it allowed 

us to examine estimates for the same numbers appearing in 
different contexts, thereby allowing us to test the effect of 
numeric magnitude on estimates (Table 1). On 0-1000 
number lines, 900-1000 are at the end of the interval, and all 
models predict compression for these estimates. On the 
other hand, in the 900-1900 line, the same numbers are at 
the beginning of the interval and only the logarithmic model 
predicts less compression for this context. Finally, in the 
900-1000 line, the large numbers are distributed in the 
whole range, leading the logarithmic model to predict nearly 
linear estimates. 

What do these three models predict for each interval? 
Predictions of logarithmic-to-linear shift model were 
derived by assuming logarithmic scaling that would pass 
through the two endpoints of the scale. For the 0-100 task 
the predictions follow the function y = x. For the 0-1000 
task the predictions follow the function y = 144.76 * ln(x). 
For the 900-1000 task predictions follow the function y = 
929.12 * ln(x). Finally, for the 900-1900 task predictions 
follow the function y = 1338.3 * ln(x).  

To derive predictions of Cantlon et al. (2009) model, we 
modeled scalar variability by assuming numerical 
magnitude was equal to Gaussian noise in representations. 
(Scalar variability allows for any noise-to-magnitude ratio, 
but different ratios affect only the intercepts, not overall 
shape. Further, our assumption is generous in that it mimics 
logarithmic scaling.) After defining the Gaussian noise for 
each number, children’s estimates were predicted first by 
calculating overlap between the Gaussian distribution of 
linearly-scaled probe values and each of the two anchors 
(Equation 1 and Equation 2), and then by calculating the 
ratio of those two similarity values (Equation 3).  
 

 

 
    
Where c1 is the cumulative density function for the 
distribution of the lower number, c2 is the cumulative 
density function for the larger number, x1 the first 
intersection between the two distributions, and x2 the second 
intersection between the distributions. Children’s actual 
estimates were predicted by y. 

 
Where Similarity1 is the degree of overlap between the 
distribution of the probe and the lower anchor and 
Similarity2 is the degree of overlap between the probe and 
the higher anchor. 

To derive predictions of Ebersbach’s model, we used 
ordinary least squares to find the best-fitting segmental 
linear function for a data series (0, 1000) defined by y = 
144.76 * ln (x). Then, using the four parameter-values from 
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this function, we calculated predicted estimates for 
remaining tasks. The theoretical justification for this 
strategy is that the inflection point, x0, is thought to reflect 
children’s prior experience with numbers, rather than task-
specific factors. Additionally, our best-fitting segmental 
linear function obtained parameter values that were very 
close to those observed by Ebersbach et al (2008). 

The key test for the models was how accurately they 
predicted estimates for large numbers with small intervals 
(900-1000) and large intervals (900-1900) (for predictions, 
see Figs. 1 – 4). Specifically, both the linear model with 
scalar variability (Cantlon et al., 2008) and the segmented-
linear model (Ebersbach et al., 2008) predict compression 
among large numeric values, regardless of context. Within 
the Cantlon et al. (2009) account, compression stems from 
the large overlap in noise among large numbers. Thus, 
Cantlon et al.’s (2009) model predicts that estimates will 
increase logarithmically on 0-100 and 0-1000 number lines, 
whereas it predicts estimates will cluster around 950 on 900-
1000 number lines and will cluster between 1300 to 1500 on 
900-1900 number lines. Within Ebersbach et al.’s (2008) 
account, compression stems from unfamiliarity of numbers 
beyond a certain range. For numbers that fall outside of 
children’s familiarity (x0), the model predicts estimates will 
cluster between 990-1030 on 900-1000 number lines and 
cluster between 990-1400 on 900-1900 number lines. In 
contrast, logarithmic scaling depicts the magnitude of 
compression as a function of interval size.  

Method 

Participants 
Participants included 17 American 2nd graders (N = 17; M = 
8.28, SD = 0.31; 9 females, 8 males). One child was 
excluded for inattention and 5 children excluded for 
providing adult-like estimates on 0-100 and 0-1000 line. In 
this way, we could focus exclusively on the fit of non-linear 
models (i.e., segmental linear, logarithmic, and 
accumulator).  

Design and Procedure 
Each child was presented with all four types of number-lines 
(0-100, 0-1000, 900-1000, and 900-1900), with type of 
number line counterbalanced using a Latin-square design. 
Problems were presented on a computer screen; each line 
had a width of 255 pixels.  

At the beginning of each trial a fixation was presented 
192 pixels over the line (half point between the top of the 
screen and the number line) for one second. Afterwards, the 
number probe appeared at fixation, and children had to 
mouse click to indicate the position of the number. Children 
were instructed to answer with both speed and accuracy in 
mind. For each task, participants estimated positions of 20 
numbers, one per line (see Table 1). Numbers were chosen 
to sample over the whole range, to minimize effects of 
specific knowledge (e.g., that 50 is half of 100), and to over-

sample at the low end of the range (where models most 
strongly diverge in predictions). 

Table 1: Numbers estimated on number lines (0-100, 0-
1000, 900-1000, 900-1900) 

 

 

Results and Discussion  

Model Comparison 
To assess the general function of children’s numerical 
estimates, we first examined median estimates of 
participants for each of the four number lines, and we 
compared the fits of the linear and logarithmic regression 
models to these estimates. Consistent with the linear-to-
logarithmic shift hypothesis, estimates on 0-100 number 
lines were better fit by the linear regression function than by 
the logarithmic (lin R2 = .98; log R2 = .80), whereas the 
logarithmic function provided the better fitting function on 
0-1000 number lines (lin R2 = .83; log R2 = .91), 900-1000 
number lines (lin R2 = .92; log R2 = .93), and 900-1900 
number lines (lin R2 = .87; log R2 = .90).  
    The observed pattern of estimates is not consistent with 
the two models inspired by the accumulator model. 
According to Cantlon et al.’s (2009) version, a logarithmic 
model would provide the best fit across all four tasks, yet 
estimates on the 0-100 task were best fit by the linear 
function. Additionally, Ebersbach et al.’s (2008) version 
predicts that a linear function would provide the best fit for 
estimates on 900-1000 and 900-1900 lines, but the 
logarithmic model provided a better fit for the 900-1000 and 
900 – 1900 number lines.  

0-100 0-1000 900-1000 900-1900 
1 1 901 901 
2 5 902 905 
4 10 904 910 
5 26 905 926 
8 47 908 947 
10 68 910 968 
12 90 912 990 
13 130 913 1030 
15 150 915 1050 
17 260 917 1160 
26 470 926 1370 
32 680 932 1580 
37 700 937 1600 
47 830 947 1730 
58 905 958 1805 
68 910 968 1810 
70 926 970 1826 
83 947 983 1847 
90 968 990 1868 
94 990 994 1890 
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 Figure 1: Predictions and median estimates for the 0-1000 
task 

 
We next examined how well each model predicted the 
specific values of children’s estimates. To measure this, we 
first calculated the predicted estimate for each numeric 
value, and we then measured the mean absolute error (MAE) 
of the predicted estimate to children’s median estimate.  

We first evaluated performance on the 0-1000 number 
line (Fig 1), where we expected the three models to yield 
very similar predictions. For the Siegler & Opfer (2003) 
model, we used the ideal logarithmic function,,Ŷ = 144.6 * 
Ln(x), to predict children’s median estimates. For Cantlon et 
al.’s (2009) model, we used Equations 1 -3. For Ebersbach’s 
model, parameters for the segmented-linear model were 
obtained by finding the least squares best fitting function to 
the logarithmic series with the additional constraint that the 
first intercept should be equal to 0 (a1 = 0; b1 = 20.89; b2 = 
.4; x0 = 30.87).  

As illustrated in Figure 1, the three models predicted 
children’s estimates on the 0-1000 line equally well, though 
all three models tend to over-estimate children’s estimates. 
Specifically, we found a MAE = 257.13 (SD = 113.72) for 
the segmented-linear model; a MAE = 222.17 (SD = 125.14) 
for the accumulator model; and a MAE =262.29 (SD = 
86.46) for the logarithmic model (See Figure 2). A one-way 
(model: logarithmic, accumulator, segmented-linear) 
ANOVA revealed that the main effect of model was not 
statistically significant (F(2, 56) = 0.77, p = .468).  

One of the most important criteria for model selection, 
however, is the ability to generalize to novel tasks (Pitt & 
Myung, 2002): good models achieve a good fit because they 
fit signal, not because they overfit noise. Thus, the strongest 
test for model selection is looking at how well the models 
generalize to the 0-100, 900-1000 and 900-1900 tasks. 

For the 0-100 task (Fig. 2), a one-way (model) ANOVA 
showed a significant effect of model on MAE, F(2, 56) 
=18.85,  p < .001. A multiple comparisons post-hoc analysis 
revealed that the linear model (MAE = 4.9, SD = 3.3) 
predicted children’s estimates significantly better than the 
accumulator model (MAE = 18.37, SD = 12.33), which in 
turn outperformed the segmented-linear model (MAE = 

 Figure 2: Predictions and median estimates for the 0-100 
task 

 
383.44, SD = 234.39). The superior fit of the linear model y 
= x) to the accumulator model is not surprising given 
previous results, an observations also made by Dehaene et 
al. (2009). The poor fit of the segmented linear model to the  
0-100 task is more interesting: clearly the segmented linear 
model achieves a good fit on the 0-1000 task by overfitting 
the data.   

Children’s estimates on 900-1000 and 900-1900 number 
lines had not been observed previously, and they provided 
an excellent opportunity to test the generalizability of the 
three models to new data. Additionally, they provided an 
opportunity to examine estimation on number lines with the 
same interval size as in previous studies but with greater 
magnitude. We predicted that the logarithmic model would 
perform better in these ranges because it proposes that 
numbers are represented in a logarithmic scale, regardless of 
the magnitude. In contrast, both versions of the accumulator 
model predict that when numbers are large enough there is 
so much noise in the representation that numbers become 
virtually indistinguishable. 

For the 900-1000 task (Fig. 3), there was again a 
significant effect of model on MAE scores (F(2, 56) = 
182.09 p < .001). Post-hocs revealed that the logarithmic 
model (MAE = 8.21, SD = 8.96) predicted children’s 
estimates significantly better than the accumulator model 
(MAE = 23.3, SD = 14.31), and in turn the accumulator 
model predicted children’s estimates significantly better 
than the segmented-linear model (MAE = 75.08, SD = 
11.08.  

For the 900-1900 task (Fig. 4), models also differed in 
how well they predicted children’s estimates, F(2, 56) = 
94.34 p < .001. Post-hoc analysis revealed that the 
logarithmic model (MAE =150.7, SD = 72.17) and the 
accumulator model (MAE =172.7, SD = 84.5) predicted 
significantly better the performance in the task than the 
segmented-linear model (MAE = 232.75, SD = 119.23), 
though there was a nominal superiority for the logarithmic 
model.   
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Figure 3: Predictions and median estimates for the 900-1000 
task 

 
Overall, the results of the model comparisons favor the 

developmental account offered by the linear-to-logarithmic 
shift hypothesis, and results undermine the two recent 
defenses of the accumulator model offered by Canton et al.  
(2009) and Ebersbach et al. (2008). In the 0-100 task, this is 
the only model that clearly predicts a linear performance 
and the results showed that children do perform linearly in 
this range of numbers. As noted before, the segmented-
linear model could predict this performance by estimating 
the four free parameters of the model for the range. 
However, this would cost them in the performance in the 0-
1000 line. We argue that because the rationale behind this 
model is that the second slope corresponds to the degree of 
familiarity with each number, the parameter values found in 
one task should be used for the others, and thus, is not 
possible for this model to avoid the tradeoffs presented by 
this combination of tasks. This means that, in general the 
segmented-linear model would be the best performer for the 
particular range used to estimate the parameters, but would 
be the worse in the other three intervals. Finally, the 
accumulator model commits to a logarithmic performance in 
the number-line task and that immediately disqualifies it for 
the 0-100 range. 

The linear-to-logarithmic model also provided more 
accurate predictions of children’s estimates in the 900-1000 
and 900-1900 ranges. It is worth highlighting that the model 
predicted the performance in the 900-1000 line remarkably 
well. In general, although the overall mean absolute errors 
are similar between the logarithmic model and the 
accumulator model, for these two tasks, a visual inspection 
of the performance shows that the logarithmic model 
captures the pattern of the data much better. In the case of 
the accumulator model, for large numbers, the amount of 
noise is so large that makes the number probes virtually 
indistinguishable, and although their proposed process of 
estimation takes the anchors into account, it is not enough to 
fit the data well. In these ranges, the performance of the 
segmented-linear model misses completely because the 

 
Figure 4: Predictions and median estimates for the 900-

1900 task 
 

model’s assumptions relating the compression with lack of 
familiarity and proposing a linear slope ad infinitum leaves 
this model without the ability to generalize to novel 
intervals with larger numbers. 

Finally, we found no significant differences between the 
three models in the 0-1000 range. Our findings confirm the 
claims made by the three models and replicate previous 
results in estimation tasks in this range, for this particular 
age. This finding is also important, because it shows that the 
methods used in this paper to calculate the predictions of the 
three models find results that are consistent with the claims 
of the three camps and with the general understanding 
regarding the difficulty to disentangle the predictions of the 
models with behavioral data.  

Effect of Interval Size and Magnitude on 
Numerical Representations 

Our experimental design also allowed us to address a 
novel empirical question:  What is the effect of interval size 
and numeric magnitude on children’s estimates? To address 
this question, we next examined estimates for seven 
numbers between 900 and 1000 that were presented across 
three different tasks. This analysis provides an opportunity 
to test a central prediction of the linear-to-logarithmic 
hypothesis, which scales logarithmic representations to 
specific tasks. Specifically, the model predicts that the slope 
of estimates for numbers between 900 and 1000 should be 
steeper for the 900-1900 task than for the 0-1000 task.  

Consistent with this prediction, a paired-sample t-test 
showed a significance difference between the slope of the 0-
1000 line (M = .9, SD = 1.6) and the 900-1900 line (M = 
3.27, SD = 1.47) t(10) = 3.18, p < .001. As noted before, the 
segmented-linear model does not predict a change in the 
slope after x0 yet results show that slopes differ by task. In 
this sense, both the Siegler and Opfer (2003) and Cantlon et 
al. (2008) models predicted this overall pattern. Further, the 
Siegler & Opfer (2003) model more accurately predicted the 
magnitude of this slope (b(0-1000) =.15 vs. b(900-1900) = 1.42) 
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than did the Cantlon et al. (2008) model (b(0-1000) = .03 vs. 
b(900-1900) = .32). 

Our fine-grained analysis of estimates complements 
previous findings of context effects by Siegler and Opfer 
(2003). Specifically, Siegler and Opfer (2003) demonstrated 
that estimates of 0 to 100 on 0-100 number lines increased 
linearly, whereas estimates of the same values on 0-1000 
number lines increased logarithmically, suggesting that the 
magnitude of the interval affects whether children access 
linear or logarithmic representations. The current 
experiment replicated the interval effect, but it also 
discovered that estimates for large numbers on number lines 
of small intervals (e.g., 900-1000 number lines) do increase 
logarithmically. This finding is important because it 
suggests that children’s representations of large numbers 
improve over time, not just their knowledge about the 
demands of small versus large numeric intervals.  

In summary, the best explanation for why children’s 
number-line estimates follow Fechner’s Law is not because 
variability in their representations increases proportionally 
with numbers, nor because children can only discriminate a 
small set of numbers for which they are familiar. Rather, 
children’s early representations of numeric value increase 
logarithmically with actual value.  
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